aboutsummaryrefslogtreecommitdiffstats
path: root/kernel/fork.c (follow)
AgeCommit message (Collapse)AuthorFilesLines
2019-07-25sched/fair: Don't free p->numa_faults with concurrent readersJann Horn1-1/+1
When going through execve(), zero out the NUMA fault statistics instead of freeing them. During execve, the task is reachable through procfs and the scheduler. A concurrent /proc/*/sched reader can read data from a freed ->numa_faults allocation (confirmed by KASAN) and write it back to userspace. I believe that it would also be possible for a use-after-free read to occur through a race between a NUMA fault and execve(): task_numa_fault() can lead to task_numa_compare(), which invokes task_weight() on the currently running task of a different CPU. Another way to fix this would be to make ->numa_faults RCU-managed or add extra locking, but it seems easier to wipe the NUMA fault statistics on execve. Signed-off-by: Jann Horn <jannh@google.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Petr Mladek <pmladek@suse.com> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will@kernel.org> Fixes: 82727018b0d3 ("sched/numa: Call task_numa_free() from do_execve()") Link: https://lkml.kernel.org/r/20190716152047.14424-1-jannh@google.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-07-16Merge tag 'for-linus-20190715' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linuxLinus Torvalds1-2/+15
Pull pidfd and clone3 fixes from Christian Brauner: "This contains a bugfix for CLONE_PIDFD when used with the legacy clone syscall, two fixes to ensure that syscall numbering and clone3 entrypoint implementations will stay consistent, and an update for the maintainers file: - The addition of clone3 broke CLONE_PIDFD for legacy clone on all architectures that use do_fork() directly instead of calling the clone syscall itself. (Fwiw, cleaning do_fork() up is on my todo.) The reason this happened was that during conversion of _do_fork() to use struct kernel_clone_args we missed that do_fork() is called directly by various architectures. This is fixed by making sure that the pidfd argument in struct kernel_clone_args is correctly initialized with the parent_tidptr argument passed down from do_fork(). Additionally, do_fork() missed a check to make CLONE_PIDFD and CLONE_PARENT_SETTID mutually exclusive just a clone() does. This is now fixed too. - When clone3() was introduced we skipped architectures that require special handling for fork-like syscalls. Their syscall tables did not contain any mention of clone3(). To make sure that Arnd's work to make syscall numbers on all architectures identical (minus alpha) was not for naught we are placing a comment in all syscall tables that do not yet implement clone3(). The comment makes it clear that 435 is reserved for clone3 and should not be used. - Also, this contains a patch to make the clone3() syscall definition in asm-generic/unist.h conditional on __ARCH_WANT_SYS_CLONE3. This lets us catch new architectures that implicitly make use of clone3 without setting __ARCH_WANT_SYS_CLONE3 which is a good indicator that they did not check whether it needs special treatment or not. - Finally, this contains a patch to add me as maintainer for pidfd stuff so people can start blaming me (more)" * tag 'for-linus-20190715' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux: MAINTAINERS: add new entry for pidfd api unistd: protect clone3 via __ARCH_WANT_SYS_CLONE3 arch: mark syscall number 435 reserved for clone3 clone: fix CLONE_PIDFD support
2019-07-14Merge tag 'for-linus-hmm' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdmaLinus Torvalds1-1/+0
Pull HMM updates from Jason Gunthorpe: "Improvements and bug fixes for the hmm interface in the kernel: - Improve clarity, locking and APIs related to the 'hmm mirror' feature merged last cycle. In linux-next we now see AMDGPU and nouveau to be using this API. - Remove old or transitional hmm APIs. These are hold overs from the past with no users, or APIs that existed only to manage cross tree conflicts. There are still a few more of these cleanups that didn't make the merge window cut off. - Improve some core mm APIs: - export alloc_pages_vma() for driver use - refactor into devm_request_free_mem_region() to manage DEVICE_PRIVATE resource reservations - refactor duplicative driver code into the core dev_pagemap struct - Remove hmm wrappers of improved core mm APIs, instead have drivers use the simplified API directly - Remove DEVICE_PUBLIC - Simplify the kconfig flow for the hmm users and core code" * tag 'for-linus-hmm' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma: (42 commits) mm: don't select MIGRATE_VMA_HELPER from HMM_MIRROR mm: remove the HMM config option mm: sort out the DEVICE_PRIVATE Kconfig mess mm: simplify ZONE_DEVICE page private data mm: remove hmm_devmem_add mm: remove hmm_vma_alloc_locked_page nouveau: use devm_memremap_pages directly nouveau: use alloc_page_vma directly PCI/P2PDMA: use the dev_pagemap internal refcount device-dax: use the dev_pagemap internal refcount memremap: provide an optional internal refcount in struct dev_pagemap memremap: replace the altmap_valid field with a PGMAP_ALTMAP_VALID flag memremap: remove the data field in struct dev_pagemap memremap: add a migrate_to_ram method to struct dev_pagemap_ops memremap: lift the devmap_enable manipulation into devm_memremap_pages memremap: pass a struct dev_pagemap to ->kill and ->cleanup memremap: move dev_pagemap callbacks into a separate structure memremap: validate the pagemap type passed to devm_memremap_pages mm: factor out a devm_request_free_mem_region helper mm: export alloc_pages_vma ...
