aboutsummaryrefslogtreecommitdiffstats
path: root/include/asm-i386 (follow)
AgeCommit message (Collapse)AuthorFilesLines
2006-05-08[PATCH] x86_64: avoid IRQ0 ioapic pin collisionKimball Murray1-0/+1
The patch addresses a problem with ACPI SCI interrupt entry, which gets re-used, and the IRQ is assigned to another unrelated device. The patch corrects the code such that SCI IRQ is skipped and duplicate entry is avoided. Second issue came up with VIA chipset, the problem was caused by original patch assigning IRQs starting 16 and up. The VIA chipset uses 4-bit IRQ register for internal interrupt routing, and therefore cannot handle IRQ numbers assigned to its devices. The patch corrects this problem by allowing PCI IRQs below 16. Cc: len.brown@intel.com Signed-off by: Natalie Protasevich <Natalie.Protasevich@unisys.com> Signed-off-by: Andi Kleen <ak@suse.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-04-29[PATCH] i386: fix broken FP exception handlingChuck Ebbert1-2/+2
The FXSAVE information leak patch introduced a bug in FP exception handling: it clears FP exceptions only when there are already none outstanding. Mikael Pettersson reported that causes problems with the Erlang runtime and has tested this fix. Signed-off-by: Chuck Ebbert <76306.1226@compuserve.com> Acked-by: Mikael Pettersson <mikpe@it.uu.se> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-04-27[PATCH] x86/PAE: Fix pte_clear for the >4GB RAM caseZachary Amsden3-3/+24
Proposed fix for ptep_get_and_clear_full PAE bug. Pte_clear had the same bug, so use the same fix for both. Turns out pmd_clear had it as well, but pgds are not affected. The problem is rather intricate. Page table entries in PAE mode are 64-bits wide, but the only atomic 8-byte write operation available in 32-bit mode is cmpxchg8b, which is expensive (at least on P4), and thus avoided. But it can happen that the processor may prefetch entries into the TLB in the middle of an operation which clears a page table entry. So one must always clear the P-bit in the low word of the page table entry first when clearing it. Since the sequence *ptep = __pte(0) leaves the order of the write dependent on the compiler, it must be coded explicitly as a clear of the low word followed by a clear of the high word. Further, there must be a write memory barrier here to enforce proper ordering by the compiler (and, in the future, by the processor as well). On > 4GB memory machines, the implementation of pte_clear for PAE was clearly deficient, as it could leave virtual mappings of physical memory above 4GB aliased to memory below 4GB in the TLB. The implementation of ptep_get_and_clear_full has a similar bug, although not nearly as likely to occur, since the mappings being cleared are in the process of being destroyed, and should never be dereferenced again. But, as luck would have it, it is possible to trigger bugs even without ever dereferencing these bogus TLB mappings, even if the clear is followed fairly soon after with a TLB flush or invalidation. The problem is that memory above 4GB may now be aliased into the first 4GB of memory, and in fact, may hit a region of memory with non-memory semantics. These regions include AGP and PCI space. As such, these memory regions are not cached by the processor. This introduces the bug. The processor can speculate memory operations, including memory writes, as long as they are committed with the proper ordering. Speculating a memory write to a linear address that has a bogus TLB mapping is possible. Normally, the speculation is harmless. But for cached memory, it does leave the falsely speculated cacheline unmodified, but in a dirty state. This cache line will be eventually written back. If this cacheline happens to intersect a region of memory that is not protected by the cache coherency protocol, it can corrupt data in I/O memory, which is generally a very bad thing to do, and can cause total system failure or just plain undefined behavior. These bugs are extremely unlikely, but the severity is of such magnitude, and the fix so simple that I think fixing them immediately is justified. Also, they are nearly impossible to debug. Signed-off-by: Zachary Amsden <zach@vmware.com> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-04-26[PATCH] Add support for the sys_vmsplice syscallJens Axboe1-1/+2
sys_splice() moves data to/from pipes with a file input/output. sys_vmsplice() moves data to a pipe, with the input being a user address range instead. This uses an approach suggested by Linus, where we can hold partial ranges inside the pages[] map. Hopefully this will be useful for network receive support as well. Signed-off-by: Jens Axboe <axboe@suse.de>
2006-04-20[PATCH] i386/x86-64: Fix x87 information leak between processesAndi Kleen2-4/+27
AMD K7/K8 CPUs only save/restore the FOP/FIP/FDP x87 registers in FXSAVE when an exception is pending. This means the value leak through context switches and allow processes to observe some x87 instruction state of other processes. This was actually documented by AMD, but nobody recognized it as being different from Intel before. The fix first adds an optimization: instead of unconditionally calling FNCLEX after each FXSAVE test if ES is pending and skip it when not needed. Then do a x87 load from a kernel variable to clear FOP/FIP/FDP. This means other processes always will only see a constant value defined by the kernel in their FP state. I took some pain to make sure to chose a variable that's already in L1 during context switch to make the overhead of this low. Also alternative() is used to patch away the new code on CPUs who don't need it. Patch for both i386/x86-64. The problem was discovered originally by Jan Beulich. Richard Brunner provided the basic code for the workarounds, with contribution from Jan. This is CVE-2006-1056 Cc: richard.brunner@amd.com Cc: jbeulich@novell.com Signed-off-by: Andi Kleen <ak@suse.de> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-04-19[PATCH] asm-i386/atomic.h: local_irq_save should be used instead of local_irq_disablelepton1-2/+3
atomic_add_return() if CONFIG_M386 can accidentally enable local interrupts. Signed-off-by: Lepton Wu <ytht.net@gmail.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-04-11[PATCH] splice: add support for sys_tee()Jens Axboe1-1/+2
Basically an in-kernel implementation of tee, which uses splice and the pipe buffers as an intelligent way to pass data around by reference. Where the user space tee consumes the input and produces a stdout and file output, this syscall merely duplicates the data inside a pipe to another pipe. No data is copied, the output just grabs a reference to the input pipe data. Signed-off-by: Jens Axboe <axboe@suse.de>
2006-04-11Merge branch 'splice' of git://brick.kernel.dk/data/git/linux-2.6-blockLinus Torvalds1-2/+2
* 'splice' of git://brick.kernel.dk/data/git/linux-2.6-block: [PATCH] vfs: add splice_write and splice_read to documentation [PATCH] Remove sys_ prefix of new syscalls from __NR_sys_* [PATCH] splice: warning fix [PATCH] another round of fs/pipe.c cleanups [PATCH] splice: comment styles [PATCH] splice: add Ingo as addition copyright holder [PATCH] splice: unlikely() optimizations [PATCH] splice: speedups and optimizations [PATCH] pipe.c/fifo.c code cleanups [PATCH] get rid of the PIPE_*() macros [PATCH] splice: speedup __generic_file_splice_read [PATCH] splice: add direct fd <-> fd splicing support [PATCH] splice: add optional input and output offsets [PATCH] introduce a "kernel-internal pipe object" abstraction [PATCH] splice: be smarter about calling do_page_cache_readahead() [PATCH] splice: optimize the splice buffer mapping [PATCH] splice: cleanup __generic_file_splice_read() [PATCH] splice: only call wake_up_interruptible() when we really have to [PATCH] splice: potential !page dereference [PATCH] splice: mark the io page as accessed
