aboutsummaryrefslogtreecommitdiffstats
path: root/include/linux/page_ext.h (follow)
AgeCommit message (Collapse)AuthorFilesLines
2018-08-17mm/page_ext.c: constify lookup_page_ext() argumentKirill A. Shutemov1-2/+2
lookup_page_ext() finds 'struct page_ext' for a given page. It requires only read access to the given struct page. Current implemnentation takes 'struct page *' as an argument. It makes compiler complain when 'const struct page *' passed. Change the argument to 'const struct page *'. Link: http://lkml.kernel.org/r/20180531135457.20167-3-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Vinayak Menon <vinmenon@codeaurora.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-17include/linux/page_ext.h: drop definition of unused PAGE_EXT_DEBUG_POISONKirill A. Shutemov1-11/+0
After commit bd33ef368135 ("mm: enable page poisoning early at boot") PAGE_EXT_DEBUG_POISON is not longer used. Remove it. Link: http://lkml.kernel.org/r/20180531135457.20167-2-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: Vinayak Menon <vinmenon@codeaurora.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-02License cleanup: add SPDX GPL-2.0 license identifier to files with no licenseGreg Kroah-Hartman1-0/+1
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-10-07mm/page_owner: don't define fields on struct page_ext by hard-codingJoonsoo Kim1-6/+0
There is a memory waste problem if we define field on struct page_ext by hard-coding. Entry size of struct page_ext includes the size of those fields even if it is disabled at runtime. Now, extra memory request at runtime is possible so page_owner don't need to define it's own fields by hard-coding. This patch removes hard-coded define and uses extra memory for storing page_owner information in page_owner. Most of code are just mechanical changes. Link: http://lkml.kernel.org/r/1471315879-32294-7-git-send-email-iamjoonsoo.kim@lge.com Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Minchan Kim <minchan@kernel.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-07mm/page_ext: support extra space allocation by page_ext userJoonsoo Kim1-0/+2
Until now, if some page_ext users want to use it's own field on page_ext, it should be defined in struct page_ext by hard-coding. It has a problem that wastes memory in following situation. struct page_ext { #ifdef CONFIG_A int a; #endif #ifdef CONFIG_B int b; #endif }; Assume that kernel is built with both CONFIG_A and CONFIG_B. Even if we enable feature A and doesn't enable feature B at runtime, each entry of struct page_ext takes two int rather than one int. It's undesirable result so this patch tries to fix it. To solve above problem, this patch implements to support extra space allocation at runtime. When need() callback returns true, it's extra memory requirement is summed to entry size of page_ext. Also, offset for each user's extra memory space is returned. With this offset, user can use this extra space and there is no need to define needed field on page_ext by hard-coding. This patch only implements an infrastructure. Following patch will use it for page_owner which is only user having it's own fields on page_ext. Link: http://lkml.kernel.org/r/1471315879-32294-6-git-send-email-iamjoonsoo.kim@lge.com Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Minchan Kim <minchan@kernel.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26mm/page_owner: use stackdepot to store stacktraceJoonsoo Kim1-2/+2
Currently, we store each page's allocation stacktrace on corresponding page_ext structure and it requires a lot of memory. This causes the problem that memory tight system doesn't work well if page_owner is enabled. Moreover, even with this large memory consumption, we cannot get full stacktrace because we allocate memory at boot time and just maintain 8 stacktrace slots to balance memory consumption. We could increase it to more but it would make system unusable or change system behaviour. To solve the problem, this patch uses stackdepot to store stacktrace. It obviously provides memory saving but there is a drawback that stackdepot could fail. stackdepot allocates memory at runtime so it could fail if system has not enough memory. But, most of allocation stack are generated at very early time and there are much memory at this time. So, failure would not happen easily. And, one failure means that we miss just one page's allocation stacktrace so it would not be a big problem. In this patch, when memory allocation failure happens, we store special stracktrace handle to the page that is failed to save stacktrace. With it, user can guess memory usage properly even if failure happens. Memory saving looks as following. (4GB memory system with page_owner) (before the patch -> after the patch) static allocation: 92274688 bytes -> 25165824 bytes dynamic allocation after boot + kernel build: 0 bytes -> 327680 bytes total: 92274688 bytes -> 25493504 bytes 72% reduction in total. Note that implementation looks complex than someone would imagine because there is recursion issue. stackdepot uses page allocator and page_owner is called at page allocation. Using stackdepot in page_owner could re-call page allcator and then page_owner. That is a recursion. To detect and avoid it, whenever we obtain stacktrace, recursion is checked and page_owner is set to dummy information if found. Dummy information means that this page is allocated for page_owner feature itself (such as stackdepot) and it's understandable behavior for user. [iamjoonsoo.kim@lge.com: mm-page_owner-use-stackdepot-to-store-stacktrace-v3] Link: http://lkml.kernel.org/r/1464230275-25791-6-git-send-email-iamjoonsoo.kim@lge.com Link: http://lkml.kernel.org/r/1466150259-27727-7-git-send-email-iamjoonsoo.kim@lge.com Link: http://lkml.kernel.org/r/1464230275-25791-6-git-send-email-iamjoonsoo.kim@lge.com Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Minchan Kim <minchan@kernel.org> Cc: Alexander Potapenko <glider@google.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15mm, page_owner: track and print last migrate reasonVlastimil Babka1-0/+1