2019-07-14clone: fix CLONE_PIDFD supportDmitry V. Levin1-2/+15
The introduction of clone3 syscall accidentally broke CLONE_PIDFD support in traditional clone syscall on compat x86 and those architectures that use do_fork to implement clone syscall. This bug was found by strace test suite. Link: https://strace.io/logs/strace/2019-07-12 Fixes: 7f192e3cd316 ("fork: add clone3") Bisected-and-tested-by: Anatoly Pugachev <matorola@gmail.com> Signed-off-by: Dmitry V. Levin <ldv@altlinux.org> Link: https://lore.kernel.org/r/20190714162047.GB10389@altlinux.org Signed-off-by: Christian Brauner <christian@brauner.io>
2019-07-11Merge tag 'clone3-v5.3' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linuxLinus Torvalds1-36/+155
Pull clone3 system call from Christian Brauner: "This adds the clone3 syscall which is an extensible successor to clone after we snagged the last flag with CLONE_PIDFD during the 5.2 merge window for clone(). It cleanly supports all of the flags from clone() and thus all legacy workloads. There are few user visible differences between clone3 and clone. First, CLONE_DETACHED will cause EINVAL with clone3 so we can reuse this flag. Second, the CSIGNAL flag is deprecated and will cause EINVAL to be reported. It is superseeded by a dedicated "exit_signal" argument in struct clone_args thus freeing up even more flags. And third, clone3 gives CLONE_PIDFD a dedicated return argument in struct clone_args instead of abusing CLONE_PARENT_SETTID's parent_tidptr argument. The clone3 uapi is designed to be easy to handle on 32- and 64 bit: /* uapi */ struct clone_args { __aligned_u64 flags; __aligned_u64 pidfd; __aligned_u64 child_tid; __aligned_u64 parent_tid; __aligned_u64 exit_signal; __aligned_u64 stack; __aligned_u64 stack_size; __aligned_u64 tls; }; and a separate kernel struct is used that uses proper kernel typing: /* kernel internal */ struct kernel_clone_args { u64 flags; int __user *pidfd; int __user *child_tid; int __user *parent_tid; int exit_signal; unsigned long stack; unsigned long stack_size; unsigned long tls; }; The system call comes with a size argument which enables the kernel to detect what version of clone_args userspace is passing in. clone3 validates that any additional bytes a given kernel does not know about are set to zero and that the size never exceeds a page. A nice feature is that this patchset allowed us to cleanup and simplify various core kernel codepaths in kernel/fork.c by making the internal _do_fork() function take struct kernel_clone_args even for legacy clone(). This patch also unblocks the time namespace patchset which wants to introduce a new CLONE_TIMENS flag. Note, that clone3 has only been wired up for x86{_32,64}, arm{64}, and xtensa. These were the architectures that did not require special massaging. Other architectures treat fork-like system calls individually and after some back and forth neither Arnd nor I felt confident that we dared to add clone3 unconditionally to all architectures. We agreed to leave this up to individual architecture maintainers. This is why there's an additional patch that introduces __ARCH_WANT_SYS_CLONE3 which any architecture can set once it has implemented support for clone3. The patch also adds a cond_syscall(clone3) for architectures such as nios2 or h8300 that generate their syscall table by simply including asm-generic/unistd.h. The hope is to get rid of __ARCH_WANT_SYS_CLONE3 and cond_syscall() rather soon" * tag 'clone3-v5.3' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux: arch: handle arches who do not yet define clone3 arch: wire-up clone3() syscall fork: add clone3
2019-07-10Merge tag 'pidfd-updates-v5.3' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linuxLinus Torvalds1-0/+26
Pull pidfd updates from Christian Brauner: "This adds two main features. - First, it adds polling support for pidfds. This allows process managers to know when a (non-parent) process dies in a race-free way. The notification mechanism used follows the same logic that is currently used when the parent of a task is notified of a child's death. With this patchset it is possible to put pidfds in an {e}poll loop and get reliable notifications for process (i.e. thread-group) exit. - The second feature compliments the first one by making it possible to retrieve pollable pidfds for processes that were not created using CLONE_PIDFD. A lot of processes get created with traditional PID-based calls such as fork() or clone() (without CLONE_PIDFD). For these processes a caller can currently not create a pollable pidfd. This is a problem for Android's low memory killer (LMK) and service managers such as systemd. Both patchsets are accompanied by selftests. It's perhaps worth noting that the work done so far and the work done in this branch for pidfd_open() and polling support do already see some adoption: - Android is in the process of backporting this work to all their LTS kernels [1] - Service managers make use of pidfd_send_signal but will need to wait until we enable waiting on pidfds for full adoption. - And projects I maintain make use of both pidfd_send_signal and CLONE_PIDFD [2] and will use polling support and pidfd_open() too" [1] https://android-review.googlesource.com/q/topic:%22pidfd+polling+support+4.9+backport%22 https://android-review.googlesource.com/q/topic:%22pidfd+polling+support+4.14+backport%22 https://android-review.googlesource.com/q/topic:%22pidfd+polling+support+4.19+backport%22 [2] https://github.com/lxc/lxc/blob/aab6e3eb73c343231cdde775db938994fc6f2803/src/lxc/start.c#L1753 * tag 'pidfd-updates-v5.3' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux: tests: add pidfd_open() tests arch: wire-up pidfd_open() pid: add pidfd_open() pidfd: add polling selftests pidfd: add polling support
2019-07-08Merge branch 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tipLinus Torvalds1-0/+2
Pull scheduler updates from Ingo Molnar: - Remove the unused per rq load array and all its infrastructure, by Dietmar Eggemann. - Add utilization clamping support by Patrick Bellasi. This is a refinement of the energy aware scheduling framework with support for boosting of interactive and capping of background workloads: to make sure critical GUI threads get maximum frequency ASAP, and to make sure background processing doesn't unnecessarily move to cpufreq governor to higher frequencies and less energy efficient CPU modes. - Add the bare minimum of tracepoints required for LISA EAS regression testing, by Qais Yousef - which allows automated testing of various power management features, including energy aware scheduling. - Restructure the former tsk_nr_cpus_allowed() facility that the -rt kernel used to modify the scheduler's CPU affinity logic such as migrate_disable() - introduce the task->cpus_ptr value instead of taking the address of &task->cpus_allowed directly - by Sebastian Andrzej Siewior. - Misc optimizations, fixes, cleanups and small enhancements - see the Git log for details. * 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (33 commits) sched/uclamp: Add uclamp support to energy_compute() sched/uclamp: Add uclamp_util_with() sched/cpufreq, sched/uclamp: Add clamps for FAIR and RT tasks sched/uclamp: Set default clamps for RT tasks sched/uclamp: Reset uclamp values on RESET_ON_FORK sched/uclamp: Extend sched_setattr() to support utilization clamping sched/core: Allow sched_setattr() to use the current policy sched/uclamp: Add system default clamps sched/uclamp: Enforce last task's UCLAMP_MAX sched/uclamp: Add bucket local max tracking sched/uclamp: Add CPU's clamp buckets refcounting sched/fair: Rename weighted_cpuload() to cpu_runnable_load() sched/debug: Export the newly added tracepoints sched/debug: Add sched_overutilized tracepoint sched/debug: Add new tracepoint to track PELT at se level sched/debug: Add new tracepoints to track PELT at rq level sched/debug: Add a new sched_trace_*() helper functions sched/autogroup: Make autogroup_path() always available sched/wait: Deduplicate code with do-while sched/topology: Remove unused 'sd' parameter from arch_scale_cpu_capacity() ...