2006-04-11[PATCH] sys_kexec_load() naming fixupsAndrew Morton1-1/+1
__NR_sys_kexec_load should be __NR_kexec_load. Mainly affects users of the _syscallN() macros, and glibc is already checking for __NR_kexec_load. Cc: Ulrich Drepper <drepper@redhat.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Mikael Starvik <starvik@axis.com> Cc: David Howells <dhowells@redhat.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Cc: Hirokazu Takata <takata@linux-m32r.org> Cc: Paul Mundt <lethal@linux-sh.org> Cc: Kazumoto Kojima <kkojima@rr.iij4u.or.jp> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-04-11[PATCH] Configurable NODES_SHIFTYasunori Goto1-18/+0
Current implementations define NODES_SHIFT in include/asm-xxx/numnodes.h for each arch. Its definition is sometimes configurable. Indeed, ia64 defines 5 NODES_SHIFT values in the current git tree. But it looks a bit messy. SGI-SN2(ia64) system requires 1024 nodes, and the number of nodes already has been changeable by config. Suitable node's number may be changed in the future even if it is other architecture. So, I wrote configurable node's number. This patch set defines just default value for each arch which needs multi nodes except ia64. But, it is easy to change to configurable if necessary. On ia64 the number of nodes can be already configured in generic ia64 and SN2 config. But, NODES_SHIFT is defined for DIG64 and HP'S machine too. So, I changed it so that all platforms can be configured via CONFIG_NODES_SHIFT. It would be simpler. See also: http://marc.theaimsgroup.com/?l=linux-kernel&m=114358010523896&w=2 Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com> Cc: Hirokazu Takata <takata@linux-m32r.org> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Andi Kleen <ak@muc.de> Cc: Paul Mackerras <paulus@samba.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: Richard Henderson <rth@twiddle.net> Cc: Kyle McMartin <kyle@mcmartin.ca> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Jack Steiner <steiner@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-04-11[PATCH] mptspec: remove duplicate #includeRandy Dunlap1-1/+0
Signed-off-by: Randy Dunlap <rdunlap@xenotime.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-04-11[PATCH] Remove sys_ prefix of new syscalls from __NR_sys_*OGAWA Hirofumi1-2/+2
On i386, we don't use sys_ prefix for __NR_*. This patch removes it [FWIW, _syscall*() macros will generate foo() instead of sys_foo().] Signed-off-by: OGAWA Hirofumi <hirofumi@mail.parknet.co.jp> Signed-off-by: Jens Axboe <axboe@suse.de>
2006-04-09[PATCH] x86_64: Fix drift with HPET timer enabledJordan Hargrave1-0/+1
If the HPET timer is enabled, the clock can drift by ~3 seconds a day. This is due to the HPET timer not being initialized with the correct setting (still using PIT count). If HZ changes, this drift can become even more pronounced. HPET patch initializes tick_nsec with correct tick_nsec settings for HPET timer. Vojtech comments: "It's not entirely correct (it assumes the HPET ticks totally exactly), but it's significantly better than assuming the PIT error there." Signed-off-by: Andi Kleen <ak@suse.de> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-04-09[PATCH] i386: Consolidate modern APIC handlingAndi Kleen1-0/+2
AMD systems have a modern APIC that supports 8 bit IDs, but don't have a XAPIC version number. Add a new "modern_apic" subfunction that handles this correctly and use it (nearly) everywhere where XAPIC is tested for. I removed one wart: the code specified that external APICs would use an 8bit APIC ID. But I checked a real 82093 data sheet and it says clearly that they only use 4bit. So I removed this special case since it would a bit awkward to implement now. I removed the valid APIC tests in mptable parsing completely. On any modern system they only check against the full field width (8bit) anyways and are no-ops. This also fixes them doing the wrong thing on >8 core Opterons. This makes i386 boot again on 16 core Opterons. Cc: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andi Kleen <ak@suse.de> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-04-09[PATCH] x86_64: Introduce e820_all_mappedArjan van de Ven1-0/+4
Introduce a e820_all_mapped() function which checks if the entire range <start,end> is mapped with type. This is done by moving the local start variable to the end of each known-good region; if at the end of the function the start address is still before end, there must be a part that's not of the correct type; otherwise it's a good region. Signed-off-by: Arjan van de Ven <arjan@linux.intel.com> Signed-off-by: Andi Kleen <ak@suse.de> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-31[PATCH] make local_t signedAndrew Morton1-3/+3
local_t's were defined to be unsigned. This increases confusion because atomic_t's are signed. The patch goes through and changes all implementations to use signed longs throughout. Also, x86-64 was using 32-bit quantities for the value passed into local_add() and local_sub(). Fixed. All (actually, both) existing users have been audited. (Also s/__inline__/inline/ in x86_64/local.h) Cc: Andi Kleen <ak@muc.de> Cc: Benjamin LaHaise <bcrl@kvack.org> Cc: Kyle McMartin <kyle@parisc-linux.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-31[PATCH] sys_sync_file_range()Andrew Morton1-1/+2
Remove the recently-added LINUX_FADV_ASYNC_WRITE and LINUX_FADV_WRITE_WAIT fadvise() additions, do it in a new sys_sync_file_range() syscall instead. Reasons: - It's more flexible. Things which would require two or three syscalls with fadvise() can be done in a single syscall. - Using fadvise() in this manner is something not covered by POSIX. The patch wires up the syscall for x86. The sycall is implemented in the new fs/sync.c. The intention is that we can move sys_fsync(), sys_fdatasync() and perhaps sys_sync() into there later. Documentation for the syscall is in fs/sync.c. A test app (sync_file_range.c) is in http://www.zip.com.au/~akpm/linux/patches/stuff/ext3-tools.tar.gz. The available-to-GPL-modules do_sync_file_range() is for knfsd: "A COMMIT can say NFS_DATA_SYNC or NFS_FILE_SYNC. I can skip the ->fsync call for NFS_DATA_SYNC which is hopefully the more common." Note: the `async' writeout mode SYNC_FILE_RANGE_WRITE will turn synchronous if the queue is congested. This is trivial to fix: add a new flag bit, set wbc->nonblocking. But I'm not sure that we want to expose implementation details down to that level. Note: it's notable that we can sync an fd which wasn't opened for writing. Same with fsync() and fdatasync()). Note: the code takes some care to handle attempts to sync file contents outside the 16TB offset on 32-bit machines. It makes such attempts appear to succeed, for best 32-bit/64-bit compatibility. Perhaps it should make such requests fail... Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Michael Kerrisk <mtk-manpages@gmx.net> Cc: Ulrich Drepper <drepper@redhat.com> Cc: Neil Brown <neilb@cse.unsw.edu.au> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-31[PATCH] i386 kdump timer vector lockup fixVivek Goyal1-0/+1
