aboutsummaryrefslogtreecommitdiffstats
path: root/kernel/bpf/core.c (follow)
AgeCommit message (Collapse)AuthorFilesLines
2019-12-17bpf: Fix cgroup local storage prog trackingDaniel Borkmann1-2/+1
Recently noticed that we're tracking programs related to local storage maps through their prog pointer. This is a wrong assumption since the prog pointer can still change throughout the verification process, for example, whenever bpf_patch_insn_single() is called. Therefore, the prog pointer that was assigned via bpf_cgroup_storage_assign() is not guaranteed to be the same as we pass in bpf_cgroup_storage_release() and the map would therefore remain in busy state forever. Fix this by using the prog's aux pointer which is stable throughout verification and beyond. Fixes: de9cbbaadba5 ("bpf: introduce cgroup storage maps") Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Cc: Roman Gushchin <guro@fb.com> Cc: Martin KaFai Lau <kafai@fb.com> Link: https://lore.kernel.org/bpf/1471c69eca3022218666f909bc927a92388fd09e.1576580332.git.daniel@iogearbox.net
2019-12-16bpf: Fix missing prog untrack in release_mapsDaniel Borkmann1-4/+10
Commit da765a2f5993 ("bpf: Add poke dependency tracking for prog array maps") wrongly assumed that in case of prog load errors, we're cleaning up all program tracking via bpf_free_used_maps(). However, it can happen that we're still at the point where we didn't copy map pointers into the prog's aux section such that env->prog->aux->used_maps is still zero, running into a UAF. In such case, the verifier has similar release_maps() helper that drops references to used maps from its env. Consolidate the release code into __bpf_free_used_maps() and call it from all sides to fix it. Fixes: da765a2f5993 ("bpf: Add poke dependency tracking for prog array maps") Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Yonghong Song <yhs@fb.com> Link: https://lore.kernel.org/bpf/1c2909484ca524ae9f55109b06f22b6213e76376.1576514756.git.daniel@iogearbox.net
2019-11-24bpf: Add poke dependency tracking for prog array mapsDaniel Borkmann1-2/+7
This work adds program tracking to prog array maps. This is needed such that upon prog array updates/deletions we can fix up all programs which make use of this tail call map. We add ops->map_poke_{un,}track() helpers to maps to maintain the list of programs and ops->map_poke_run() for triggering the actual update. bpf_array_aux is extended to contain the list head and poke_mutex in order to serialize program patching during updates/deletions. bpf_free_used_maps() will untrack the program shortly before dropping the reference to the map. For clearing out the prog array once all urefs are dropped we need to use schedule_work() to have a sleepable context. The prog_array_map_poke_run() is triggered during updates/deletions and walks the maintained prog list. It checks in their poke_tabs whether the map and key is matching and runs the actual bpf_arch_text_poke() for patching in the nop or new jmp location. Depending on the type of update, we use one of BPF_MOD_{NOP_TO_JUMP,JUMP_TO_NOP,JUMP_TO_JUMP}. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Andrii Nakryiko <andriin@fb.com> Link: https://lore.kernel.org/bpf/1fb364bb3c565b3e415d5ea348f036ff379e779d.1574452833.git.daniel@iogearbox.net
2019-11-24bpf: Add initial poke descriptor table for jit imagesDaniel Borkmann1-0/+34
Add initial poke table data structures and management to the BPF prog that can later be used by JITs. Also add an instance of poke specific data for tail call maps; plan for later work is to extend this also for BPF static keys. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Andrii Nakryiko <andriin@fb.com> Link: https://lore.kernel.org/bpf/1db285ec2ea4207ee0455b3f8e191a4fc58b9ade.1574452833.git.daniel@iogearbox.net
2019-11-24bpf: Move owner type, jited info into array auxiliary dataDaniel Borkmann1-6/+5
We're going to extend this with further information which is only relevant for prog array at this point. Given this info is not used in critical path, move it into its own structure such that the main array map structure can be kept on diet. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Andrii Nakryiko <andriin@fb.com> Link: https://lore.kernel.org/bpf/b9ddccdb0f6f7026489ee955f16c96381e1e7238.1574452833.git.daniel@iogearbox.net
2019-11-24bpf: Move bpf_free_used_maps into sleepable sectionDaniel Borkmann1-0/+23
We later on are going to need a sleepable context as opposed to plain RCU callback in order to untrack programs we need to poke at runtime and tracking as well as image update is performed under mutex. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Andrii Nakryiko <andriin@fb.com> Link: https://lore.kernel.org/bpf/09823b1d5262876e9b83a8e75df04cf0467357a4.1574452833.git.daniel@iogearbox.net
2019-11-15bpf: Support attaching tracing BPF program to other BPF programsAlexei Starovoitov1-0/+2
Allow FENTRY/FEXIT BPF programs to attach to other BPF programs of any type including their subprograms. This feature allows snooping on input and output packets in XDP, TC programs including their return values. In order to do that the verifier needs to track types not only of vmlinux, but types of other BPF programs as well. The verifier also needs to translate uapi/linux/bpf.h types used by networking programs into kernel internal BTF types used by FENTRY/FEXIT BPF programs. In some cases LLVM optimizations can remove arguments from BPF subprograms without adjusting BTF info that LLVM backend knows. When BTF info disagrees with actual types that the verifiers sees the BPF trampoline has to fallback to conservative and treat all arguments as u64. The FENTRY/FEXIT program can still attach to such subprograms, but it won't be able to recognize pointer types like 'struct sk_buff *' and it won't be able to pass them to bpf_skb_output() for dumping packets to user space. The FENTRY/FEXIT program would need to use bpf_probe_read_kernel() instead. The BPF_PROG_LOAD command is extended with attach_prog_fd field. When it's set to zero the attach_btf_id is one vmlinux BTF type ids. When attach_prog_fd points to previously loaded BPF program the attach_btf_id is BTF type id of main function or one of its subprograms. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Song Liu <songliubraving@fb.com> Link: https://lore.kernel.org/bpf/20191114185720.1641606-18-ast@kernel.org
2019-11-15bpf: Introduce BPF trampolineAlexei Starovoitov1-0/+1
Introduce BPF trampoline concept to allow kernel code to call into BPF programs with practically zero overhead. The trampoline generation logic is architecture dependent. It's converting native calling convention into BPF calling convention. BPF ISA is 64-bit (even on 32-bit architectures). The registers R1 to R5 are used to pass arguments into BPF functions. The main BPF program accepts only single argument "ctx" in R1. Whereas CPU native calling convention is different. x86-64 is passing first 6 arguments in registers and the rest on the stack. x86-32 is passing first 3 arguments in registers. sparc64 is passing first 6 in registers. And so on. The trampolines between BPF and kernel already exist. BPF_CALL_x macros in include/linux/filter.h statically compile trampolines from BPF into kernel helpers. They convert up to five u64 arguments into kernel C pointers and integers. On 64-bit architectures this BPF_to_kernel trampolines are nops. On 32-bit architecture they're meaningful. The opposite job kernel_to_BPF trampolines is done by CAST_TO_U64 macros and __bpf_trace_##call() shim functions in include/trace/bpf_probe.h. They convert kernel function arguments into array