2019-07-08Merge branch 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tipLinus Torvalds1-3/+0
Pull locking updates from Ingo Molnar: "The main changes in this cycle are: - rwsem scalability improvements, phase #2, by Waiman Long, which are rather impressive: "On a 2-socket 40-core 80-thread Skylake system with 40 reader and writer locking threads, the min/mean/max locking operations done in a 5-second testing window before the patchset were: 40 readers, Iterations Min/Mean/Max = 1,807/1,808/1,810 40 writers, Iterations Min/Mean/Max = 1,807/50,344/151,255 After the patchset, they became: 40 readers, Iterations Min/Mean/Max = 30,057/31,359/32,741 40 writers, Iterations Min/Mean/Max = 94,466/95,845/97,098" There's a lot of changes to the locking implementation that makes it similar to qrwlock, including owner handoff for more fair locking. Another microbenchmark shows how across the spectrum the improvements are: "With a locking microbenchmark running on 5.1 based kernel, the total locking rates (in kops/s) on a 2-socket Skylake system with equal numbers of readers and writers (mixed) before and after this patchset were: # of Threads Before Patch After Patch ------------ ------------ ----------- 2 2,618 4,193 4 1,202 3,726 8 802 3,622 16 729 3,359 32 319 2,826 64 102 2,744" The changes are extensive and the patch-set has been through several iterations addressing various locking workloads. There might be more regressions, but unless they are pathological I believe we want to use this new implementation as the baseline going forward. - jump-label optimizations by Daniel Bristot de Oliveira: the primary motivation was to remove IPI disturbance of isolated RT-workload CPUs, which resulted in the implementation of batched jump-label updates. Beyond the improvement of the real-time characteristics kernel, in one test this patchset improved static key update overhead from 57 msecs to just 1.4 msecs - which is a nice speedup as well. - atomic64_t cross-arch type cleanups by Mark Rutland: over the last ~10 years of atomic64_t existence the various types used by the APIs only had to be self-consistent within each architecture - which means they became wildly inconsistent across architectures. Mark puts and end to this by reworking all the atomic64 implementations to use 's64' as the base type for atomic64_t, and to ensure that this type is consistently used for parameters and return values in the API, avoiding further problems in this area. - A large set of small improvements to lockdep by Yuyang Du: type cleanups, output cleanups, function return type and othr cleanups all around the place. - A set of percpu ops cleanups and fixes by Peter Zijlstra. - Misc other changes - please see the Git log for more details" * 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (82 commits) locking/lockdep: increase size of counters for lockdep statistics locking/atomics: Use sed(1) instead of non-standard head(1) option locking/lockdep: Move mark_lock() inside CONFIG_TRACE_IRQFLAGS && CONFIG_PROVE_LOCKING x86/jump_label: Make tp_vec_nr static x86/percpu: Optimize raw_cpu_xchg() x86/percpu, sched/fair: Avoid local_clock() x86/percpu, x86/irq: Relax {set,get}_irq_regs() x86/percpu: Relax smp_processor_id() x86/percpu: Differentiate this_cpu_{}() and __this_cpu_{}() locking/rwsem: Guard against making count negative locking/rwsem: Adaptive disabling of reader optimistic spinning locking/rwsem: Enable time-based spinning on reader-owned rwsem locking/rwsem: Make rwsem->owner an atomic_long_t locking/rwsem: Enable readers spinning on writer locking/rwsem: Clarify usage of owner's nonspinaable bit locking/rwsem: Wake up almost all readers in wait queue locking/rwsem: More optimal RT task handling of null owner locking/rwsem: Always release wait_lock before waking up tasks locking/rwsem: Implement lock handoff to prevent lock starvation locking/rwsem: Make rwsem_spin_on_owner() return owner state ...
2019-07-08Merge branch 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tipLinus Torvalds1-1/+1
Pull timer updates from Thomas Gleixner: "The timer and timekeeping departement delivers: Core: - The consolidation of the VDSO code into a generic library including the conversion of x86 and ARM64. Conversion of ARM and MIPS are en route through the relevant maintainer trees and should end up in 5.4. This gets rid of the unnecessary different copies of the same code and brings all architectures on the same level of VDSO functionality. - Make the NTP user space interface more robust by restricting the TAI offset to prevent undefined behaviour. Includes a selftest. - Validate user input in the compat settimeofday() syscall to catch invalid values which would be turned into valid values by a multiplication overflow - Consolidate the time accessors - Small fixes, improvements and cleanups all over the place Drivers: - Support for the NXP system counter, TI davinci timer - Move the Microsoft HyperV clocksource/events code into the drivers/clocksource directory so it can be shared between x86 and ARM64. - Overhaul of the Tegra driver - Delay timer support for IXP4xx - Small fixes, improvements and cleanups as usual" * 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (71 commits) time: Validate user input in compat_settimeofday() timer: Document TIMER_PINNED clocksource/drivers: Continue making Hyper-V clocksource ISA agnostic clocksource/drivers: Make Hyper-V clocksource ISA agnostic MAINTAINERS: Fix Andy's surname and the directory entries of VDSO hrtimer: Use a bullet for the returns bullet list arm64: vdso: Fix compilation with clang older than 8 arm64: compat: Fix __arch_get_hw_counter() implementation arm64: Fix __arch_get_hw_counter() implementation lib/vdso: Make delta calculation work correctly MAINTAINERS: Add entry for the generic VDSO library arm64: compat: No need for pre-ARMv7 barriers on an ARMv8 system arm64: vdso: Remove unnecessary asm-offsets.c definitions vdso: Remove superfluous #ifdef __KERNEL__ in vdso/datapage.h clocksource/drivers/davinci: Add support for clocksource clocksource/drivers/davinci: Add support for clockevents clocksource/drivers/tegra: Set up maximum-ticks limit properly clocksource/drivers/tegra: Cycles can't be 0 clocksource/drivers/tegra: Restore base address before cleanup clocksource/drivers/tegra: Add verbose definition for 1MHz constant ...
2019-07-02Merge tag 'v5.2-rc7' into rdma.git hmmJason Gunthorpe1-41/+23
Required for dependencies in the next patches.
2019-07-01fork: return proper negative error codeChristian Brauner1-0/+1