Porting the patch I posted for x86_64 to i386. http://marc.theaimsgroup.com/?l=linux-kernel&m=114178139610707&w=2 o While using kdump, after a system crash when second kernel boots, timer vector gets (0x31) locked and CPU does not see timer interrupts travelling from IOAPIC to APIC. Currently it does not lead to boot failure in second kernel as timer interrupts continues to come as ExtInt through LAPIC directly, but fixing it is good in case some boards do not support the other mode. o After a system crash, it is not safe to service interrupts any more, hence interrupts are disabled. This leads to pending interrupts at LAPIC. LAPIC sends these interrupts to the CPU during early boot of second kernel. Other pending interrupts are discarded saying unexpected trap but timer interrupt is serviced and CPU does not issue an LAPIC EOI because it think this interrupt came from i8259 and sends ack to 8259. This leads to vector 0x31 locking as LAPIC does not clear respective ISR and keeps on waiting for EOI. o This patch issues extra EOI for the pending interrupts who have ISR set. o Though today only timer seems to be the special case because in early boot it thinks interrupts are coming from i8259 and uses mask_and_ack_8259A() as ack handler and does not issue LAPIC EOI. But probably doing it in generic manner for all vectors makes sense. Signed-off-by: Vivek Goyal <vgoyal@in.ibm.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Andi Kleen <ak@muc.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-31[PATCH] Remove long dead i386 floppy asm codeBrian Gerst1-34/+0
It's been disabled since v2.1.88 Signed-off-by: Brian Gerst <bgerst@didntduck.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-30[PATCH] Introduce sys_splice() system callJens Axboe1-1/+2
This adds support for the sys_splice system call. Using a pipe as a transport, it can connect to files or sockets (latter as output only). From the splice.c comments: "splice": joining two ropes together by interweaving their strands. This is the "extended pipe" functionality, where a pipe is used as an arbitrary in-memory buffer. Think of a pipe as a small kernel buffer that you can use to transfer data from one end to the other. The traditional unix read/write is extended with a "splice()" operation that transfers data buffers to or from a pipe buffer. Named by Larry McVoy, original implementation from Linus, extended by Jens to support splicing to files and fixing the initial implementation bugs. Signed-off-by: Jens Axboe <axboe@suse.de> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-28[PATCH] arch/i386/kernel/microcode.c: remove the obsolete microcode_ioctlAdrian Bunk1-2/+0
Nowadays, even Debian stable ships a microcode_ctl utility recent enough to no longer use this ioctl. Signed-off-by: Adrian Bunk <bunk@stusta.de> Acked-by: Tigran Aivazian <tigran_aivazian@symantec.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-28[PATCH] RTC: Fix up some RTC whitespace and styleMatt Mackall1-10/+11
Fix up some RTC whitespace and style Signed-off-by: Matt Mackall <mpm@selenic.com> Cc: Alessandro Zummo <a.zummo@towertech.it> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-28[PATCH] RTC: Remove RTC UIP synchronization on x86Matt Mackall1-14/+2
Reading the CMOS clock on x86 and some other arches currently takes up to one second because it synchronizes with the CMOS second tick-over. This delay shows up at boot time as well a resume time. This is the currently the most substantial boot time delay for machines that are working towards instant-on capability. Also, a quick back of the envelope calculation (.5sec * 2M users * 1 boot a day * 10 years) suggests it has cost Linux users in the neighborhood of a million man-hours. An earlier thread on this topic is here: http://groups.google.com/group/linux.kernel/browse_frm/thread/8a24255215ff6151/2aa97e66a977653d?hl=en&lr=&ie=UTF-8&rnum=1&prev=/groups%3Fhl%3Den%26lr%3D%26ie%3DUTF-8%26selm%3D1To2R-2S7-11%40gated-at.bofh.it#2aa97e66a977653d ..from which the consensus seems to be that it's no longer desirable. In my view, there are basically four cases to consider: 1) networked, need precise walltime: use NTP 2) networked, don't need precise walltime: use NTP anyway 3) not networked, don't need sub-second precision walltime: don't care 4) not networked, need sub-second precision walltime: get a network or a radio time source because RTC isn't good enough anyway So this patch series simply removes the synchronization in favor of a simple seqlock-like approach using the seconds value. Note that for purposes of timer accuracy on wakeup, this patch will cause us to fire timers up to one second late. But as the current timer resume code will already sync once (or more!), it's no worse for short timers. Signed-off-by: Matt Mackall <mpm@selenic.com> Cc: Andi Kleen <ak@muc.de> Cc: "David S. Miller" <davem@davemloft.net> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Paul Mundt <lethal@linux-sh.org> Cc: Kazumoto Kojima <kkojima@rr.iij4u.or.jp> Cc: Alessandro Zummo <a.zummo@towertech.it> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-27[PATCH] Notifier chain update: API changesAlan Stern1-6/+4
The kernel's implementation of notifier chains is unsafe. There is no protection against entries being added to or removed from a chain while the chain is in use. The issues were discussed in this thread: http://marc.theaimsgroup.com/?l=linux-kernel&m=113018709002036&w=2 We noticed that notifier chains in the kernel fall into two basic usage classes: "Blocking" chains are always called from a process context and the callout routines are allowed to sleep; "Atomic" chains can be called from an atomic context and the callout routines are not allowed to sleep. We decided to codify this distinction and make it part of the API. Therefore this set of patches introduces three new, parallel APIs: one for blocking notifiers, one for atomic notifiers, and one for "raw" notifiers (which is really just the old API under a new name). New kinds of data structures are used for the heads of the chains, and new routines are defined for registration, unregistration, and calling a chain. The three APIs are explained in include/linux/notifier.h and their implementation is in kernel/sys.c. With atomic and blocking chains, the implementation guarantees that the chain links will not be corrupted and that chain callers will not get messed up by entries being added or removed. For raw chains the implementation provides no guarantees at all; users of this API must provide their own protections. (The idea was that situations may come up where the assumptions of the atomic and blocking APIs are not appropriate, so it should be possible for users to handle these things in their own way.) There are some limitations, which should not be too hard to live with. For atomic/blocking chains, registration and unregistration must always be done in a process context since the chain is protected by a mutex/rwsem. Also, a callout routine for a non-raw chain must not try to register or unregister entries on its own chain. (This did happen in a couple of places and the code had to be changed to avoid it.) Since atomic chains may be called from within an NMI handler, they cannot use spinlocks for synchronization. Instead we use RCU. The overhead falls almost entirely in the unregister routine, which is okay since unregistration is much less frequent that calling a chain. Here is the list of chains that we adjusted and their classifications. None of them use the raw API, so for the moment it is only a placeholder. ATOMIC CHAINS ------------- arch/i386/kernel/traps.c: i386die_chain arch/ia64/kernel/traps.c: ia64die_chain arch/powerpc/kernel/traps.c: powerpc_die_chain arch/sparc64/kernel/traps.c: sparc64die_chain