of u64s that BPF program consumes via R1=ctx pointer. This patch set is doing the same job as __bpf_trace_##call() static trampolines, but dynamically for any kernel function. There are ~22k global kernel functions that are attachable via nop at function entry. The function arguments and types are described in BTF. The job of btf_distill_func_proto() function is to extract useful information from BTF into "function model" that architecture dependent trampoline generators will use to generate assembly code to cast kernel function arguments into array of u64s. For example the kernel function eth_type_trans has two pointers. They will be casted to u64 and stored into stack of generated trampoline. The pointer to that stack space will be passed into BPF program in R1. On x86-64 such generated trampoline will consume 16 bytes of stack and two stores of %rdi and %rsi into stack. The verifier will make sure that only two u64 are accessed read-only by BPF program. The verifier will also recognize the precise type of the pointers being accessed and will not allow typecasting of the pointer to a different type within BPF program. The tracing use case in the datacenter demonstrated that certain key kernel functions have (like tcp_retransmit_skb) have 2 or more kprobes that are always active. Other functions have both kprobe and kretprobe. So it is essential to keep both kernel code and BPF programs executing at maximum speed. Hence generated BPF trampoline is re-generated every time new program is attached or detached to maintain maximum performance. To avoid the high cost of retpoline the attached BPF programs are called directly. __bpf_prog_enter/exit() are used to support per-program execution stats. In the future this logic will be optimized further by adding support for bpf_stats_enabled_key inside generated assembly code. Introduction of preemptible and sleepable BPF programs will completely remove the need to call to __bpf_prog_enter/exit(). Detach of a BPF program from the trampoline should not fail. To avoid memory allocation in detach path the half of the page is used as a reserve and flipped after each attach/detach. 2k bytes is enough to call 40+ BPF programs directly which is enough for BPF tracing use cases. This limit can be increased in the future. BPF_TRACE_FENTRY programs have access to raw kernel function arguments while BPF_TRACE_FEXIT programs have access to kernel return value as well. Often kprobe BPF program remembers function arguments in a map while kretprobe fetches arguments from a map and analyzes them together with return value. BPF_TRACE_FEXIT accelerates this typical use case. Recursion prevention for kprobe BPF programs is done via per-cpu bpf_prog_active counter. In practice that turned out to be a mistake. It caused programs to randomly skip execution. The tracing tools missed results they were looking for. Hence BPF trampoline doesn't provide builtin recursion prevention. It's a job of BPF program itself and will be addressed in the follow up patches. BPF trampoline is intended to be used beyond tracing and fentry/fexit use cases in the future. For example to remove retpoline cost from XDP programs. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Andrii Nakryiko <andriin@fb.com> Acked-by: Song Liu <songliubraving@fb.com> Link: https://lore.kernel.org/bpf/20191114185720.1641606-5-ast@kernel.org
2019-11-15bpf: Add bpf_arch_text_poke() helperAlexei Starovoitov1-0/+6
Add bpf_arch_text_poke() helper that is used by BPF trampoline logic to patch nops/calls in kernel text into calls into BPF trampoline and to patch calls/nops inside BPF programs too. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Song Liu <songliubraving@fb.com> Acked-by: Andrii Nakryiko <andriin@fb.com> Link: https://lore.kernel.org/bpf/20191114185720.1641606-4-ast@kernel.org
2019-11-15bpf: Support doubleword alignment in bpf_jit_binary_allocIlya Leoshkevich1-0/+4
Currently passing alignment greater than 4 to bpf_jit_binary_alloc does not work: in such cases it silently aligns only to 4 bytes. On s390, in order to load a constant from memory in a large (>512k) BPF program, one must use lgrl instruction, whose memory operand must be aligned on an 8-byte boundary. This patch makes it possible to request 8-byte alignment from bpf_jit_binary_alloc, and also makes it issue a warning when an unsupported alignment is requested. Signed-off-by: Ilya Leoshkevich <iii@linux.ibm.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Link: https://lore.kernel.org/bpf/20191115123722.58462-1-iii@linux.ibm.com
2019-11-06bpf: Account for insn->off when doing bpf_probe_read_kernelMartin KaFai Lau1-1/+1
In the bpf interpreter mode, bpf_probe_read_kernel is used to read from PTR_TO_BTF_ID's kernel object. It currently missed considering the insn->off. This patch fixes it. Fixes: 2a02759ef5f8 ("bpf: Add support for BTF pointers to interpreter") Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Andrii Nakryiko <andriin@fb.com> Link: https://lore.kernel.org/bpf/20191107014640.384083-1-kafai@fb.com
2019-11-02Merge git://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-nextDavid S. Miller1-7/+5
Alexei Starovoitov says: ==================== pull-request: bpf-next 2019-11-02 The following pull-request contains BPF updates for your *net-next* tree. We've added 30 non-merge commits during the last 7 day(s) which contain a total of 41 files changed, 1864 insertions(+), 474 deletions(-). The main changes are: 1) Fix long standing user vs kernel access issue by introducing bpf_probe_read_user() and bpf_probe_read_kernel() helpers, from Daniel. 2) Accelerated xskmap lookup, from Björn and Maciej. 3) Support for automatic map pinning in libbpf, from Toke. 4) Cleanup of BTF-enabled raw tracepoints, from Alexei. 5) Various fixes to libbpf and selftests. ==================== Signed-off-by: David S. Miller <davem@davemloft.net>
2019-11-02Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/netDavid S. Miller1-1/+1
The only slightly tricky merge conflict was the netdevsim because the mutex locking fix overlapped a lot of driver reload reorganization. The rest were (relatively) trivial in nature. Signed-off-by: David S. Miller <davem@davemloft.net>
2019-11-02bpf: Switch BPF probe insns to bpf_probe_read_kernelDaniel Borkmann1-4/+5
Commit 2a02759ef5f8 ("bpf: Add support for BTF pointers to interpreter") explicitly states that the pointer to BTF object is a pointer to a kernel object or NULL. Therefore we should also switch to using the strict kernel probe helper which is restricted to kernel addresses only when architectures have non-overlapping address spaces. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Andrii Nakryiko <andriin@fb.com> Link: https://lore.kernel.org/bpf/d2b90827837685424a4b8008dfe0460558abfada.1572649915.git.daniel@iogearbox.net
2019-10-31bpf: Fix bpf jit kallsym accessAlexei Starovoitov1-3/+0
Jiri reported crash when JIT is on, but net.core.bpf_jit_kallsyms is off. bpf_prog_kallsyms_find() was skipping addr->bpf_prog resolution logic in oops and stack traces. That's incorrect. It should only skip addr->name resolution for 'cat /proc/kallsyms'. That's what bpf_jit_kallsyms and bpf_jit_harden protect. Fixes: 3dec541b2e63 ("bpf: Add support for BTF pointers to x86 JIT") Reported-by: Jiri Olsa <jolsa@redhat.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Link: https://lore.kernel.org/bpf/20191030233019.1187404-1-ast@kernel.org
2019-10-22bpf: Fix use after free in subprog's jited symbol removalDaniel Borkmann1-1/+1