Make sure to return a proper negative error code from copy_process() when anon_inode_getfile() fails with CLONE_PIDFD. Otherwise _do_fork() will not detect an error and get_task_pid() will operator on a nonsensical pointer: R10: 0000000000000000 R11: 0000000000000246 R12: 00000000006dbc2c R13: 00007ffc15fbb0ff R14: 00007ff07e47e9c0 R15: 0000000000000000 kasan: CONFIG_KASAN_INLINE enabled kasan: GPF could be caused by NULL-ptr deref or user memory access general protection fault: 0000 [#1] PREEMPT SMP KASAN CPU: 1 PID: 7990 Comm: syz-executor290 Not tainted 5.2.0-rc6+ #9 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 RIP: 0010:__read_once_size include/linux/compiler.h:194 [inline] RIP: 0010:get_task_pid+0xe1/0x210 kernel/pid.c:372 Code: 89 ff e8 62 27 5f 00 49 8b 07 44 89 f1 4c 8d bc c8 90 01 00 00 eb 0c e8 0d fe 25 00 49 81 c7 38 05 00 00 4c 89 f8 48 c1 e8 03 <80> 3c 18 00 74 08 4c 89 ff e8 31 27 5f 00 4d 8b 37 e8 f9 47 12 00 RSP: 0018:ffff88808a4a7d78 EFLAGS: 00010203 RAX: 00000000000000a7 RBX: dffffc0000000000 RCX: ffff888088180600 RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000000 RBP: ffff88808a4a7d90 R08: ffffffff814fb3a8 R09: ffffed1015d66bf8 R10: ffffed1015d66bf8 R11: 1ffff11015d66bf7 R12: 0000000000041ffc R13: 1ffff11011494fbc R14: 0000000000000000 R15: 000000000000053d FS: 00007ff07e47e700(0000) GS:ffff8880aeb00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00000000004b5100 CR3: 0000000094df2000 CR4: 00000000001406e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: _do_fork+0x1b9/0x5f0 kernel/fork.c:2360 __do_sys_clone kernel/fork.c:2454 [inline] __se_sys_clone kernel/fork.c:2448 [inline] __x64_sys_clone+0xc1/0xd0 kernel/fork.c:2448 do_syscall_64+0xfe/0x140 arch/x86/entry/common.c:301 entry_SYSCALL_64_after_hwframe+0x49/0xbe Link: https://lore.kernel.org/lkml/000000000000e0dc0d058c9e7142@google.com Reported-and-tested-by: syzbot+002e636502bc4b64eb5c@syzkaller.appspotmail.com Fixes: 6fd2fe494b17 ("copy_process(): don't use ksys_close() on cleanups") Cc: Jann Horn <jannh@google.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Christian Brauner <christian@brauner.io>
2019-06-29fork,memcg: alloc_thread_stack_node needs to set tsk->stackAndrea Arcangeli1-1/+5
Commit 5eed6f1dff87 ("fork,memcg: fix crash in free_thread_stack on memcg charge fail") corrected two instances, but there was a third instance of this bug. Without setting tsk->stack, if memcg_charge_kernel_stack fails, it'll execute free_thread_stack() on a dangling pointer. Enterprise kernels are compiled with VMAP_STACK=y so this isn't critical, but custom VMAP_STACK=n builds should have some performance advantage, with the drawback of risking to fail fork because compaction didn't succeed. So as long as VMAP_STACK=n is a supported option it's worth fixing it upstream. Link: http://lkml.kernel.org/r/20190619011450.28048-1-aarcange@redhat.com Fixes: 9b6f7e163cd0 ("mm: rework memcg kernel stack accounting") Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Reviewed-by: Rik van Riel <riel@surriel.com> Acked-by: Roman Gushchin <guro@fb.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-06-28pidfd: add polling supportJoel Fernandes (Google)1-0/+26
This patch adds polling support to pidfd. Android low memory killer (LMK) needs to know when a process dies once it is sent the kill signal. It does so by checking for the existence of /proc/pid which is both racy and slow. For example, if a PID is reused between when LMK sends a kill signal and checks for existence of the PID, since the wrong PID is now possibly checked for existence. Using the polling support, LMK will be able to get notified when a process exists in race-free and fast way, and allows the LMK to do other things (such as by polling on other fds) while awaiting the process being killed to die. For notification to polling processes, we follow the same existing mechanism in the kernel used when the parent of the task group is to be notified of a child's death (do_notify_parent). This is precisely when the tasks waiting on a poll of pidfd are also awakened in this patch. We have decided to include the waitqueue in struct pid for the following reasons: 1. The wait queue has to survive for the lifetime of the poll. Including it in task_struct would not be option in this case because the task can be reaped and destroyed before the poll returns. 2. By including the struct pid for the waitqueue means that during de_thread(), the new thread group leader automatically gets the new waitqueue/pid even though its task_struct is different. Appropriate test cases are added in the second patch to provide coverage of all the cases the patch is handling. Cc: Andy Lutomirski <luto@amacapital.net> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Daniel Colascione <dancol@google.com> Cc: Jann Horn <jannh@google.com> Cc: Tim Murray <timmurray@google.com> Cc: Jonathan Kowalski <bl0pbl33p@gmail.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Kees Cook <keescook@chromium.org> Cc: David Howells <dhowells@redhat.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: kernel-team@android.com Reviewed-by: Oleg Nesterov <oleg@redhat.com> Co-developed-by: Daniel Colascione <dancol@google.com> Signed-off-by: Daniel Colascione <dancol@google.com> Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org> Signed-off-by: Christian Brauner <christian@brauner.io>
2019-06-27copy_process(): don't use ksys_close() on cleanupsAl Viro1-28/+18
anon_inode_getfd() should be used *ONLY* in situations when we are guaranteed to be past the last failure point (including copying the descriptor number to userland, at that). And ksys_close() should not be used for cleanups at all. anon_inode_getfile() is there for all nontrivial cases like that. Just use that... Fixes: b3e583825266 ("clone: add CLONE_PIDFD") Signed-off-by: Al Viro <viro@zeniv.linux.org.uk> Reviewed-by: Jann Horn <jannh@google.com> Signed-off-by: Christian Brauner <christian@brauner.io>
2019-06-24fork: don't check parent_tidptr with CLONE_PIDFDDmitry V. Levin1-12/+0
Give userspace a cheap and reliable way to tell whether CLONE_PIDFD is supported by the kernel or not. The easiest way is to pass an invalid file descriptor value in parent_tidptr, perform the syscall and verify that parent_tidptr has been changed to a valid file descriptor value. CLONE_PIDFD uses parent_tidptr to return pidfds. CLONE_PARENT_SETTID will use parent_tidptr to return the tid of the parent. The two flags cannot be used together. Old kernels that only support CLONE_PARENT_SETTID will not verify the value pointed to by parent_tidptr. This behavior is unchanged even with the introduction of CLONE_PIDFD. However, if CLONE_PIDFD is specified the kernel will currently check the value pointed to by parent_tidptr before placing the pidfd in the memory pointed to. EINVAL will be returned if the value in parent_tidptr is not 0. If CLONE_PIDFD is supported and fd 0 is closed, then the returned pidfd can and likely will be 0 and parent_tidptr will be unchanged. This means userspace must either check CLONE_PIDFD support beforehand or check that fd 0 is not closed when invoking CLONE_PIDFD. The check for pidfd == 0 was introduced during the v5.2 merge window by commit b3e583825266 ("clone: add CLONE_PIDFD") to ensure that CLONE_PIDFD could be potentially extended by passing in flags through the return argument. However, that extension would look horrible, and with the upcoming introduction of the clone3 syscall in v5.3 there is no need to extend legacy clone syscall this way. (Even if it would need to be extended, CLONE_DETACHED can be reused with CLONE_PIDFD.) So remove the pidfd == 0 check. Userspace that needs to be portable to kernels without CLONE_PIDFD support can then be advised to initialize pidfd to -1 and check the pidfd value returned by CLONE_PIDFD. Fixes: b3e583825266 ("clone: add CLONE_PIDFD") Signed-off-by: Dmitry V. Levin <ldv@altlinux.org> Signed-off-by: Christian Brauner <christian@brauner.io>
2019-06-22timekeeping: Use proper clock specifier names in functionsJason A. Donenfeld1-1/+1
This makes boot uniformly boottime and tai uniformly clocktai, to address the remaining oversights. Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Arnd Bergmann <arnd@arndb.de> Link: https://lkml.kernel.org/r/20190621203249.3909-2-Jason@zx2c4.com