arch/x86_64/kernel/traps.c: die_chain drivers/char/ipmi/ipmi_si_intf.c: xaction_notifier_list kernel/panic.c: panic_notifier_list kernel/profile.c: task_free_notifier net/bluetooth/hci_core.c: hci_notifier net/ipv4/netfilter/ip_conntrack_core.c: ip_conntrack_chain net/ipv4/netfilter/ip_conntrack_core.c: ip_conntrack_expect_chain net/ipv6/addrconf.c: inet6addr_chain net/netfilter/nf_conntrack_core.c: nf_conntrack_chain net/netfilter/nf_conntrack_core.c: nf_conntrack_expect_chain net/netlink/af_netlink.c: netlink_chain BLOCKING CHAINS --------------- arch/powerpc/platforms/pseries/reconfig.c: pSeries_reconfig_chain arch/s390/kernel/process.c: idle_chain arch/x86_64/kernel/process.c idle_notifier drivers/base/memory.c: memory_chain drivers/cpufreq/cpufreq.c cpufreq_policy_notifier_list drivers/cpufreq/cpufreq.c cpufreq_transition_notifier_list drivers/macintosh/adb.c: adb_client_list drivers/macintosh/via-pmu.c sleep_notifier_list drivers/macintosh/via-pmu68k.c sleep_notifier_list drivers/macintosh/windfarm_core.c wf_client_list drivers/usb/core/notify.c usb_notifier_list drivers/video/fbmem.c fb_notifier_list kernel/cpu.c cpu_chain kernel/module.c module_notify_list kernel/profile.c munmap_notifier kernel/profile.c task_exit_notifier kernel/sys.c reboot_notifier_list net/core/dev.c netdev_chain net/decnet/dn_dev.c: dnaddr_chain net/ipv4/devinet.c: inetaddr_chain It's possible that some of these classifications are wrong. If they are, please let us know or submit a patch to fix them. Note that any chain that gets called very frequently should be atomic, because the rwsem read-locking used for blocking chains is very likely to incur cache misses on SMP systems. (However, if the chain's callout routines may sleep then the chain cannot be atomic.) The patch set was written by Alan Stern and Chandra Seetharaman, incorporating material written by Keith Owens and suggestions from Paul McKenney and Andrew Morton. [jes@sgi.com: restructure the notifier chain initialization macros] Signed-off-by: Alan Stern <stern@rowland.harvard.edu> Signed-off-by: Chandra Seetharaman <sekharan@us.ibm.com> Signed-off-by: Jes Sorensen <jes@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-27[PATCH] lightweight robust futexes updatesIngo Molnar1-1/+1
- fix: initialize the robust list(s) to NULL in copy_process. - doc update - cleanup: rename _inuser to _inatomic - __user cleanups and other small cleanups Signed-off-by: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Arjan van de Ven <arjan@infradead.org> Cc: Ulrich Drepper <drepper@redhat.com> Cc: Andi Kleen <ak@muc.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-27[PATCH] lightweight robust futexes: i386Ingo Molnar2-2/+25
i386: add the futex_atomic_cmpxchg_inuser() assembly implementation, and wire up the new syscalls. Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Arjan van de Ven <arjan@infradead.org> Acked-by: Ulrich Drepper <drepper@redhat.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-27[PATCH] lightweight robust futexes: arch defaultsIngo Molnar1-0/+6
This patchset provides a new (written from scratch) implementation of robust futexes, called "lightweight robust futexes". We believe this new implementation is faster and simpler than the vma-based robust futex solutions presented before, and we'd like this patchset to be adopted in the upstream kernel. This is version 1 of the patchset. Background ---------- What are robust futexes? To answer that, we first need to understand what futexes are: normal futexes are special types of locks that in the noncontended case can be acquired/released from userspace without having to enter the kernel. A futex is in essence a user-space address, e.g. a 32-bit lock variable field. If userspace notices contention (the lock is already owned and someone else wants to grab it too) then the lock is marked with a value that says "there's a waiter pending", and the sys_futex(FUTEX_WAIT) syscall is used to wait for the other guy to release it. The kernel creates a 'futex queue' internally, so that it can later on match up the waiter with the waker - without them having to know about each other. When the owner thread releases the futex, it notices (via the variable value) that there were waiter(s) pending, and does the sys_futex(FUTEX_WAKE) syscall to wake them up. Once all waiters have taken and released the lock, the futex is again back to 'uncontended' state, and there's no in-kernel state associated with it. The kernel completely forgets that there ever was a futex at that address. This method makes futexes very lightweight and scalable. "Robustness" is about dealing with crashes while holding a lock: if a process exits prematurely while holding a pthread_mutex_t lock that is also shared with some other process (e.g. yum segfaults while holding a pthread_mutex_t, or yum is kill -9-ed), then waiters for that lock need to be notified that the last owner of the lock exited in some irregular way. To solve such types of problems, "robust mutex" userspace APIs were created: pthread_mutex_lock() returns an error value if the owner exits prematurely - and the new owner can decide whether the data protected by the lock can be recovered safely. There is a big conceptual problem with futex based mutexes though: it is the kernel that destroys the owner task (e.g. due to a SEGFAULT), but the kernel cannot help with the cleanup: if there is no 'futex queue' (and in most cases there is none, futexes being fast lightweight locks) then the kernel has no information to clean up after the held lock! Userspace has no chance to clean up after the lock either - userspace is the one that crashes, so it has no opportunity to clean up. Catch-22. In practice, when e.g. yum is kill -9-ed (or segfaults), a system reboot is needed to release that futex based lock. This is one of the leading bugreports against yum. To solve this problem, 'Robust Futex' patches were created and presented on lkml: the one written by Todd Kneisel and David Singleton is the most advanced at the moment. These patches all tried to extend the futex abstraction by registering futex-based locks in the kernel - and thus give the kernel a chance to clean up. E.g. in David Singleton's robust-futex-6.patch, there are 3 new syscall variants to sys_futex(): FUTEX_REGISTER, FUTEX_DEREGISTER and FUTEX_RECOVER. The kernel attaches such robust futexes to vmas (via vma->vm_file->f_mapping->robust_head), and at do_exit() time, all vmas are searched to see whether they have a robust_head set. Lots of work went into the vma-based robust-futex patch, and recently it has improved significantly, but unfortunately it still has two fundamental problems left: - they have quite complex locking and race scenarios. The vma-based patches had been pending for years, but they are still not completely reliable. - they have to scan _every_ vma at sys_exit() time, per thread! The second disadvantage is a real killer: pthread_exit() takes around 1 microsecond on Linux, but with thousands (or tens of thousands) of vmas every pthread_exit() takes a millisecond or more, also totally destroying the CPU's L1 and L2 caches! This is very much noticeable even for normal process sys_exit_group() calls: the kernel has to do the vma scanning unconditionally! (this is because the kernel has no knowledge about how many robust futexes there are to be cleaned up, because a robust futex might have been registered in another task, and the futex variable might have been simply mmap()-ed into this process's address space). This huge overhead forced the creation of