syzkaller managed to trigger the following crash: [...] BUG: unable to handle page fault for address: ffffc90001923030 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD aa551067 P4D aa551067 PUD aa552067 PMD a572b067 PTE 80000000a1173163 Oops: 0000 [#1] PREEMPT SMP KASAN CPU: 0 PID: 7982 Comm: syz-executor912 Not tainted 5.4.0-rc3+ #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 RIP: 0010:bpf_jit_binary_hdr include/linux/filter.h:787 [inline] RIP: 0010:bpf_get_prog_addr_region kernel/bpf/core.c:531 [inline] RIP: 0010:bpf_tree_comp kernel/bpf/core.c:600 [inline] RIP: 0010:__lt_find include/linux/rbtree_latch.h:115 [inline] RIP: 0010:latch_tree_find include/linux/rbtree_latch.h:208 [inline] RIP: 0010:bpf_prog_kallsyms_find kernel/bpf/core.c:674 [inline] RIP: 0010:is_bpf_text_address+0x184/0x3b0 kernel/bpf/core.c:709 [...] Call Trace: kernel_text_address kernel/extable.c:147 [inline] __kernel_text_address+0x9a/0x110 kernel/extable.c:102 unwind_get_return_address+0x4c/0x90 arch/x86/kernel/unwind_frame.c:19 arch_stack_walk+0x98/0xe0 arch/x86/kernel/stacktrace.c:26 stack_trace_save+0xb6/0x150 kernel/stacktrace.c:123 save_stack mm/kasan/common.c:69 [inline] set_track mm/kasan/common.c:77 [inline] __kasan_kmalloc+0x11c/0x1b0 mm/kasan/common.c:510 kasan_slab_alloc+0xf/0x20 mm/kasan/common.c:518 slab_post_alloc_hook mm/slab.h:584 [inline] slab_alloc mm/slab.c:3319 [inline] kmem_cache_alloc+0x1f5/0x2e0 mm/slab.c:3483 getname_flags+0xba/0x640 fs/namei.c:138 getname+0x19/0x20 fs/namei.c:209 do_sys_open+0x261/0x560 fs/open.c:1091 __do_sys_open fs/open.c:1115 [inline] __se_sys_open fs/open.c:1110 [inline] __x64_sys_open+0x87/0x90 fs/open.c:1110 do_syscall_64+0xf7/0x1c0 arch/x86/entry/common.c:290 entry_SYSCALL_64_after_hwframe+0x49/0xbe [...] After further debugging it turns out that we walk kallsyms while in parallel we tear down a BPF program which contains subprograms that have been JITed though the program itself has not been fully exposed and is eventually bailing out with error. The bpf_prog_kallsyms_del_subprogs() in bpf_prog_load()'s error path removes the symbols, however, bpf_prog_free() tears down the JIT memory too early via scheduled work. Instead, it needs to properly respect RCU grace period as the kallsyms walk for BPF is under RCU. Fix it by refactoring __bpf_prog_put()'s tear down and reuse it in our error path where we defer final destruction when we have subprogs in the program. Fixes: 7d1982b4e335 ("bpf: fix panic in prog load calls cleanup") Fixes: 1c2a088a6626 ("bpf: x64: add JIT support for multi-function programs") Reported-by: syzbot+710043c5d1d5b5013bc7@syzkaller.appspotmail.com Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Tested-by: syzbot+710043c5d1d5b5013bc7@syzkaller.appspotmail.com Link: https://lore.kernel.org/bpf/55f6367324c2d7e9583fa9ccf5385dcbba0d7a6e.1571752452.git.daniel@iogearbox.net
2019-10-17bpf: Add support for BTF pointers to x86 JITAlexei Starovoitov1-1/+19
Pointer to BTF object is a pointer to kernel object or NULL. Such pointers can only be used by BPF_LDX instructions. The verifier changed their opcode from LDX|MEM|size to LDX|PROBE_MEM|size to make JITing easier. The number of entries in extable is the number of BPF_LDX insns that access kernel memory via "pointer to BTF type". Only these load instructions can fault. Since x86 extable is relative it has to be allocated in the same memory region as JITed code. Allocate it prior to last pass of JITing and let the last pass populate it. Pointer to extable in bpf_prog_aux is necessary to make page fault handling fast. Page fault handling is done in two steps: 1. bpf_prog_kallsyms_find() finds BPF program that page faulted. It's done by walking rb tree. 2. then extable for given bpf program is binary searched. This process is similar to how page faulting is done for kernel modules. The exception handler skips over faulting x86 instruction and initializes destination register with zero. This mimics exact behavior of bpf_probe_read (when probe_kernel_read faults dest is zeroed). JITs for other architectures can add support in similar way. Until then they will reject unknown opcode and fallback to interpreter. Since extable should be aligned and placed near JITed code make bpf_jit_binary_alloc() return 4 byte aligned image offset, so that extable aligning formula in bpf_int_jit_compile() doesn't need to rely on internal implementation of bpf_jit_binary_alloc(). On x86 gcc defaults to 16-byte alignment for regular kernel functions due to better performance. JITed code may be aligned to 16 in the future, but it will use 4 in the meantime. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Andrii Nakryiko <andriin@fb.com> Acked-by: Martin KaFai Lau <kafai@fb.com> Link: https://lore.kernel.org/bpf/20191016032505.2089704-10-ast@kernel.org
2019-10-17bpf: Add support for BTF pointers to interpreterAlexei Starovoitov1-0/+19
Pointer to BTF object is a pointer to kernel object or NULL. The memory access in the interpreter has to be done via probe_kernel_read to avoid page faults. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Andrii Nakryiko <andriin@fb.com> Acked-by: Martin KaFai Lau <kafai@fb.com> Link: https://lore.kernel.org/bpf/20191016032505.2089704-9-ast@kernel.org
2019-08-26bpf: handle 32-bit zext during constant blindingNaveen N. Rao1-2/+6
Since BPF constant blinding is performed after the verifier pass, the ALU32 instructions inserted for doubleword immediate loads don't have a corresponding zext instruction. This is causing a kernel oops on powerpc and can be reproduced by running 'test_cgroup_storage' with bpf_jit_harden=2. Fix this by emitting BPF_ZEXT during constant blinding if prog->aux->verifier_zext is set. Fixes: a4b1d3c1ddf6cb ("bpf: verifier: insert zero extension according to analysis result") Reported-by: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com> Reviewed-by: Jiong Wang <jiong.wang@netronome.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-07-18bpf: Disable GCC -fgcse optimization for ___bpf_prog_run()Josh Poimboeuf1-1/+1
On x86-64, with CONFIG_RETPOLINE=n, GCC's "global common subexpression elimination" optimization results in ___bpf_prog_run()'s jumptable code changing from this: select_insn: jmp *jumptable(, %rax, 8) ... ALU64_ADD_X: ... jmp *jumptable(, %rax, 8) ALU_ADD_X: ... jmp *jumptable(, %rax, 8) to this: select_insn: mov jumptable, %r12 jmp *(%r12, %rax, 8) ... ALU64_ADD_X: ... jmp *(%r12, %rax, 8) ALU_ADD_X: ... jmp *(%r12, %rax, 8) The jumptable address is placed in a register once, at the beginning of the function. The function execution can then go through multiple indirect jumps which rely on that same register value. This has a few issues: 1) Objtool isn't smart enough to be able to track such a register value across multiple recursive indirect jumps through the jump table. 2) With CONFIG_RETPOLINE enabled, this optimization actually results in a small slowdown. I measured a ~4.7% slowdown in the test_bpf "tcpdump port 22" selftest. This slowdown is actually predicted by the GCC manual: Note: When compiling a program using computed gotos, a GCC extension, you may get better run-time performance if you disable the global common subexpression elimination pass by adding -fno-gcse to the command line. So just disable the optimization for this function. Fixes: e55a73251da3 ("bpf: Fix ORC unwinding in non-JIT BPF code") Reported-by: Randy Dunlap <rdunlap@infradead.org> Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/30c3ca29ba037afcbd860a8672eef0021addf9fe.1563413318.git.jpoimboe@redhat.com
2019-07-18Merge branch 'x86/debug' into core/urgentThomas Gleixner1-2/+1
Pick up the two pending objtool patches as the next round of objtool fixes depend on them.