2019-06-21arch: handle arches who do not yet define clone3Christian Brauner1-0/+2
This cleanly handles arches who do not yet define clone3. clone3() was initially placed under __ARCH_WANT_SYS_CLONE under the assumption that this would cleanly handle all architectures. It does not. Architectures such as nios2 or h8300 simply take the asm-generic syscall definitions and generate their syscall table from it. Since they don't define __ARCH_WANT_SYS_CLONE the build would fail complaining about sys_clone3 missing. The reason this doesn't happen for legacy clone is that nios2 and h8300 provide assembly stubs for sys_clone. This seems to be done for architectural reasons. The build failures for nios2 and h8300 were caught int -next luckily. The solution is to define __ARCH_WANT_SYS_CLONE3 that architectures can add. Additionally, we need a cond_syscall(clone3) for architectures such as nios2 or h8300 that generate their syscall table in the way I explained above. Fixes: 8f3220a80654 ("arch: wire-up clone3() syscall") Signed-off-by: Christian Brauner <christian@brauner.io> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Kees Cook <keescook@chromium.org> Cc: David Howells <dhowells@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Adrian Reber <adrian@lisas.de> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Florian Weimer <fweimer@redhat.com> Cc: linux-api@vger.kernel.org Cc: linux-arch@vger.kernel.org Cc: x86@kernel.org
2019-06-10mm/hmm: Hold a mmgrab from hmm to mmJason Gunthorpe1-1/+0
So long as a struct hmm pointer exists, so should the struct mm it is linked too. Hold the mmgrab() as soon as a hmm is created, and mmdrop() it once the hmm refcount goes to zero. Since mmdrop() (ie a 0 kref on struct mm) is now impossible with a !NULL mm->hmm delete the hmm_hmm_destroy(). Signed-off-by: Jason Gunthorpe <jgg@mellanox.com> Reviewed-by: Jérôme Glisse <jglisse@redhat.com> Reviewed-by: John Hubbard <jhubbard@nvidia.com> Reviewed-by: Ralph Campbell <rcampbell@nvidia.com> Reviewed-by: Ira Weiny <ira.weiny@intel.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Tested-by: Philip Yang <Philip.Yang@amd.com>
2019-06-09fork: add clone3Christian Brauner1-48/+153
This adds the clone3 system call. As mentioned several times already (cf. [7], [8]) here's the promised patchset for clone3(). We recently merged the CLONE_PIDFD patchset (cf. [1]). It took the last free flag from clone(). Independent of the CLONE_PIDFD patchset a time namespace has been discussed at Linux Plumber Conference last year and has been sent out and reviewed (cf. [5]). It is expected that it will go upstream in the not too distant future. However, it relies on the addition of the CLONE_NEWTIME flag to clone(). The only other good candidate - CLONE_DETACHED - is currently not recyclable as we have identified at least two large or widely used codebases that currently pass this flag (cf. [2], [3], and [4]). Given that CLONE_PIDFD grabbed the last clone() flag the time namespace is effectively blocked. clone3() has the advantage that it will unblock this patchset again. In general, clone3() is extensible and allows for the implementation of new features. The idea is to keep clone3() very simple and close to the original clone(), specifically, to keep on supporting old clone()-based workloads. We know there have been various creative proposals how a new process creation syscall or even api is supposed to look like. Some people even going so far as to argue that the traditional fork()+exec() split should be abandoned in favor of an in-kernel version of spawn(). Independent of whether or not we personally think spawn() is a good idea this patchset has and does not want to have anything to do with this. One stance we take is that there's no real good alternative to clone()+exec() and we need and want to support this model going forward; independent of spawn(). The following requirements guided clone3(): - bump the number of available flags - move arguments that are currently passed as separate arguments in clone() into a dedicated struct clone_args - choose a struct layout that is easy to handle on 32 and on 64 bit - choose a struct layout that is extensible - give new flags that currently need to abuse another flag's dedicated return argument in clone() their own dedicated return argument (e.g. CLONE_PIDFD) - use a separate kernel internal struct kernel_clone_args that is properly typed according to current kernel conventions in fork.c and is different from the uapi struct clone_args - port _do_fork() to use kernel_clone_args so that all process creation syscalls such as fork(), vfork(), clone(), and clone3() behave identical (Arnd suggested, that we can probably also port do_fork() itself in a separate patchset.) - ease of transition for userspace from clone() to clone3() This very much means that we do *not* remove functionality that userspace currently relies on as the latter is a good way of creating a syscall that won't be adopted. - do not try to be clever or complex: keep clone3() as dumb as possible In accordance with Linus suggestions (cf. [11]), clone3() has the following signature: /* uapi */ struct clone_args { __aligned_u64 flags; __aligned_u64 pidfd; __aligned_u64 child_tid; __aligned_u64 parent_tid; __aligned_u64 exit_signal; __aligned_u64 stack; __aligned_u64 stack_size; __aligned_u64 tls; }; /* kernel internal */ struct kernel_clone_args { u64 flags; int __user *pidfd; int __user *child_tid; int __user *parent_tid; int exit_signal; unsigned long stack; unsigned long stack_size; unsigned long tls; }; long sys_clone3(struct clone_args __user *uargs, size_t size) clone3() cleanly supports all of the supported flags from clone() and thus all legacy workloads. The advantage of sticking close to the old clone() is the low cost for userspace to switch to this new api. Quite a lot of userspace apis (e.g. pthreads) are based on the clone() syscall. With the new clone3() syscall supporting all of the old workloads and opening up the ability to add new features should make switching to it for userspace more appealing. In essence, glibc can just write a simple wrapper to switch from clone() to clone3(). There has been some interest in this patchset already. We have received a patch from the CRIU corner for clone3() that would set the PID/TID of a restored process without /proc/sys/kernel/ns_last_pid to eliminate a race. /* User visible differences to legacy clone() */ - CLONE_DETACHED will cause EINVAL with clone3() - CSIGNAL is deprecated It is superseeded by a dedicated "exit_signal" argument in struct clone_args freeing up space for additional flags. This is based on a suggestion from Andrei and Linus (cf. [9] and [10]) /* References */ [1]: b3e5838252665ee4cfa76b82bdf1198dca81e5be [2]: https://dxr.mozilla.org/mozilla-central/source/security/sandbox/linux/SandboxFilter.cpp#343 [3]: https://git.musl-libc.org/cgit/musl/tree/src/thread/pthread_create.c#n233 [4]: https://sources.debian.org/src/blcr/0.8.5-2.3/cr_module/cr_dump_self.c/?hl=740#L740 [5]: https://lore.kernel.org/lkml/20190425161416.26600-1-dima@arista.com/ [6]: https://lore.kernel.org/lkml/20190425161416.26600-2-dima@arista.com/ [7]: https://lore.kernel.org/lkml/CAHrFyr5HxpGXA2YrKza-oB-GGwJCqwPfyhD-Y5wbktWZdt0sGQ@mail.gmail.com/ [8]: https://lore.kernel.org/lkml/20190524102756.qjsjxukuq2f4t6bo@brauner.io/ [9]: https://lore.kernel.org/lkml/20190529222414.GA6492@gmail.com/ [10]: https://lore.kernel.org/lkml/CAHk-=whQP-Ykxi=zSYaV9iXsHsENa+2fdj-zYKwyeyed63Lsfw@mail.gmail.com/ [11]: https://lore.kernel.org/lkml/CAHk-=wieuV4hGwznPsX-8E0G2FKhx3NjZ9X3dTKh5zKd+iqOBw@mail.gmail.com/ Suggested-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Christian Brauner <christian@brauner.io> Acked-by: Arnd Bergmann <arnd@arndb.de> Acked-by: Serge Hallyn <serge@hallyn.com> Cc: Kees Cook <keescook@chromium.org> Cc: Pavel Emelyanov <xemul@virtuozzo.com> Cc: Jann Horn <jannh@google.com> Cc: David Howells <dhowells@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Adrian Reber <adrian@lisas.de> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Andrei Vagin <avagin@gmail.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Florian Weimer <fweimer@redhat.com> Cc: linux-api@vger.kernel.org