CONFIG_FUTEX_ROBUST, but worse than that: the overhead makes robust futexes impractical for any type of generic Linux distribution. So it became clear to us, something had to be done. Last week, when Thomas Gleixner tried to fix up the vma-based robust futex patch in the -rt tree, he found a handful of new races and we were talking about it and were analyzing the situation. At that point a fundamentally different solution occured to me. This patchset (written in the past couple of days) implements that new solution. Be warned though - the patchset does things we normally dont do in Linux, so some might find the approach disturbing. Parental advice recommended ;-) New approach to robust futexes ------------------------------ At the heart of this new approach there is a per-thread private list of robust locks that userspace is holding (maintained by glibc) - which userspace list is registered with the kernel via a new syscall [this registration happens at most once per thread lifetime]. At do_exit() time, the kernel checks this user-space list: are there any robust futex locks to be cleaned up? In the common case, at do_exit() time, there is no list registered, so the cost of robust futexes is just a simple current->robust_list != NULL comparison. If the thread has registered a list, then normally the list is empty. If the thread/process crashed or terminated in some incorrect way then the list might be non-empty: in this case the kernel carefully walks the list [not trusting it], and marks all locks that are owned by this thread with the FUTEX_OWNER_DEAD bit, and wakes up one waiter (if any). The list is guaranteed to be private and per-thread, so it's lockless. There is one race possible though: since adding to and removing from the list is done after the futex is acquired by glibc, there is a few instructions window for the thread (or process) to die there, leaving the futex hung. To protect against this possibility, userspace (glibc) also maintains a simple per-thread 'list_op_pending' field, to allow the kernel to clean up if the thread dies after acquiring the lock, but just before it could have added itself to the list. Glibc sets this list_op_pending field before it tries to acquire the futex, and clears it after the list-add (or list-remove) has finished. That's all that is needed - all the rest of robust-futex cleanup is done in userspace [just like with the previous patches]. Ulrich Drepper has implemented the necessary glibc support for this new mechanism, which fully enables robust mutexes. (Ulrich plans to commit these changes to glibc-HEAD later today.) Key differences of this userspace-list based approach, compared to the vma based method: - it's much, much faster: at thread exit time, there's no need to loop over every vma (!), which the VM-based method has to do. Only a very simple 'is the list empty' op is done. - no VM changes are needed - 'struct address_space' is left alone. - no registration of individual locks is needed: robust mutexes dont need any extra per-lock syscalls. Robust mutexes thus become a very lightweight primitive - so they dont force the application designer to do a hard choice between performance and robustness - robust mutexes are just as fast. - no per-lock kernel allocation happens. - no resource limits are needed. - no kernel-space recovery call (FUTEX_RECOVER) is needed. - the implementation and the locking is "obvious", and there are no interactions with the VM. Performance ----------- I have benchmarked the time needed for the kernel to process a list of 1 million (!) held locks, using the new method [on a 2GHz CPU]: - with FUTEX_WAIT set [contended mutex]: 130 msecs - without FUTEX_WAIT set [uncontended mutex]: 30 msecs I have also measured an approach where glibc does the lock notification [which it currently does for !pshared robust mutexes], and that took 256 msecs - clearly slower, due to the 1 million FUTEX_WAKE syscalls userspace had to do. (1 million held locks are unheard of - we expect at most a handful of locks to be held at a time. Nevertheless it's nice to know that this approach scales nicely.) Implementation details ---------------------- The patch adds two new syscalls: one to register the userspace list, and one to query the registered list pointer: asmlinkage long sys_set_robust_list(struct robust_list_head __user *head, size_t len); asmlinkage long sys_get_robust_list(int pid, struct robust_list_head __user **head_ptr, size_t __user *len_ptr); List registration is very fast: the pointer is simply stored in current->robust_list. [Note that in the future, if robust futexes become widespread, we could extend sys_clone() to register a robust-list head for new threads, without the need of another syscall.] So there is virtually zero overhead for tasks not using robust futexes, and even for robust futex users, there is only one extra syscall per thread lifetime, and the cleanup operation, if it happens, is fast and straightforward. The kernel doesnt have any internal distinction between robust and normal futexes. If a futex is found to be held at exit time, the kernel sets the highest bit of the futex word: #define FUTEX_OWNER_DIED 0x40000000 and wakes up the next futex waiter (if any). User-space does the rest of the cleanup. Otherwise, robust futexes are acquired by glibc by putting the TID into the futex field atomically. Waiters set the FUTEX_WAITERS bit: #define FUTEX_WAITERS 0x80000000 and the remaining bits are for the TID. Testing, architecture support ----------------------------- I've tested the new syscalls on x86 and x86_64, and have made sure the parsing of the userspace list is robust [ ;-) ] even if the list is deliberately corrupted. i386 and x86_64 syscalls are wired up at the moment, and Ulrich has tested the new glibc code (on x86_64 and i386), and it works for his robust-mutex testcases. All other architectures should build just fine too - but they wont have the new syscalls yet. Architectures need to implement the new futex_atomic_cmpxchg_inuser() inline function before writing up the syscalls (that function returns -ENOSYS right now). This patch: Add placeholder futex_atomic_cmpxchg_inuser() implementations to every architecture that supports futexes. It returns -ENOSYS. Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Arjan van de Ven <arjan@infradead.org> Acked-by: Ulrich Drepper <drepper@redhat.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-27[PATCH] unify PFN_* macrosDave Hansen1-3/+1
Just about every architecture defines some macros to do operations on pfns. They're all virtually identical. This patch consolidates all of them. One minor glitch is that at least i386 uses them in a very skeletal header file. To keep away from #include dependency hell, I stuck the new definitions in a new, isolated header. Of all of the implementations, sh64 is the only one that varied by a bit. It used some masks to ensure that any sign-extension got ripped away before the arithmetic is done. This has been posted to that sh64 maintainers and the development list. Compiles on x86, x86_64, ia64 and ppc64. Signed-off-by: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-27[PATCH] unify pfn_to_page: i386 pfn_to_pageKAMEZAWA Hiroyuki2-19/+1
i386 can use generic funcs. Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-27[PATCH] sched: new sched domain for representing multi-coreSiddha, Suresh B2-0/+7