2019-07-09bpf: Fix ORC unwinding in non-JIT BPF codeJosh Poimboeuf1-2/+1
Objtool previously ignored ___bpf_prog_run() because it didn't understand the jump table. This resulted in the ORC unwinder not being able to unwind through non-JIT BPF code. Now that objtool knows how to read jump tables, remove the whitelist and annotate the jump table so objtool can recognize it. Also add an additional "const" to the jump table definition to clarify that the text pointers are constant. Otherwise GCC sets the section writable flag and the assembler spits out warnings. Fixes: d15d356887e7 ("perf/x86: Make perf callchains work without CONFIG_FRAME_POINTER") Reported-by: Song Liu <songliubraving@fb.com> Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Alexei Starovoitov <ast@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Kairui Song <kasong@redhat.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Daniel Borkmann <daniel@iogearbox.net> Link: https://lkml.kernel.org/r/881939122b88f32be4c374d248c09d7527a87e35.1561685471.git.jpoimboe@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-07-08Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/netDavid S. Miller1-2/+2
Two cases of overlapping changes, nothing fancy. Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-27bpf: implement getsockopt and setsockopt hooksStanislav Fomichev1-0/+9
Implement new BPF_PROG_TYPE_CGROUP_SOCKOPT program type and BPF_CGROUP_{G,S}ETSOCKOPT cgroup hooks. BPF_CGROUP_SETSOCKOPT can modify user setsockopt arguments before passing them down to the kernel or bypass kernel completely. BPF_CGROUP_GETSOCKOPT can can inspect/modify getsockopt arguments that kernel returns. Both hooks reuse existing PTR_TO_PACKET{,_END} infrastructure. The buffer memory is pre-allocated (because I don't think there is a precedent for working with __user memory from bpf). This might be slow to do for each {s,g}etsockopt call, that's why I've added __cgroup_bpf_prog_array_is_empty that exits early if there is nothing attached to a cgroup. Note, however, that there is a race between __cgroup_bpf_prog_array_is_empty and BPF_PROG_RUN_ARRAY where cgroup program layout might have changed; this should not be a problem because in general there is a race between multiple calls to {s,g}etsocktop and user adding/removing bpf progs from a cgroup. The return code of the BPF program is handled as follows: * 0: EPERM * 1: success, continue with next BPF program in the cgroup chain v9: * allow overwriting setsockopt arguments (Alexei Starovoitov): * use set_fs (same as kernel_setsockopt) * buffer is always kzalloc'd (no small on-stack buffer) v8: * use s32 for optlen (Andrii Nakryiko) v7: * return only 0 or 1 (Alexei Starovoitov) * always run all progs (Alexei Starovoitov) * use optval=0 as kernel bypass in setsockopt (Alexei Starovoitov) (decided to use optval=-1 instead, optval=0 might be a valid input) * call getsockopt hook after kernel handlers (Alexei Starovoitov) v6: * rework cgroup chaining; stop as soon as bpf program returns 0 or 2; see patch with the documentation for the details * drop Andrii's and Martin's Acked-by (not sure they are comfortable with the new state of things) v5: * skip copy_to_user() and put_user() when ret == 0 (Martin Lau) v4: * don't export bpf_sk_fullsock helper (Martin Lau) * size != sizeof(__u64) for uapi pointers (Martin Lau) * offsetof instead of bpf_ctx_range when checking ctx access (Martin Lau) v3: * typos in BPF_PROG_CGROUP_SOCKOPT_RUN_ARRAY comments (Andrii Nakryiko) * reverse christmas tree in BPF_PROG_CGROUP_SOCKOPT_RUN_ARRAY (Andrii Nakryiko) * use __bpf_md_ptr instead of __u32 for optval{,_end} (Martin Lau) * use BPF_FIELD_SIZEOF() for consistency (Martin Lau) * new CG_SOCKOPT_ACCESS macro to wrap repeated parts v2: * moved bpf_sockopt_kern fields around to remove a hole (Martin Lau) * aligned bpf_sockopt_kern->buf to 8 bytes (Martin Lau) * bpf_prog_array_is_empty instead of bpf_prog_array_length (Martin Lau) * added [0,2] return code check to verifier (Martin Lau) * dropped unused buf[64] from the stack (Martin Lau) * use PTR_TO_SOCKET for bpf_sockopt->sk (Martin Lau) * dropped bpf_target_off from ctx rewrites (Martin Lau) * use return code for kernel bypass (Martin Lau & Andrii Nakryiko) Cc: Andrii Nakryiko <andriin@fb.com> Cc: Martin Lau <kafai@fb.com> Signed-off-by: Stanislav Fomichev <sdf@google.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-06-26bpf: fix BPF_ALU32 | BPF_ARSH on BE archesJiong Wang1-2/+2
Yauheni reported the following code do not work correctly on BE arches: ALU_ARSH_X: DST = (u64) (u32) ((*(s32 *) &DST) >> SRC); CONT; ALU_ARSH_K: DST = (u64) (u32) ((*(s32 *) &DST) >> IMM); CONT; and are causing failure of test_verifier test 'arsh32 on imm 2' on BE arches. The code is taking address and interpreting memory directly, so is not endianness neutral. We should instead perform standard C type casting on the variable. A u64 to s32 conversion will drop the high 32-bit and reserve the low 32-bit as signed integer, this is all we want. Fixes: 2dc6b100f928 ("bpf: interpreter support BPF_ALU | BPF_ARSH") Reported-by: Yauheni Kaliuta <yauheni.kaliuta@redhat.com> Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com> Reviewed-by: Quentin Monnet <quentin.monnet@netronome.com> Signed-off-by: Jiong Wang <jiong.wang@netronome.com> Acked-by: Song Liu <songliubraving@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-06-25xdp: Add tracepoint for bulk XDP_TXToshiaki Makita1-0/+1
This is introduced for admins to check what is happening on XDP_TX when bulk XDP_TX is in use, which will be first introduced in veth in next commit. v3: - Add act field to be in line with other XDP tracepoints. Signed-off-by: Toshiaki Makita <toshiaki.makita1@gmail.com> Acked-by: Jesper Dangaard Brouer <brouer@redhat.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-06-17Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/netDavid S. Miller1-1/+0
Honestly all the conflicts were simple overlapping changes, nothing really interesting to report. Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-14sysctl: define proc_do_static_key()Eric Dumazet1-1/+0
Convert proc_dointvec_minmax_bpf_stats() into a more generic helper, since we are going to use jump labels more often. Note that sysctl_bpf_stats_enabled is removed, since it is no longer needed/used. Signed-off-by: Eric Dumazet <edumazet@google.com> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-07Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/netDavid S. Miller1-5/+1