2019-06-03locking/lockdep: Use lockdep_init_task for task initiation consistentlyYuyang Du1-3/+0
Despite that there is a lockdep_init_task() which does nothing, lockdep initiates tasks by assigning lockdep fields and does so inconsistently. Fix this by using lockdep_init_task(). Signed-off-by: Yuyang Du <duyuyang@gmail.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: bvanassche@acm.org Cc: frederic@kernel.org Cc: ming.lei@redhat.com Cc: will.deacon@arm.com Link: https://lkml.kernel.org/r/20190506081939.74287-8-duyuyang@gmail.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-06-03sched/core: Provide a pointer to the valid CPU maskSebastian Andrzej Siewior1-0/+2
In commit: 4b53a3412d66 ("sched/core: Remove the tsk_nr_cpus_allowed() wrapper") the tsk_nr_cpus_allowed() wrapper was removed. There was not much difference in !RT but in RT we used this to implement migrate_disable(). Within a migrate_disable() section the CPU mask is restricted to single CPU while the "normal" CPU mask remains untouched. As an alternative implementation Ingo suggested to use: struct task_struct { const cpumask_t *cpus_ptr; cpumask_t cpus_mask; }; with t->cpus_ptr = &t->cpus_mask; In -RT we then can switch the cpus_ptr to: t->cpus_ptr = &cpumask_of(task_cpu(p)); in a migration disabled region. The rules are simple: - Code that 'uses' ->cpus_allowed would use the pointer. - Code that 'modifies' ->cpus_allowed would use the direct mask. Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Link: https://lkml.kernel.org/r/20190423142636.14347-1-bigeasy@linutronix.de Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-06-01kernel/fork.c: make max_threads symbol staticKefeng Wang1-1/+1
Fix build warning, kernel/fork.c:125:5: warning: symbol 'max_threads' was not declared. Should it be static? Link: http://lkml.kernel.org/r/20190516015118.140561-1-wangkefeng.wang@huawei.com Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com> Reported-by: Hulk Robot <hulkci@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-21treewide: Add SPDX license identifier for missed filesThomas Gleixner1-0/+1
Add SPDX license identifiers to all files which: - Have no license information of any form - Have EXPORT_.*_SYMBOL_GPL inside which was used in the initial scan/conversion to ignore the file These files fall under the project license, GPL v2 only. The resulting SPDX license identifier is: GPL-2.0-only Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-14kernel/latencytop.c: rename clear_all_latency_tracing to clear_tsk_latency_tracingLin Feng1-1/+1
The name clear_all_latency_tracing is misleading, in fact which only clear per task's latency_record[], and we do have another function named clear_global_latency_tracing which clear the global latency_record[] buffer. Link: http://lkml.kernel.org/r/20190226114602.16902-1-linf@wangsu.com Signed-off-by: Lin Feng <linf@wangsu.com> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Fabian Frederick <fabf@skynet.be> Cc: Arjan van de Ven <arjan@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14userfaultfd: use RCU to free the task struct when fork failsAndrea Arcangeli1-2/+29
The task structure is freed while get_mem_cgroup_from_mm() holds rcu_read_lock() and dereferences mm->owner. get_mem_cgroup_from_mm() failing fork() ---- --- task = mm->owner mm->owner = NULL; free(task) if (task) *task; /* use after free */ The fix consists in freeing the task with RCU also in the fork failure case, exactly like it always happens for the regular exit(2) path. That is enough to make the rcu_read_lock hold in get_mem_cgroup_from_mm() (left side above) effective to avoid a use after free when dereferencing the task structure. An alternate possible fix would be to defer the delivery of the userfaultfd contexts to the monitor until after fork() is guaranteed to succeed. Such a change would require more changes because it would create a strict ordering dependency where the uffd methods would need to be called beyond the last potentially failing branch in order to be safe. This solution as opposed only adds the dependency to common code to set mm->owner to NULL and to free the task struct that was pointed by mm->owner with RCU, if fork ends up failing. The userfaultfd methods can still be called anywhere during the fork runtime and the monitor will keep discarding orphaned "mm" coming from failed forks in userland. This race condition couldn't trigger if CONFIG_MEMCG was set =n at build time. [aarcange@redhat.com: improve changelog, reduce #ifdefs per Michal] Link: http://lkml.kernel.org/r/20190429035752.4508-1-aarcange@redhat.com Link: http://lkml.kernel.org/r/20190325225636.11635-2-aarcange@redhat.com Fixes: 893e26e61d04 ("userfaultfd: non-cooperative: Add fork() event") Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Tested-by: zhong jiang <zhongjiang@huawei.com> Reported-by: syzbot+cbb52e396df3e565ab02@syzkaller.appspotmail.com Cc: Oleg Nesterov <oleg@redhat.com> Cc: Jann Horn <jannh@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Peter Xu <peterx@redhat.com> Cc: Jason Gunthorpe <jgg@mellanox.com> Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com> Cc: Michal Hocko <mhocko@suse.com> Cc: zhong jiang <zhongjiang@huawei.com> Cc: syzbot+cbb52e396df3e565ab02@syzkaller.appspotmail.com Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-10fork: do not release lock that wasn't takenChristian Brauner1-2/+3
Avoid calling cgroup_threadgroup_change_end() without having called cgroup_threadgroup_change_begin() first. During process creation we need to check whether the cgroup we are in allows us to fork. To perform this check the cgroup needs to guard itself against threadgroup changes and takes a lock. Prior to CLONE_PIDFD the cleanup target "bad_fork_free_pid" would also need to call cgroup_threadgroup_change_end() because said lock had already been taken. However, this is not the case anymore with the addition of CLONE_PIDFD. We are now allocating a pidfd before we check whether the cgroup we're in can fork and thus prior to taking the lock. So when copy_process() fails at the right step it would release a lock we haven't taken. This bug is not even very subtle to be honest. It's just not very clear from the naming of cgroup_threadgroup_change_{begin,end}() that a lock is taken. Here's the relevant splat: entry_SYSENTER_compat+0x70/0x7f arch/x86/entry/entry_64_compat.S:139 RIP: 0023:0xf7fec849 Code: 85 d2 74 02 89 0a 5b 5d c3 8b 04 24 c3 8b 14 24 c3 8b 3c 24 c3 90 90 90 90 90 90 90 90 90 90 90 90 51 52 55 89 e5 0f 34 cd 80 <5d> 5a 59 c3 90 90 90 90 eb 0d 90 90 90 90 90 90 90 90 90 90 90 90 RSP: 002b:00000000ffed5a8c EFLAGS: 00000246 ORIG_RAX: 0000000000000078 