Add a new sched domain for representing multi-core with shared caches between cores. Consider a dual package system, each package containing two cores and with last level cache shared between cores with in a package. If there are two runnable processes, with this appended patch those two processes will be scheduled on different packages. On such systems, with this patch we have observed 8% perf improvement with specJBB(2 warehouse) benchmark and 35% improvement with CFP2000 rate(with 2 users). This new domain will come into play only on multi-core systems with shared caches. On other systems, this sched domain will be removed by domain degeneration code. This new domain can be also used for implementing power savings policy (see OLS 2005 CMP kernel scheduler paper for more details.. I will post another patch for power savings policy soon) Most of the arch/* file changes are for cpu_coregroup_map() implementation. Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com> Cc: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-26[PATCH] bitops: i386: use generic bitopsAkinobu Mita1-47/+8
- remove generic_fls64() - remove sched_find_first_bit() - remove generic_hweight{32,16,8}() - remove ext2_{set,clear,test,find_first_zero,find_next_zero}_bit() - remove minix_{test,set,test_and_clear,test,find_first_zero}_bit() Signed-off-by: Akinobu Mita <mita@miraclelinux.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-26[PATCH] x86: kprobes-boosterMasami Hiramatsu1-0/+6
Current kprobe copies the original instruction at the probe point and replaces it with a breakpoint instruction (int3). When the kernel hits the probe point, kprobe handler is invoked. And the copied instruction is single-step executed on the copied buffer (not on the original address) by kprobe. After that, the kprobe checks registers and modify it (if need) as if the instructions was executed on the original address. My proposal is based on the fact there are many instructions which do NOT require the register modification after the single-step execution. When the copied instruction is a kind of them, kprobe just jumps back to the next instruction after single-step execution. If so, why don't we execute those instructions directly? With kprobe-booster patch, kprobes will execute a copied instruction directly and (if need) jump back to original code. This direct execution is executed when the kprobe don't have both post_handler and break_handler, and the copied instruction can be executed directly. I sorted instructions which can be executed directly or not; - Call instructions are NG(can not be executed directly). We should correct the return address pushed into top of stack. - Indirect instructions except for absolute indirect-jumps are NG. Those instructions changes EIP randomly. We should check EIP and correct it. - Instructions that change EIP beyond the range of the instruction buffer are NG. - Instructions that change EIP to tail 5 bytes of the instruction buffer (it is the size of a jump instruction). We must write a jump instruction which backs to original kernel code in the instruction buffer. - Break point instruction is NG. We should not touch EIP and pass to other handlers. - Absolute direct/indirect jumps are OK.- Conditional Jumps are NG. - Halt and software-interruptions are NG. Because it will stay on the instruction buffer of kprobes. - Prefixes are NG. - Unknown/reserved opcode is NG. - Other 1 byte instructions are OK. But those instructions need a jump back code. - 2 bytes instructions are mapped sparsely. So, in this release, this patch don't boost those instructions. >From Intel's IA-32 opcode map described in IA-32 Intel Architecture Software Developer's Manual Vol.2 B, I determined that following opcodes are not boostable. - 0FH (2byte escape) - 70H - 7FH (Jump on condition) - 9AH (Call) and 9CH (Pushf) - C0H-C1H (Grp 2: includes reserved opcode) - C6H-C7H (Grp11: includes reserved opcode) - CCH-CEH (Software-interrupt) - D0H-D3H (Grp2: includes reserved opcode) - D6H (Reserved) - D8H-DFH (Coprocessor) - E0H-E3H (loop/conditional jump) - E8H (Call) - F0H-F3H (Prefixes and reserved) - F4H (Halt) - F6H-F7H (Grp3: includes reserved opcode) - FEH-FFH(Grp4,5: includes reserved opcode) Kprobe-booster checks whether target instruction can be boosted (can be executed directly) at arch_copy_kprobe() function. If the target instruction can be boosted, it clears "boostable" flag. If not, it sets "boostable" flag -1. This is disabled status. In resume_execution() function, If "boostable" flag is cleared, kprobe-booster measures the size of the target instruction and sets "boostable" flag 1. In kprobe_handler(), kprobe checks the "boostable" flag. If the flag is 1, it resets current kprobe and executes instruction buffer directly instead of single stepping. When unregistering a boosted kprobe, it calls synchronize_sched() after "int3" is removed. So we can ensure followings after the synchronize_sched() called. - interrupt handlers are finished on all CPUs. - instruction buffer is not executed on all CPUs. And we can release the boosted kprobe safely. And also, on preemptible kernel, the booster is not enabled where the kernel preemption is enabled. So, there are no preempted threads on the instruction buffer. The description of kretprobe-booster: ==================================== In the normal operation, kretprobe make a target function return to trampoline code. And a kprobe (called trampoline_probe) have been inserted at the trampoline code. When the kernel hits this kprobe, it calls kretprobe's handler and it returns to original return address. Kretprobe-booster patch removes the trampoline_probe. It allows the trampoline code to call kretprobe's handler directly instead of invoking kprobe. And tranpoline code returns to original return address. This new trampoline code stores and restores registers, so the kretprobe handler is still able to access those registers. Current kprobe has about 1.3 usec/probe(*) overhead, and kprobe-booster patch reduces it to 0.6 usec/probe(*). Also current kretprobe has about 2.0 usec/probe(*) overhead. Kprobe-booster patch reduces it to 1.3 usec/probe(*), and the combination of both kprobe-booster patch and kretprobe-booster patch reduces it to 0.9 usec/probe(*). I expect the combination of both patches can reduce half of a probing overhead. Performance numbers strongly depend on the processor model. Andrew Morton wrote: > These preempt tricks look rather nasty. Can you please describe what the > problem is, precisely? And how this code avoids it? Perhaps we can find > something cleaner. The problem is how to remove the copied instructions of the kprobe *safely* on the preemptable kernel (CONFIG_PREEMPT=y). Kprobes basically executes the following actions; (1)int3 (2)preempt_disable() (3)kprobe_prehandler() (4)copied instructioin(single step) (5)kprobe_posthandler() (6)preempt_enable() (7)return to the original code During the execution of copied instruction, preemption is disabled (from step (2) to (6)). When unregistering the probes, Kprobe waits for RCU quiescent state by using synchronize_sched() after removing int3 instruction. Thus we can ensure the copied instruction is not executed. On the other hand, kprobe-booster executes the following actions; (1)int3 (2)preempt_disable() (3)kprobe_prehandler() (4)preempt_enable() <-- this one is added by my patch (5)copied instruction(direct execution) (6)jmp back to the original code The problem is that we have no way to prevent preemption on step (5) or (6). We cannot call preempt_disable() after step (6), because there are no rooms to do that. Thus, some other processes may be preempted at step(5) or (6) on preemptable kernel. And I couldn't find the easy way to ensure that other processes' stack do *not* have the address of them. (I thought some way to do that, but those are very costly.) So currently, I simply boost the kprobe only when the probe point is already preemption disabled. > Also, the patch adds a preempt_enable() but I don't see a corresponding > preempt_disable(). Am I missing something? It is corresponding to the preempt_disable() in the top of kprobe_handler(). I copied the code of kprobe_handler() here: static int __kprobes kprobe_handler(struct pt_regs *regs) { struct kprobe *p; int ret = 0; kprobe_opcode_t *addr = NULL; unsigned long *lp; struct kprobe_ctlblk *kcb; /* * We don't want to be preempted for the entire * duration of kprobe processing */ preempt_disable(); <-- HERE kcb = get_kprobe_ctlblk(); Signed-off-by: Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp> Cc: Prasanna S Panchamukhi <prasanna@in.ibm.com> Cc: Ananth N Mavinakayanahalli <ananth@in.ibm.com> Cc: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> Cc: David S. Miller <davem@davemloft.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-26[PATCH] 2TB files: add blkcnt_tTakashi Sato1-0/+5