Some ISDN files that got removed in net-next had some changes done in mainline, take the removals. Signed-off-by: David S. Miller <davem@davemloft.net>
2019-05-30treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 152Thomas Gleixner1-5/+1
Based on 1 normalized pattern(s): this program is free software you can redistribute it and or modify it under the terms of the gnu general public license as published by the free software foundation either version 2 of the license or at your option any later version extracted by the scancode license scanner the SPDX license identifier GPL-2.0-or-later has been chosen to replace the boilerplate/reference in 3029 file(s). Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Allison Randal <allison@lohutok.net> Cc: linux-spdx@vger.kernel.org Link: https://lkml.kernel.org/r/20190527070032.746973796@linutronix.de Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-29bpf: remove __rcu annotations from bpf_prog_arrayStanislav Fomichev1-24/+13
Drop __rcu annotations and rcu read sections from bpf_prog_array helper functions. They are not needed since all existing callers call those helpers from the rcu update side while holding a mutex. This guarantees that use-after-free could not happen. In the next patches I'll fix the callers with missing rcu_dereference_protected to make sparse/lockdep happy, the proper way to use these helpers is: struct bpf_prog_array __rcu *progs = ...; struct bpf_prog_array *p; mutex_lock(&mtx); p = rcu_dereference_protected(progs, lockdep_is_held(&mtx)); bpf_prog_array_length(p); bpf_prog_array_copy_to_user(p, ...); bpf_prog_array_delete_safe(p, ...); bpf_prog_array_copy_info(p, ...); bpf_prog_array_copy(p, ...); bpf_prog_array_free(p); mutex_unlock(&mtx); No functional changes! rcu_dereference_protected with lockdep_is_held should catch any cases where we update prog array without a mutex (I've looked at existing call sites and I think we hold a mutex everywhere). Motivation is to fix sparse warnings: kernel/bpf/core.c:1803:9: warning: incorrect type in argument 1 (different address spaces) kernel/bpf/core.c:1803:9: expected struct callback_head *head kernel/bpf/core.c:1803:9: got struct callback_head [noderef] <asn:4> * kernel/bpf/core.c:1877:44: warning: incorrect type in initializer (different address spaces) kernel/bpf/core.c:1877:44: expected struct bpf_prog_array_item *item kernel/bpf/core.c:1877:44: got struct bpf_prog_array_item [noderef] <asn:4> * kernel/bpf/core.c:1901:26: warning: incorrect type in assignment (different address spaces) kernel/bpf/core.c:1901:26: expected struct bpf_prog_array_item *existing kernel/bpf/core.c:1901:26: got struct bpf_prog_array_item [noderef] <asn:4> * kernel/bpf/core.c:1935:26: warning: incorrect type in assignment (different address spaces) kernel/bpf/core.c:1935:26: expected struct bpf_prog_array_item *[assigned] existing kernel/bpf/core.c:1935:26: got struct bpf_prog_array_item [noderef] <asn:4> * v2: * remove comment about potential race; that can't happen because all callers are in rcu-update section Cc: Roman Gushchin <guro@fb.com> Acked-by: Roman Gushchin <guro@fb.com> Signed-off-by: Stanislav Fomichev <sdf@google.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-05-24bpf: verifier: insert zero extension according to analysis resultJiong Wang1-0/+9
After previous patches, verifier will mark a insn if it really needs zero extension on dst_reg. It is then for back-ends to decide how to use such information to eliminate unnecessary zero extension code-gen during JIT compilation. One approach is verifier insert explicit zero extension for those insns that need zero extension in a generic way, JIT back-ends then do not generate zero extension for sub-register write at default. However, only those back-ends which do not have hardware zero extension want this optimization. Back-ends like x86_64 and AArch64 have hardware zero extension support that the insertion should be disabled. This patch introduces new target hook "bpf_jit_needs_zext" which returns false at default, meaning verifier zero extension insertion is disabled at default. A back-end could override this hook to return true if it doesn't have hardware support and want verifier insert zero extension explicitly. Offload targets do not use this native target hook, instead, they could get the optimization results using bpf_prog_offload_ops.finalize. NOTE: arches could have diversified features, it is possible for one arch to have hardware zero extension support for some sub-register write insns but not for all. For example, PowerPC, SPARC have zero extended loads, but not for alu32. So when verifier zero extension insertion enabled, these JIT back-ends need to peephole insns to remove those zero extension inserted for insn that actually has hardware zero extension support. The peephole could be as simple as looking the next insn, if it is a special zero extension insn then it is safe to eliminate it if the current insn has hardware zero extension support. Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com> Signed-off-by: Jiong Wang <jiong.wang@netronome.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-05-10bpf: fix out of bounds backwards jmps due to dead code removalDaniel Borkmann1-2/+2
systemtap folks reported the following splat recently: [ 7790.862212] WARNING: CPU: 3 PID: 26759 at arch/x86/kernel/kprobes/core.c:1022 kprobe_fault_handler+0xec/0xf0 [...] [ 7790.864113] CPU: 3 PID: 26759 Comm: sshd Not tainted 5.1.0-0.rc7.git1.1.fc31.x86_64 #1 [ 7790.864198] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS[...] [ 7790.864314] RIP: 0010:kprobe_fault_handler+0xec/0xf0 [ 7790.864375] Code: 48 8b 50 [...] [ 7790.864714] RSP: 0018:ffffc06800bdbb48 EFLAGS: 00010082 [ 7790.864812] RAX: ffff9e2b75a16320 RBX: 0000000000000000 RCX: 0000000000000000 [ 7790.865306] RDX: ffffffffffffffff RSI: 000000000000000e RDI: ffffc06800bdbbf8 [ 7790.865514] RBP: ffffc06800bdbbf8 R08: 0000000000000000 R09: 0000000000000000 [ 7790.865960] R10: 0000000000000000 R11: 0000000000000000 R12: ffffc06800bdbbf8 [ 7790.866037] R13: ffff9e2ab56a0418 R14: ffff9e2b6d0bb400 R15: ffff9e2b6d268000 [ 7790.866114] FS: 00007fde49937d80(0000) GS:ffff9e2b75a00000(0000) knlGS:0000000000000000 [ 7790.866193] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 7790.866318] CR2: 0000000000000000 CR3: 000000012f312000 CR4: 00000000000006e0 [ 7790.866419] Call Trace: [ 7790.866677] do_user_addr_fault+0x64/0x480 [ 7790.867513] do_page_fault+0x33/0x210 [ 7790.868002] async_page_fault+0x1e/0x30 [ 