During migration, page_owner info is now copied with the rest of the page, so the stacktrace leading to free page allocation during migration is overwritten. For debugging purposes, it might be however useful to know that the page has been migrated since its initial allocation. This might happen many times during the lifetime for different reasons and fully tracking this, especially with stacktraces would incur extra memory costs. As a compromise, store and print the migrate_reason of the last migration that occurred to the page. This is enough to distinguish compaction, numa balancing etc. Example page_owner entry after the patch: Page allocated via order 0, mask 0x24200ca(GFP_HIGHUSER_MOVABLE) PFN 628753 type Movable Block 1228 type Movable Flags 0x1fffff80040030(dirty|lru|swapbacked) [<ffffffff811682c4>] __alloc_pages_nodemask+0x134/0x230 [<ffffffff811b6325>] alloc_pages_vma+0xb5/0x250 [<ffffffff81177491>] shmem_alloc_page+0x61/0x90 [<ffffffff8117a438>] shmem_getpage_gfp+0x678/0x960 [<ffffffff8117c2b9>] shmem_fallocate+0x329/0x440 [<ffffffff811de600>] vfs_fallocate+0x140/0x230 [<ffffffff811df434>] SyS_fallocate+0x44/0x70 [<ffffffff8158cc2e>] entry_SYSCALL_64_fastpath+0x12/0x71 Page has been migrated, last migrate reason: compaction Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Michal Hocko <mhocko@suse.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-10mm: introduce idle page trackingVladimir Davydov1-0/+4
Knowing the portion of memory that is not used by a certain application or memory cgroup (idle memory) can be useful for partitioning the system efficiently, e.g. by setting memory cgroup limits appropriately. Currently, the only means to estimate the amount of idle memory provided by the kernel is /proc/PID/{clear_refs,smaps}: the user can clear the access bit for all pages mapped to a particular process by writing 1 to clear_refs, wait for some time, and then count smaps:Referenced. However, this method has two serious shortcomings: - it does not count unmapped file pages - it affects the reclaimer logic To overcome these drawbacks, this patch introduces two new page flags, Idle and Young, and a new sysfs file, /sys/kernel/mm/page_idle/bitmap. A page's Idle flag can only be set from userspace by setting bit in /sys/kernel/mm/page_idle/bitmap at the offset corresponding to the page, and it is cleared whenever the page is accessed either through page tables (it is cleared in page_referenced() in this case) or using the read(2) system call (mark_page_accessed()). Thus by setting the Idle flag for pages of a particular workload, which can be found e.g. by reading /proc/PID/pagemap, waiting for some time to let the workload access its working set, and then reading the bitmap file, one can estimate the amount of pages that are not used by the workload. The Young page flag is used to avoid interference with the memory reclaimer. A page's Young flag is set whenever the Access bit of a page table entry pointing to the page is cleared by writing to the bitmap file. If page_referenced() is called on a Young page, it will add 1 to its return value, therefore concealing the fact that the Access bit was cleared. Note, since there is no room for extra page flags on 32 bit, this feature uses extended page flags when compiled on 32 bit. [akpm@linux-foundation.org: fix build] [akpm@linux-foundation.org: kpageidle requires an MMU] [akpm@linux-foundation.org: decouple from page-flags rework] Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Reviewed-by: Andres Lagar-Cavilla <andreslc@google.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Raghavendra K T <raghavendra.kt@linux.vnet.ibm.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Greg Thelen <gthelen@google.com> Cc: Michel Lespinasse <walken@google.com> Cc: David Rientjes <rientjes@google.com> Cc: Pavel Emelyanov <xemul@parallels.com> Cc: Cyrill Gorcunov <gorcunov@openvz.org> Cc: Jonathan Corbet <corbet@lwn.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-11mm/page_owner.c: remove unnecessary stack_trace fieldSergei Rogachev1-1/+1
Page owner uses the page_ext structure to keep meta-information for every page in the system. The structure also contains a field of type 'struct stack_trace', page owner uses this field during invocation of the function save_stack_trace. It is easy to notice that keeping a copy of this structure for every page in the system is very inefficiently in terms of memory. The patch removes this unnecessary field of page_ext and forces page owner to use a stack_trace structure allocated on the stack. [akpm@linux-foundation.org: use struct initializers] Signed-off-by: Sergei Rogachev <rogachevsergei@gmail.com> Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-13mm/page_owner: keep track of page ownersJoonsoo Kim1-0/+10