Add blkcnt_t as the type of inode.i_blocks. This enables you to make the size of blkcnt_t either 4 bytes or 8 bytes on 32 bits architecture with CONFIG_LSF. - CONFIG_LSF Add new configuration parameter. - blkcnt_t On h8300, i386, mips, powerpc, s390 and sh that define sector_t, blkcnt_t is defined as u64 if CONFIG_LSF is enabled; otherwise it is defined as unsigned long. On other architectures, it is defined as unsigned long. - inode.i_blocks Change the type from sector_t to blkcnt_t. Signed-off-by: Takashi Sato <sho@tnes.nec.co.jp> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-26[PATCH] 2TB files: st_blocks is invalid when calling stat64Takashi Sato1-2/+1
This patch series fixes the following problems on 32 bits architecture. o stat64 returns the lower 32 bits of blocks, although userland st_blocks has 64 bits, because i_blocks has only 32 bits. The ioctl with FIOQSIZE has the same problem. o As Dave Kleikamp said, making >2TB file on JFS results in writing an invalid block number to disk inode. The cause is the same as above too. o In generic quota code dquot_transfer(), the file usage is calculated from i_blocks via inode_get_bytes(). If the file is over 2TB, the change of usage is less than expected. The cause is the same as above too. o As Trond Myklebust said, statfs64's entries related to blocks are invalid on statfs64 for a network filesystem which has more than 2^32-1 blocks with CONFIG_LBD disabled. [PATCH 3/3] We made patches to fix problems that occur when handling a large filesystem and a large file. It was discussed on the mails titled "stat64 for over 2TB file returned invalid st_blocks". Signed-off-by: Takashi Sato <sho@tnes.nec.co.jp> Cc: Dave Kleikamp <shaggy@austin.ibm.com> Cc: Jan Kara <jack@ucw.cz> Cc: Trond Myklebust <trond.myklebust@fys.uio.no> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-25[PATCH] x86_64: Implement early DMI scanningAndi Kleen1-0/+11
There are more and more cases where we need to know DMI information early to work around bugs. i386 already had early DMI scanning, but x86-64 didn't. Implement this now. This required some cleanup in the i386 code. Signed-off-by: Andi Kleen <ak@suse.de> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-25[PATCH] POLLRDHUP/EPOLLRDHUP handling for half-closed devices notificationsDavide Libenzi1-0/+1
Implement the half-closed devices notifiation, by adding a new POLLRDHUP (and its alias EPOLLRDHUP) bit to the existing poll/select sets. Since the existing POLLHUP handling, that does not report correctly half-closed devices, was feared to be changed, this implementation leaves the current POLLHUP reporting unchanged and simply add a new bit that is set in the few places where it makes sense. The same thing was discussed and conceptually agreed quite some time ago: http://lkml.org/lkml/2003/7/12/116 Since this new event bit is added to the existing Linux poll infrastruture, even the existing poll/select system calls will be able to use it. As far as the existing POLLHUP handling, the patch leaves it as is. The pollrdhup-2.6.16.rc5-0.10.diff defines the POLLRDHUP for all the existing archs and sets the bit in the six relevant files. The other attached diff is the simple change required to sys/epoll.h to add the EPOLLRDHUP definition. There is "a stupid program" to test POLLRDHUP delivery here: http://www.xmailserver.org/pollrdhup-test.c It tests poll(2), but since the delivery is same epoll(2) will work equally. Signed-off-by: Davide Libenzi <davidel@xmailserver.org> Cc: "David S. Miller" <davem@davemloft.net> Cc: Michael Kerrisk <mtk-manpages@gmx.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-24[PATCH] kill include/linux/platform.h, default_idle() cleanupAdrian Bunk1-0/+2
include/linux/platform.h contained nothing that was actually used except the default_idle() prototype, and is therefore removed by this patch. This patch does the following with the platform specific default_idle() functions on different architectures: - remove the unused function: - parisc - sparc64 - make the needlessly global function static: - arm - h8300 - m68k - m68knommu - s390 - v850 - x86_64 - add a prototype in asm/system.h: - cris - i386 - ia64 Signed-off-by: Adrian Bunk <bunk@stusta.de> Acked-by: Patrick Mochel <mochel@digitalimplant.org> Acked-by: Kyle McMartin <kyle@parisc-linux.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-24[PATCH] remove ISA legacy functions: remove the helpersAl Viro1-12/+0
unused isa_...() helpers removed. Adrian Bunk: The asm-sh part was rediffed due to unrelated changes. Signed-off-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-23[PATCH] atomic: add_unless cmpxchg optimiseNick Piggin1-1/+7
Without branch hints, the very unlikely chance of the loop repeating due to cmpxchg failure is unrolled with gcc-4 that I have tested. Improve this for architectures with a native cas/cmpxchg. llsc archs should try to implement this natively. Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Andi Kleen <ak@muc.de> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Roman Zippel <zippel@linux-m68k.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-23[PATCH] Move read_mostly definition to asm/cache.hKyle McMartin1-0/+2
Seems like needless clutter having a bunch of #if defined(CONFIG_$ARCH) in include/linux/cache.h. Move the per architecture section definition to asm/cache.h, and keep the if-not-defined dummy case in linux/cache.h to catch architectures which don't implement the section. Verified that symbols still go in .data.read_mostly on parisc, and the compile doesn't break. Signed-off-by: Kyle McMartin <kyle@parisc-linux.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-23[PATCH] x86: Make _syscallX() macros compile in PIC modeMarkus Gutschke1-15/+21
Gcc reserves %ebx when compiling position-independent-code on i386. This means, the _syscallX() macros in include/asm-i386/unistd.h will not compile. This patch is changes the existing macros to take special care to preserve %ebx. The bug can be tracked at http://bugzilla.kernel.org/show_bug.cgi?id=6204 Signed-off-by: Markus Gutschke <markus@google.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-23[PATCH] i386 spinlocks: disable interrupts only if we enabled themChuck Ebbert1-4/+9