7790.868071] RIP: 0010: (null) [ 7790.868144] Code: Bad RIP value. [ 7790.868229] RSP: 0018:ffffc06800bdbca8 EFLAGS: 00010282 [ 7790.868362] RAX: ffff9e2b598b60f8 RBX: ffffc06800bdbe48 RCX: 0000000000000004 [ 7790.868629] RDX: 0000000000000004 RSI: ffffc06800bdbc6c RDI: ffff9e2b598b60f0 [ 7790.868834] RBP: ffffc06800bdbcf8 R08: 0000000000000000 R09: 0000000000000004 [ 7790.870432] R10: 00000000ff6f7a03 R11: 0000000000000000 R12: 0000000000000001 [ 7790.871859] R13: ffffc06800bdbcb8 R14: 0000000000000000 R15: ffff9e2acd0a5310 [ 7790.873455] ? vfs_read+0x5/0x170 [ 7790.874639] ? vfs_read+0x1/0x170 [ 7790.875834] ? trace_call_bpf+0xf6/0x260 [ 7790.877044] ? vfs_read+0x1/0x170 [ 7790.878208] ? vfs_read+0x5/0x170 [ 7790.879345] ? kprobe_perf_func+0x233/0x260 [ 7790.880503] ? vfs_read+0x1/0x170 [ 7790.881632] ? vfs_read+0x5/0x170 [ 7790.882751] ? kprobe_ftrace_handler+0x92/0xf0 [ 7790.883926] ? __vfs_read+0x30/0x30 [ 7790.885050] ? ftrace_ops_assist_func+0x94/0x100 [ 7790.886183] ? vfs_read+0x1/0x170 [ 7790.887283] ? vfs_read+0x5/0x170 [ 7790.888348] ? ksys_read+0x5a/0xe0 [ 7790.889389] ? do_syscall_64+0x5c/0xa0 [ 7790.890401] ? entry_SYSCALL_64_after_hwframe+0x49/0xbe After some debugging, turns out that the logic in 2cbd95a5c4fb ("bpf: change parameters of call/branch offset adjustment") has a bug that is exposed after 52875a04f4b2 ("bpf: verifier: remove dead code") in that we miss some of the jump offset adjustments after code patching when we remove dead code, more concretely, upon backward jump spanning over the area that is being removed. BPF insns of a case that was hit pre 52875a04f4b2: [...] 676: (85) call bpf_perf_event_output#-47616 677: (05) goto pc-636 678: (62) *(u32 *)(r10 -64) = 0 679: (bf) r7 = r10 680: (07) r7 += -64 681: (05) goto pc-44 682: (05) goto pc-1 683: (05) goto pc-1 BPF insns afterwards: [...] 618: (85) call bpf_perf_event_output#-47616 619: (05) goto pc-638 620: (62) *(u32 *)(r10 -64) = 0 621: (bf) r7 = r10 622: (07) r7 += -64 623: (05) goto pc-44 To illustrate the bug, situation looks as follows: ____ 0 | | <-- foo: [...] 1 |____| 2 |____| <-- pos / end_new ^ 3 | | | 4 | | | len 5 |____| | (remove region) 6 | | <-- end_old v 7 | | 8 | | <-- curr (jmp foo) 9 |____| The condition curr >= end_new && curr + off + 1 < end_new in the branch delta adjustments is never hit because curr + off + 1 < end_new is compared as unsigned and therefore curr + off + 1 > end_new in unsigned realm as curr + off + 1 becomes negative since the insns are memmove()'d before the offset adjustments. Correct BPF insns after this fix: [...] 618: (85) call bpf_perf_event_output#-47216 619: (05) goto pc-578 620: (62) *(u32 *)(r10 -64) = 0 621: (bf) r7 = r10 622: (07) r7 += -64 623: (05) goto pc-44 Note that unprivileged case is not affected from this. Fixes: 52875a04f4b2 ("bpf: verifier: remove dead code") Fixes: 2cbd95a5c4fb ("bpf: change parameters of call/branch offset adjustment") Reported-by: Frank Ch. Eigler <fche@redhat.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-05-07Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-nextLinus Torvalds1-6/+8
Pull networking updates from David Miller: "Highlights: 1) Support AES128-CCM ciphers in kTLS, from Vakul Garg. 2) Add fib_sync_mem to control the amount of dirty memory we allow to queue up between synchronize RCU calls, from David Ahern. 3) Make flow classifier more lockless, from Vlad Buslov. 4) Add PHY downshift support to aquantia driver, from Heiner Kallweit. 5) Add SKB cache for TCP rx and tx, from Eric Dumazet. This reduces contention on SLAB spinlocks in heavy RPC workloads. 6) Partial GSO offload support in XFRM, from Boris Pismenny. 7) Add fast link down support to ethtool, from Heiner Kallweit. 8) Use siphash for IP ID generator, from Eric Dumazet. 9) Pull nexthops even further out from ipv4/ipv6 routes and FIB entries, from David Ahern. 10) Move skb->xmit_more into a per-cpu variable, from Florian Westphal. 11) Improve eBPF verifier speed and increase maximum program size, from Alexei Starovoitov. 12) Eliminate per-bucket spinlocks in rhashtable, and instead use bit spinlocks. From Neil Brown. 13) Allow tunneling with GUE encap in ipvs, from Jacky Hu. 14) Improve link partner cap detection in generic PHY code, from Heiner Kallweit. 15) Add layer 2 encap support to bpf_skb_adjust_room(), from Alan Maguire. 16) Remove SKB list implementation assumptions in SCTP, your's truly. 17) Various cleanups, optimizations, and simplifications in r8169 driver. From Heiner Kallweit. 18) Add memory accounting on TX and RX path of SCTP, from Xin Long. 19) Switch PHY drivers over to use dynamic featue detection, from Heiner Kallweit. 20) Support flow steering without masking in dpaa2-eth, from Ioana Ciocoi. 21) Implement ndo_get_devlink_port in netdevsim driver, from Jiri Pirko. 22) Increase the strict parsing of current and future netlink attributes, also export such policies to userspace. From Johannes Berg. 23) Allow DSA tag drivers to be modular, from Andrew Lunn. 24) Remove legacy DSA probing support, also from Andrew Lunn. 25) Allow ll_temac driver to be used on non-x86 platforms, from Esben Haabendal. 26) Add a generic tracepoint for TX queue timeouts to ease debugging, from Cong Wang. 27) More indirect call optimizations, from Paolo Abeni" * git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next: (1763 commits) cxgb4: Fix error path in cxgb4_init_module net: phy: improve pause mode reporting in phy_print_status dt-bindings: net: Fix a typo in the phy-mode list for ethernet bindings net: macb: Change interrupt and napi enable order in open net: ll_temac: Improve error message on error IRQ net/sched: remove block pointer from common offload structure net: ethernet: support of_get_mac_address new ERR_PTR error net: usb: smsc: fix warning reported by kbuild test robot staging: octeon-ethernet: Fix of_get_mac_address ERR_PTR check net: dsa: support of_get_mac_address new ERR_PTR error net: dsa: sja1105: Fix status initialization in sja1105_get_ethtool_stats vrf: sit mtu should not be updated when vrf netdev is the link net: dsa: Fix error cleanup path in dsa_init_module l2tp: Fix possible NULL pointer dereference taprio: add null check on sched_nest to avoid potential null pointer dereference net: mvpp2: cls: fix less than zero check on a u32 variable net_sched: sch_fq: handle non connected flows net_sched: sch_fq: do not assume EDT packets are ordered net: hns3: use devm_kcalloc when allocating desc_cb net: hns3: some cleanup for struct hns3_enet_ring ...