RAX: ffffffffffffffda RBX: 0000000000003ffc RCX: 0000000000000000 RDX: 00000000200005c0 RSI: 0000000000000000 RDI: 0000000000000000 RBP: 0000000000000012 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000000000 R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000 ------------[ cut here ]------------ DEBUG_LOCKS_WARN_ON(depth <= 0) WARNING: CPU: 1 PID: 7744 at kernel/locking/lockdep.c:4052 __lock_release kernel/locking/lockdep.c:4052 [inline] WARNING: CPU: 1 PID: 7744 at kernel/locking/lockdep.c:4052 lock_release+0x667/0xa00 kernel/locking/lockdep.c:4321 Kernel panic - not syncing: panic_on_warn set ... CPU: 1 PID: 7744 Comm: syz-executor007 Not tainted 5.1.0+ #4 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: __dump_stack lib/dump_stack.c:77 [inline] dump_stack+0x172/0x1f0 lib/dump_stack.c:113 panic+0x2cb/0x65c kernel/panic.c:214 __warn.cold+0x20/0x45 kernel/panic.c:566 report_bug+0x263/0x2b0 lib/bug.c:186 fixup_bug arch/x86/kernel/traps.c:179 [inline] fixup_bug arch/x86/kernel/traps.c:174 [inline] do_error_trap+0x11b/0x200 arch/x86/kernel/traps.c:272 do_invalid_op+0x37/0x50 arch/x86/kernel/traps.c:291 invalid_op+0x14/0x20 arch/x86/entry/entry_64.S:972 RIP: 0010:__lock_release kernel/locking/lockdep.c:4052 [inline] RIP: 0010:lock_release+0x667/0xa00 kernel/locking/lockdep.c:4321 Code: 0f 85 a0 03 00 00 8b 35 77 66 08 08 85 f6 75 23 48 c7 c6 a0 55 6b 87 48 c7 c7 40 25 6b 87 4c 89 85 70 ff ff ff e8 b7 a9 eb ff <0f> 0b 4c 8b 85 70 ff ff ff 4c 89 ea 4c 89 e6 4c 89 c7 e8 52 63 ff RSP: 0018:ffff888094117b48 EFLAGS: 00010086 RAX: 0000000000000000 RBX: 1ffff11012822f6f RCX: 0000000000000000 RDX: 0000000000000000 RSI: ffffffff815af236 RDI: ffffed1012822f5b RBP: ffff888094117c00 R08: ffff888092bfc400 R09: fffffbfff113301d R10: fffffbfff113301c R11: ffffffff889980e3 R12: ffffffff8a451df8 R13: ffffffff8142e71f R14: ffffffff8a44cc80 R15: ffff888094117bd8 percpu_up_read.constprop.0+0xcb/0x110 include/linux/percpu-rwsem.h:92 cgroup_threadgroup_change_end include/linux/cgroup-defs.h:712 [inline] copy_process.part.0+0x47ff/0x6710 kernel/fork.c:2222 copy_process kernel/fork.c:1772 [inline] _do_fork+0x25d/0xfd0 kernel/fork.c:2338 __do_compat_sys_x86_clone arch/x86/ia32/sys_ia32.c:240 [inline] __se_compat_sys_x86_clone arch/x86/ia32/sys_ia32.c:236 [inline] __ia32_compat_sys_x86_clone+0xbc/0x140 arch/x86/ia32/sys_ia32.c:236 do_syscall_32_irqs_on arch/x86/entry/common.c:334 [inline] do_fast_syscall_32+0x281/0xd54 arch/x86/entry/common.c:405 entry_SYSENTER_compat+0x70/0x7f arch/x86/entry/entry_64_compat.S:139 RIP: 0023:0xf7fec849 Code: 85 d2 74 02 89 0a 5b 5d c3 8b 04 24 c3 8b 14 24 c3 8b 3c 24 c3 90 90 90 90 90 90 90 90 90 90 90 90 51 52 55 89 e5 0f 34 cd 80 <5d> 5a 59 c3 90 90 90 90 eb 0d 90 90 90 90 90 90 90 90 90 90 90 90 RSP: 002b:00000000ffed5a8c EFLAGS: 00000246 ORIG_RAX: 0000000000000078 RAX: ffffffffffffffda RBX: 0000000000003ffc RCX: 0000000000000000 RDX: 00000000200005c0 RSI: 0000000000000000 RDI: 0000000000000000 RBP: 0000000000000012 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000000000 R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000 Kernel Offset: disabled Rebooting in 86400 seconds.. Reported-and-tested-by: syzbot+3286e58549edc479faae@syzkaller.appspotmail.com Fixes: b3e583825266 ("clone: add CLONE_PIDFD") Signed-off-by: Christian Brauner <christian@brauner.io>
2019-05-09Merge branch 'for-5.2' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroupLinus Torvalds1-0/+2
Pull cgroup updates from Tejun Heo: "This includes Roman's cgroup2 freezer implementation. It's a separate machanism from cgroup1 freezer. Instead of blocking user tasks in arbitrary uninterruptible sleeps, the new implementation extends jobctl stop - frozen tasks are trapped in jobctl stop until thawed and can be killed and ptraced. Lots of thanks to Oleg for sheperding the effort. Other than that, there are a few trivial changes" * 'for-5.2' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup: cgroup: never call do_group_exit() with task->frozen bit set kernel: cgroup: fix misuse of %x cgroup: get rid of cgroup_freezer_frozen_exit() cgroup: prevent spurious transition into non-frozen state cgroup: Remove unused cgrp variable cgroup: document cgroup v2 freezer interface cgroup: add tracing points for cgroup v2 freezer cgroup: make TRACE_CGROUP_PATH irq-safe kselftests: cgroup: add freezer controller self-tests kselftests: cgroup: don't fail on cg_kill_all() error in cg_destroy() cgroup: cgroup v2 freezer cgroup: protect cgroup->nr_(dying_)descendants by css_set_lock cgroup: implement __cgroup_task_count() helper cgroup: rename freezer.c into legacy_freezer.c cgroup: remove extra cgroup_migrate_finish() call
2019-05-07Merge tag 'pidfd-v5.2-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linuxLinus Torvalds1-4/+103
Pull pidfd updates from Christian Brauner: "This patchset makes it possible to retrieve pidfds at process creation time by introducing the new flag CLONE_PIDFD to the clone() system call. Linus originally suggested to implement this as a new flag to clone() instead of making it a separate system call. After a thorough review from Oleg CLONE_PIDFD returns pidfds in the parent_tidptr argument. This means we can give back the associated pid and the pidfd at the same time. Access to process metadata information thus becomes rather trivial. As has been agreed, CLONE_PIDFD creates file descriptors based on anonymous inodes similar to the new mount api. They are made unconditional by this patchset as they are now needed by core kernel code (vfs, pidfd) even more than they already were before (timerfd, signalfd, io_uring, epoll etc.). The core patchset is rather small. The bulky looking changelist is caused by David's very simple changes to Kconfig to make anon inodes unconditional. A pidfd comes with additional information in fdinfo if the kernel supports procfs. The fdinfo file contains the pid of the process in the callers pid namespace in the same format as the procfs status file, i.e. "Pid:\t%d". To remove worries about missing metadata access this patchset comes with a sample/test program that illustrates how a combination of CLONE_PIDFD and pidfd_send_signal() can be used to gain race-free access to process metadata through /proc/<pid>. Further work based on this patchset has been done by Joel. His work makes pidfds pollable. It finished too late for this merge window. I would prefer to have it sitting in linux-next for a while and send it for inclusion during the 5.3 merge window" * tag 'pidfd-v5.2-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux: samples: show race-free pidfd metadata access signal: support CLONE_PIDFD with pidfd_send_signal clone: add CLONE_PIDFD Make anon_inodes unconditional
2019-05-07clone: add CLONE_PIDFDChristian Brauner1-4/+103