_raw_spin_lock_flags() is entered with interrupts disabled. If it cannot obtain a spinlock, it checks the flags that were passed and re-enables interrupts before spinning if that's how the flags are set. When the spinlock might be available, it disables interrupts (even if they are already disabled) before trying to get the lock. Change that so interrupts are only disabled if they have been enabled. This costs nine bytes of duplicated spinloop code. Fastpath before patch: jle <keep looping> not-taken conditional jump cli disable interrupts jmp <try for lock> unconditional jump Fastpath after patch, if interrupts were not enabled: jg <try for lock> taken conditional branch Signed-off-by: Chuck Ebbert <76306.1226@compuserve.com> Acked-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-23[PATCH] Fix the imlicit declaration of mtrr_centaur_report_mcr in arch/i386/kernel/cpu/centaur.cJesper Juhl1-0/+1
arch/i386/kernel/cpu/centaur.c: In function `centaur_mcr_insert': arch/i386/kernel/cpu/centaur.c:33: warning: implicit declaration of function `mtrr_centaur_report_mcr' Signed-off-by: Jesper Juhl <jesper.juhl@gmail.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-23[PATCH] i386: fix uses of user_mode() vs. user_mode_vm()Jan Beulich3-3/+3
>commit 76381fee7e8feb4c22be636aa5d4765dbe4fbf9e >Author: Vincent Hanquez <vincent.hanquez@cl.cam.ac.uk> >Date: Thu Jun 23 00:08:46 2005 -0700 > > [PATCH] xen: x86_64: use more usermode macro > > Make use of the user_mode macro where it's possible. This is useful for Xen > because it will need only to redefine only the macro to a hypervisor call. I am of the opinion that the above changeset is incomplete, i.e. it missed converting some previous uses of user_mode to user_mode_vm. While most of them could be considered just cosmetical, at least the one in die_nmi doesn't appear to be. Signed-off-by: Jan Beulich <jbeulich@novell.com> Cc: Vincent Hanquez <vincent.hanquez@cl.cam.ac.uk> Cc: Zachary Amsden <zach@vmware.com> Cc: James Bottomley <James.Bottomley@steeleye.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-23[PATCH] i386: actively synchronize vmalloc area when registering certain callbacksJan Beulich2-0/+4
Registering a callback handler through register_die_notifier() is obviously primarily intended for use by modules. However, the way these currently get called it is basically impossible for them to actually be used by modules, as there is, on non-PAE configurationes, a good chance (the larger the module, the better) for the system to crash as a result. This is because the callback gets invoked (a) in the page fault path before the top level page table propagation gets carried out (hence a fault to propagate the top level page table entry/entries mapping to module's code/data would nest infinitly) and (b) in the NMI path, where nested faults must absolutely not happen, since otherwise the IRET from the nested fault re-enables NMIs, potentially resulting in nested NMI occurences. Besides the modular aspect, similar problems would even arise for in- kernel consumers of the API if they touched ioremap()ed or vmalloc()ed memory inside their handlers. Signed-off-by: Jan Beulich <jbeulich@novell.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-23[PATCH] x86: early printk handling fixesStas Sergeev1-0/+3
The history is that -mm kernels do not work for me for a few months already. The things started from crashing somewhere after starting init, and for the last month - no boot at all, just "Uncompressing... OK, booting kernel", and silence. Early console didn't work too. With the latest releases this degraded into an infinite stream of the "Unknown interrupt or fault" messages. So today my patience ran out and I started to think how can I collect at least some info for the bug-report. Attached is the patch that allows to gather some valueable debug info on the problem by making an early console more useable. I can't properly test the patch, as the kernel still doesn't boot, so I'll explain it in details in a hope someone else can justify the intrusive changes. arch_hooks.h: added prototypes for setup_early_printk() and early_printk(). setup.c: killed wrong setup_early_printk() prototype. Moved setup_early_printk() a bit earlier, as it was not "early enough" to cover the bug I was fighting with. early_printk.c: made it to start printing from the bottom of the screen, otherwise the messages interfere with the ones of the boot-loader, so you can't read them. Signed-off-by: Stas Sergeev <stsp@aknet.ru> Cc: Andi Kleen <ak@muc.de> Cc: Zwane Mwaikambo <zwane@arm.linux.org.uk> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-23[PATCH] i386: remove duplicate declaration of mp_bus_id_to_pci_busChris Wright1-1/+0
mp_bus_id_to_pci_bus is declared identically twice. Signed-off-by: Chris Wright <chrisw@sous-sol.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-23[PATCH] Compilation fix for ES7000 when no ACPI is specified in config (i386)Natalie.Protasevich@unisys.com1-2/+8
ES7000 platform code clean up for compilation errors and a warning. Ifdef'd the ACPI related parts in the ES7000 platform code. They were causing compile errors in certain configuration (without ACPI defined). I think this approach would be best (as opposed to Kconfig changes) since it only touches the subarch... Signed-off-by: <Natalie.Protasevich@unisys.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-23[PATCH] i386: Add a temporary to make put_user more type safeEric W. Biederman1-5/+7
In some code I am developing I had occasion to change the type of a variable. This made the value put_user was putting to user space wrong. But the code continued to build cleanly without errors. Introducing a temporary fixes this problem and at least with gcc-3.3.5 does not cause gcc any problems with optimizing out the temporary. gcc-4.x using SSA internally ought to be even better at optimizing out temporaries, so I don't expect a temporary to become a problem. Especially because in all correct cases the types on both sides of the assignment to the temporary are the same. Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-23[PATCH] x86: SMP alternativesGerd Hoffmann9-124/+194
Implement SMP alternatives, i.e. switching at runtime between different code versions for UP and SMP. The code can patch both SMP->UP and UP->SMP. The UP->SMP case is useful for CPU hotplug. With CONFIG_CPU_HOTPLUG enabled the code switches to UP at boot time and when the number of CPUs goes down to 1, and switches to SMP when the number of CPUs goes up to 2. Without CONFIG_CPU_HOTPLUG or on non-SMP-capable systems the code is patched once at boot time (if needed) and the tables are released afterwards. The changes in detail: * The current alternatives bits are moved to a separate file, the SMP alternatives code is added there. * The patch adds some new elf sections to the kernel: .smp_altinstructions like .altinstructions, also contains a list of alt_instr structs. .smp_altinstr_replacement like .altinstr_replacement, but also has some space to save original instruction before replaving it. .smp_locks list of pointers to lock prefixes which can be nop'ed out on UP. The first two are used to replace more complex instruction sequences such as spinlocks and semaphores. It would be possible to deal with the lock prefixes with that as well, but by handling them as special case the table sizes become much smaller. * The sections are page-aligned and padded up to page size, so they can be free if they are not needed. * Splitted the code to release init pages to a separate function and use it to release the elf sections if they are unused. Signed-off-by: Gerd Hoffmann <kraxel@suse.de> Signed-off-by: Chuck Ebbert <76306.1226@compuserve.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>