2019-04-30bpf: Use vmalloc special flagRick Edgecombe1-1/+0
Use new flag VM_FLUSH_RESET_PERMS for handling freeing of special permissioned memory in vmalloc and remove places where memory was set RW before freeing which is no longer needed. Don't track if the memory is RO anymore because it is now tracked in vmalloc. Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: <akpm@linux-foundation.org> Cc: <ard.biesheuvel@linaro.org> Cc: <deneen.t.dock@intel.com> Cc: <kernel-hardening@lists.openwall.com> Cc: <kristen@linux.intel.com> Cc: <linux_dti@icloud.com> Cc: <will.deacon@arm.com> Cc: Alexei Starovoitov <ast@kernel.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Nadav Amit <nadav.amit@gmail.com> Cc: Rik van Riel <riel@surriel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/20190426001143.4983-19-namit@vmware.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-04-09bpf: implement lookup-free direct value access for mapsDaniel Borkmann1-1/+2
This generic extension to BPF maps allows for directly loading an address residing inside a BPF map value as a single BPF ldimm64 instruction! The idea is similar to what BPF_PSEUDO_MAP_FD does today, which is a special src_reg flag for ldimm64 instruction that indicates that inside the first part of the double insns's imm field is a file descriptor which the verifier then replaces as a full 64bit address of the map into both imm parts. For the newly added BPF_PSEUDO_MAP_VALUE src_reg flag, the idea is the following: the first part of the double insns's imm field is again a file descriptor corresponding to the map, and the second part of the imm field is an offset into the value. The verifier will then replace both imm parts with an address that points into the BPF map value at the given value offset for maps that support this operation. Currently supported is array map with single entry. It is possible to support more than just single map element by reusing both 16bit off fields of the insns as a map index, so full array map lookup could be expressed that way. It hasn't been implemented here due to lack of concrete use case, but could easily be done so in future in a compatible way, since both off fields right now have to be 0 and would correctly denote a map index 0. The BPF_PSEUDO_MAP_VALUE is a distinct flag as otherwise with BPF_PSEUDO_MAP_FD we could not differ offset 0 between load of map pointer versus load of map's value at offset 0, and changing BPF_PSEUDO_MAP_FD's encoding into off by one to differ between regular map pointer and map value pointer would add unnecessary complexity and increases barrier for debugability thus less suitable. Using the second part of the imm field as an offset into the value does /not/ come with limitations since maximum possible value size is in u32 universe anyway. This optimization allows for efficiently retrieving an address to a map value memory area without having to issue a helper call which needs to prepare registers according to calling convention, etc, without needing the extra NULL test, and without having to add the offset in an additional instruction to the value base pointer. The verifier then treats the destination register as PTR_TO_MAP_VALUE with constant reg->off from the user passed offset from the second imm field, and guarantees that this is within bounds of the map value. Any subsequent operations are normally treated as typical map value handling without anything extra needed from verification side. The two map operations for direct value access have been added to array map for now. In future other types could be supported as well depending on the use case. The main use case for this commit is to allow for BPF loader support for global variables that reside in .data/.rodata/.bss sections such that we can directly load the address of them with minimal additional infrastructure required. Loader support has been added in subsequent commits for libbpf library. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-04-04bpf: verbose jump offset overflow checkAlexei Starovoitov1-5/+6
Larger programs may trigger 16-bit jump offset overflow check during instruction patching. Make this error verbose otherwise users cannot decipher error code without printks in the verifier. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-03-06Merge branch 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tipLinus Torvalds1-1/+1
Pull perf updates from Ingo Molnar: "Lots of tooling updates - too many to list, here's a few highlights: - Various subcommand updates to 'perf trace', 'perf report', 'perf record', 'perf annotate', 'perf script', 'perf test', etc. - CPU and NUMA topology and affinity handling improvements, - HW tracing and HW support updates: - Intel PT updates - ARM CoreSight updates - vendor HW event updates - BPF updates - Tons of infrastructure updates, both on the build system and the library support side - Documentation updates. - ... and lots of other changes, see the changelog for details. Kernel side updates: - Tighten up kprobes blacklist handling, reduce the number of places where developers can install a kprobe and hang/crash the system. - Fix/enhance vma address filter handling. - Various PMU driver updates, small fixes and additions. - refcount_t conversions - BPF updates - error code propagation enhancements - misc other changes" * 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (238 commits) perf script python: Add Python3 support to syscall-counts-by-pid.py perf script python: Add Python3 support to syscall-counts.py perf script python: Add Python3 support to stat-cpi.py perf script python: Add Python3 support to stackcollapse.py perf script python: Add Python3 support to sctop.py perf script python: Add Python3 support to powerpc-hcalls.py perf script python: Add Python3 support to net_dropmonitor.py perf script python: Add Python3 support to mem-phys-addr.py perf script python: Add Python3 support to failed-syscalls-by-pid.py perf script python: Add Python3 support to netdev-times.py perf tools: Add perf_exe() helper to find perf binary perf script: Handle missing fields with -F +.. perf data: Add perf_data__open_dir_data function perf data: Add perf_data__(create_dir|close_dir) functions perf data: Fail check_backup in case of error perf data: Make check_backup work over directories perf tools: Add rm_rf_perf_data function perf tools: Add pattern name checking to rm_rf perf tools: Add depth checking to rm_rf perf data: Add global path holder ...
2019-03-02bpf: fix u64_stats_init() usage in bpf_prog_alloc()Eric Dumazet1-1/+7
We need to iterate through all possible cpus. Fixes: 492ecee892c2 ("bpf: enable program stats") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: Guenter Roeck <linux@roeck-us.net> Tested-by: Guenter Roeck <linux@roeck-us.net> Acked-by: Song Liu <songliubraving@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-02-27bpf: enable program statsAlexei Starovoitov1-2/+29
JITed BPF programs are indistinguishable from kernel functions, but unlike kernel code BPF code can be changed often. Typical approach of "perf record" + "perf report" profiling and tuning of kernel code works just as well for BPF programs, but kernel code doesn't need to be monitored whereas BPF programs do. Users load and run large amount of BPF programs. These BPF stats allow tools monitor the usage of BPF on the server. The monitoring tools will turn sysctl kernel.bpf_stats_enabled on and off for few seconds to sample average cost of the programs. Aggregated data over hours and days will provide an insight into cost of BPF and alarms can trigger in case given program suddenly gets more expensive. The cost of two sched_clock() per program invocation adds ~20 nsec. Fast BPF progs (like selftests/bpf/progs/test_pkt_access.c) will slow down from ~10 nsec to ~30 nsec. static_key minimizes the cost of the stats collection. There is no measurable difference before/after this patch with kernel.bpf_stats_enabled=0 Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-02-01bpf: introduce bpf_spin_lockAlexei Starovoitov1-0/+2