This is the page owner tracking code which is introduced so far ago. It is resident on Andrew's tree, though, nobody tried to upstream so it remain as is. Our company uses this feature actively to debug memory leak or to find a memory hogger so I decide to upstream this feature. This functionality help us to know who allocates the page. When allocating a page, we store some information about allocation in extra memory. Later, if we need to know status of all pages, we can get and analyze it from this stored information. In previous version of this feature, extra memory is statically defined in struct page, but, in this version, extra memory is allocated outside of struct page. It enables us to turn on/off this feature at boottime without considerable memory waste. Although we already have tracepoint for tracing page allocation/free, using it to analyze page owner is rather complex. We need to enlarge the trace buffer for preventing overlapping until userspace program launched. And, launched program continually dump out the trace buffer for later analysis and it would change system behaviour with more possibility rather than just keeping it in memory, so bad for debug. Moreover, we can use page_owner feature further for various purposes. For example, we can use it for fragmentation statistics implemented in this patch. And, I also plan to implement some CMA failure debugging feature using this interface. I'd like to give the credit for all developers contributed this feature, but, it's not easy because I don't know exact history. Sorry about that. Below is people who has "Signed-off-by" in the patches in Andrew's tree. Contributor: Alexander Nyberg <alexn@dsv.su.se> Mel Gorman <mgorman@suse.de> Dave Hansen <dave@linux.vnet.ibm.com> Minchan Kim <minchan@kernel.org> Michal Nazarewicz <mina86@mina86.com> Andrew Morton <akpm@linux-foundation.org> Jungsoo Son <jungsoo.son@lge.com> Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Dave Hansen <dave@sr71.net> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Jungsoo Son <jungsoo.son@lge.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-13mm/debug-pagealloc: prepare boottime configurable on/offJoonsoo Kim1-0/+15
Until now, debug-pagealloc needs extra flags in struct page, so we need to recompile whole source code when we decide to use it. This is really painful, because it takes some time to recompile and sometimes rebuild is not possible due to third party module depending on struct page. So, we can't use this good feature in many cases. Now, we have the page extension feature that allows us to insert extra flags to outside of struct page. This gets rid of third party module issue mentioned above. And, this allows us to determine if we need extra memory for this page extension in boottime. With these property, we can avoid using debug-pagealloc in boottime with low computational overhead in the kernel built with CONFIG_DEBUG_PAGEALLOC. This will help our development process greatly. This patch is the preparation step to achive above goal. debug-pagealloc originally uses extra field of struct page, but, after this patch, it will use field of struct page_ext. Because memory for page_ext is allocated later than initialization of page allocator in CONFIG_SPARSEMEM, we should disable debug-pagealloc feature temporarily until initialization of page_ext. This patch implements this. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Dave Hansen <dave@sr71.net> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Jungsoo Son <jungsoo.son@lge.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-13mm/page_ext: resurrect struct page extending code for debuggingJoonsoo Kim1-0/+59
When we debug something, we'd like to insert some information to every page. For this purpose, we sometimes modify struct page itself. But, this has drawbacks. First, it requires re-compile. This makes us hesitate to use the powerful debug feature so development process is slowed down. And, second, sometimes it is impossible to rebuild the kernel due to third party module dependency. At third, system behaviour would be largely different after re-compile, because it changes size of struct page greatly and this structure is accessed by every part of kernel. Keeping this as it is would be better to reproduce errornous situation. This feature is intended to overcome above mentioned problems. This feature allocates memory for extended data per page in certain place rather than the struct page itself. This memory can be accessed by the accessor functions provided by this code. During the boot process, it checks whether allocation of huge chunk of memory is needed or not. If not, it avoids allocating memory at all. With this advantage, we can include this feature into the kernel in default and can avoid rebuild and solve related problems. Until now, memcg uses this technique. But, now, memcg decides to embed their variable to struct page itself and it's code to extend struct page has been removed. I'd like to use this code to develop debug feature, so this patch resurrect it. To help these things to work well, this patch introduces two callbacks for clients. One is the need callback which is mandatory if user wants to avoid useless memory allocation at boot-time. The other is optional, init callback, which is used to do proper initialization after memory is allocated. Detailed explanation about purpose of these functions is in code comment. Please refer it. Others are completely same with previous extension code in memcg. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Dave Hansen <dave@sr71.net> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Jungsoo Son <jungsoo.son@lge.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>