Introduce 'struct bpf_spin_lock' and bpf_spin_lock/unlock() helpers to let bpf program serialize access to other variables. Example: struct hash_elem { int cnt; struct bpf_spin_lock lock; }; struct hash_elem * val = bpf_map_lookup_elem(&hash_map, &key); if (val) { bpf_spin_lock(&val->lock); val->cnt++; bpf_spin_unlock(&val->lock); } Restrictions and safety checks: - bpf_spin_lock is only allowed inside HASH and ARRAY maps. - BTF description of the map is mandatory for safety analysis. - bpf program can take one bpf_spin_lock at a time, since two or more can cause dead locks. - only one 'struct bpf_spin_lock' is allowed per map element. It drastically simplifies implementation yet allows bpf program to use any number of bpf_spin_locks. - when bpf_spin_lock is taken the calls (either bpf2bpf or helpers) are not allowed. - bpf program must bpf_spin_unlock() before return. - bpf program can access 'struct bpf_spin_lock' only via bpf_spin_lock()/bpf_spin_unlock() helpers. - load/store into 'struct bpf_spin_lock lock;' field is not allowed. - to use bpf_spin_lock() helper the BTF description of map value must be a struct and have 'struct bpf_spin_lock anyname;' field at the top level. Nested lock inside another struct is not allowed. - syscall map_lookup doesn't copy bpf_spin_lock field to user space. - syscall map_update and program map_update do not update bpf_spin_lock field. - bpf_spin_lock cannot be on the stack or inside networking packet. bpf_spin_lock can only be inside HASH or ARRAY map value. - bpf_spin_lock is available to root only and to all program types. - bpf_spin_lock is not allowed in inner maps of map-in-map. - ld_abs is not allowed inside spin_lock-ed region. - tracing progs and socket filter progs cannot use bpf_spin_lock due to insufficient preemption checks Implementation details: - cgroup-bpf class of programs can nest with xdp/tc programs. Hence bpf_spin_lock is equivalent to spin_lock_irqsave. Other solutions to avoid nested bpf_spin_lock are possible. Like making sure that all networking progs run with softirq disabled. spin_lock_irqsave is the simplest and doesn't add overhead to the programs that don't use it. - arch_spinlock_t is used when its implemented as queued_spin_lock - archs can force their own arch_spinlock_t - on architectures where queued_spin_lock is not available and sizeof(arch_spinlock_t) != sizeof(__u32) trivial lock is used. - presence of bpf_spin_lock inside map value could have been indicated via extra flag during map_create, but specifying it via BTF is cleaner. It provides introspection for map key/value and reduces user mistakes. Next steps: - allow bpf_spin_lock in other map types (like cgroup local storage) - introduce BPF_F_LOCK flag for bpf_map_update() syscall and helper to request kernel to grab bpf_spin_lock before rewriting the value. That will serialize access to map elements. Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-01-31bpf: fix bitrotted kerneldocValdis Kletnieks1-1/+2
Over the years, the function signature has changed, but the kerneldoc block hasn't. Signed-off-by: Valdis Kletnieks <valdis.kletnieks@vt.edu> Acked-by: Song Liu <songliubraving@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-01-26bpf: JIT blinds support JMP32Jiong Wang1-0/+21
This patch adds JIT blinds support for JMP32. Like BPF_JMP_REG/IMM, JMP32 version are needed for building raw bpf insn. They are added to both include/linux/filter.h and tools/include/linux/filter.h. Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com> Signed-off-by: Jiong Wang <jiong.wang@netronome.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-01-26bpf: interpreter support for JMP32Jiong Wang1-134/+63
This patch implements interpreting new JMP32 instructions. Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com> Signed-off-by: Jiong Wang <jiong.wang@netronome.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-01-26bpf: verifier support JMP32Jiong Wang1-1/+2
This patch teach verifier about the new BPF_JMP32 instruction class. Verifier need to treat it similar as the existing BPF_JMP class. A BPF_JMP32 insn needs to go through all checks that have been done on BPF_JMP. Also, verifier is doing runtime optimizations based on the extra info conditional jump instruction could offer, especially when the comparison is between constant and register that the value range of the register could be improved based on the comparison results. These code are updated accordingly. Acked-by: Jakub Kicinski <jakub.kicinski@netronome.com> Signed-off-by: Jiong Wang <jiong.wang@netronome.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-01-23bpf: verifier: remove dead codeJakub Kicinski1-0/+12
Instead of overwriting dead code with jmp -1 instructions remove it completely for root. Adjust verifier state and line info appropriately. v2: - adjust func_info (Alexei); - make sure first instruction retains line info (Alexei). v4: (Yonghong) - remove unnecessary if (!insn to remove) checks; - always keep last line info if first live instruction lacks one. v5: (Martin Lau) - improve and clarify comments. Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com> Acked-by: Yonghong Song <yhs@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-01-23bpf: change parameters of call/branch offset adjustmentJakub Kicinski1-19/+21
In preparation for code removal change parameters to branch and call adjustment functions to be more universal. The current parameters assume we are patching a single instruction with a longer set. A diagram may help reading the change, this is for the patch single case, patching instruction 1 with a replacement of 4: ____ 0 |____| 1 |____| <-- pos ^ 2 | | <-- end old ^ | 3 | | | delta | len 4 |____| | | (patch region) 5 | | <-- end new v v 6 |____| end_old = pos + 1 end_new = pos + delta + 1 If we are before the patch region - curr variable and the target are fully in old coordinates (hence comparing against end_old). If we are after the region curr is in new coordinates (hence the comparison to end_new) but target is in mixed coordinates, so we just check if it falls before end_new, and if so it needs the adjustment. Note that we will not fix up branches which land in removed region in case of removal, which should be okay, as we are only going to remove dead code. Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com> Acked-by: Yonghong Song <yhs@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-01-21perf, bpf: Introduce PERF_RECORD_BPF_EVENTSong Liu1-1/+1
For better performance analysis of BPF programs, this patch introduces PERF_RECORD_BPF_EVENT, a new perf_event_type that exposes BPF program load/unload information to user space. Each BPF program may contain up to BPF_MAX_SUBPROGS (256) sub programs. The following example shows kernel symbols for a BPF program with 7 sub programs: ffffffffa0257cf9 t bpf_prog_b07ccb89267cf242_F ffffffffa02592e1 t bpf_prog_2dcecc18072623fc_F ffffffffa025b0e9 t bpf_prog_bb7a405ebaec5d5c_F ffffffffa025dd2c t bpf_prog_a7540d4a39ec1fc7_F ffffffffa025fcca t bpf_prog_05762d4ade0e3737_F ffffffffa026108f t bpf_prog_db4bd11e35df90d4_F ffffffffa0263f00 t bpf_prog_89d64e4abf0f0126_F ffffffffa0257cf9 t bpf_prog_ae31629322c4b018__dummy_tracepoi When a bpf program is loaded, PERF_RECORD_KSYMBOL is generated for each of these sub programs. Therefore, PERF_RECORD_BPF_EVENT is not needed for simple profiling. For annotation, user space need to listen to PERF_RECORD_BPF_EVENT and gather more information about these (sub) programs via sys_bpf. Signed-off-by: Song Liu <songliubraving@fb.com> Reviewed-by: Arnaldo Carvalho de Melo <acme@redhat.com> Acked-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Peter Zijlstra (Intel) <peterz@infradeaed.org> Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: Peter Zijlstra <peterz@infradead.org> Cc: kernel-team@fb.com Cc: netdev@vger.kernel.org Link: http://lkml.kernel.org/r/20190117161521.1341602-4-songliubraving@fb.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2019-01-02bpf: enable access to ax register also from verifier rewriteDaniel Borkmann1-0/+20
Right now we are using BPF ax register in JIT for constant blinding as well as in interpreter as temporary variable. Verifier will not be able to use it simply because its use will get overridden from the former in bpf_jit_blind_insn(). However, it can be made to work in that blinding will be skipped if there is prior use in either source or destination register on the instruction. Taking constraints of ax into account, the verifier is then open to use it in rewrites under some constraints. Note, ax register already has mappings in every eBPF JIT. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-01-02bpf: move tmp variable into ax register in interpreterDaniel Borkmann1-17/+17
This change moves the on-stack 64 bit tmp variable in ___bpf_prog_run() into the hidden ax register. The latter is currently only used in JITs for constant blinding as a temporary scratch register, meaning the BPF interpreter will never see the use of ax. Therefore it is safe to use it for the cases where tmp has been used earlier. This is needed to later on allow restricted hidden use of ax in both interpreter and JITs. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Alexei Starovoitov <ast@kernel.org>