This patchset makes it possible to retrieve pid file descriptors at process creation time by introducing the new flag CLONE_PIDFD to the clone() system call. Linus originally suggested to implement this as a new flag to clone() instead of making it a separate system call. As spotted by Linus, there is exactly one bit for clone() left. CLONE_PIDFD creates file descriptors based on the anonymous inode implementation in the kernel that will also be used to implement the new mount api. They serve as a simple opaque handle on pids. Logically, this makes it possible to interpret a pidfd differently, narrowing or widening the scope of various operations (e.g. signal sending). Thus, a pidfd cannot just refer to a tgid, but also a tid, or in theory - given appropriate flag arguments in relevant syscalls - a process group or session. A pidfd does not represent a privilege. This does not imply it cannot ever be that way but for now this is not the case. A pidfd comes with additional information in fdinfo if the kernel supports procfs. The fdinfo file contains the pid of the process in the callers pid namespace in the same format as the procfs status file, i.e. "Pid:\t%d". As suggested by Oleg, with CLONE_PIDFD the pidfd is returned in the parent_tidptr argument of clone. This has the advantage that we can give back the associated pid and the pidfd at the same time. To remove worries about missing metadata access this patchset comes with a sample program that illustrates how a combination of CLONE_PIDFD, and pidfd_send_signal() can be used to gain race-free access to process metadata through /proc/<pid>. The sample program can easily be translated into a helper that would be suitable for inclusion in libc so that users don't have to worry about writing it themselves. Suggested-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Christian Brauner <christian@brauner.io> Co-developed-by: Jann Horn <jannh@google.com> Signed-off-by: Jann Horn <jannh@google.com> Reviewed-by: Oleg Nesterov <oleg@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Kees Cook <keescook@chromium.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: David Howells <dhowells@redhat.com> Cc: "Michael Kerrisk (man-pages)" <mtk.manpages@gmail.com> Cc: Andy Lutomirsky <luto@kernel.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Aleksa Sarai <cyphar@cyphar.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Al Viro <viro@zeniv.linux.org.uk>
2019-04-30fork: Provide a function for copying init_mmNadav Amit1-6/+18
Provide a function for copying init_mm. This function will be later used for setting a temporary mm. Tested-by: Masami Hiramatsu <mhiramat@kernel.org> Signed-off-by: Nadav Amit <namit@vmware.com> Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Masami Hiramatsu <mhiramat@kernel.org> Cc: <akpm@linux-foundation.org> Cc: <ard.biesheuvel@linaro.org> Cc: <deneen.t.dock@intel.com> Cc: <kernel-hardening@lists.openwall.com> Cc: <kristen@linux.intel.com> Cc: <linux_dti@icloud.com> Cc: <will.deacon@arm.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@intel.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Kees Cook <keescook@chromium.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Rik van Riel <riel@surriel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/20190426001143.4983-6-namit@vmware.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-04-30uprobes: Initialize uprobes earlierNadav Amit1-0/+1
In order to have a separate address space for text poking, we need to duplicate init_mm early during start_kernel(). This, however, introduces a problem since uprobes functions are called from dup_mmap(), but uprobes is still not initialized in this early stage. Since uprobes initialization is necassary for fork, and since all the dependant initialization has been done when fork is initialized (percpu and vmalloc), move uprobes initialization to fork_init(). It does not seem uprobes introduces any security problem for the poking_mm. Crash and burn if uprobes initialization fails, similarly to other early initializations. Change the init_probes() name to probes_init() to match other early initialization functions name convention. Reported-by: kernel test robot <lkp@intel.com> Signed-off-by: Nadav Amit <namit@vmware.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Rick Edgecombe <rick.p.edgecombe@intel.com> Cc: Rik van Riel <riel@surriel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: akpm@linux-foundation.org Cc: ard.biesheuvel@linaro.org Cc: deneen.t.dock@intel.com Cc: kernel-hardening@lists.openwall.com Cc: kristen@linux.intel.com Cc: linux_dti@icloud.com Cc: will.deacon@arm.com Link: https://lkml.kernel.org/r/20190426232303.28381-6-nadav.amit@gmail.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-04-19cgroup: cgroup v2 freezerRoman Gushchin1-0/+2
Cgroup v1 implements the freezer controller, which provides an ability to stop the workload in a cgroup and temporarily free up some resources (cpu, io, network bandwidth and, potentially, memory) for some other tasks. Cgroup v2 lacks this functionality. This patch implements freezer for cgroup v2. Cgroup v2 freezer tries to put tasks into a state similar to jobctl stop. This means that tasks can be killed, ptraced (using PTRACE_SEIZE*), and interrupted. It is possible to attach to a frozen task, get some information (e.g. read registers) and detach. It's also possible to migrate a frozen tasks to another cgroup. This differs cgroup v2 freezer from cgroup v1 freezer, which mostly tried to imitate the system-wide freezer. However uninterruptible sleep is fine when all tasks are going to be frozen (hibernation case), it's not the acceptable state for some subset of the system. Cgroup v2 freezer is not supporting freezing kthreads. If a non-root cgroup contains kthread, the cgroup still can be frozen, but the kthread will remain running, the cgroup will be shown as non-frozen, and the notification will not be delivered. * PTRACE_ATTACH is not working because non-fatal signal delivery is blocked in frozen state. There are some interface differences between cgroup v1 and cgroup v2 freezer too, which are required to conform the cgroup v2 interface design principles: 1) There is no separate controller, which has to be turned on: the functionality is always available and is represented by cgroup.freeze and cgroup.events cgroup control files. 2) The desired state is defined by the cgroup.freeze control file. Any hierarchical configuration is allowed. 3) The interface is asynchronous. The actual state is available using cgroup.events control file ("frozen" field). There are no dedicated transitional states. 4) It's allowed to make any changes with the cgroup hierarchy (create new cgroups, remove old cgroups, move tasks between cgroups) no matter if some cgroups are frozen. Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Tejun Heo <tj@kernel.org> No-objection-from-me-by: Oleg Nesterov <oleg@redhat.com> Cc: kernel-team@fb.com
2019-03-09Merge tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdmaLinus Torvalds1-1/+1
Pull rdma updates from Jason Gunthorpe: "This has been a slightly more active cycle than normal with ongoing core changes and quite a lot of collected driver updates. - Various driver fixes for bnxt_re, cxgb4, hns, mlx5, pvrdma, rxe - A new data transfer mode for HFI1 giving higher performance - Significant functional and bug fix update to the mlx5 On-Demand-Paging MR feature - A chip hang reset recovery system for hns - Change mm->pinned_vm to an atomic64 - Update bnxt_re to support a new 57500 chip - A sane netlink 'rdma link add' method for creating rxe devices and fixing the various unregistration race conditions in rxe's unregister flow - Allow lookup up objects by an ID over netlink - Various reworking of the core to driver interface: - drivers should not assume umem SGLs are in PAGE_SIZE chunks - ucontext is accessed via udata not other means - start to make the core code responsible for object memory allocation - drivers should convert struct device to struct ib_device via a helper - drivers have more tools to avoid use after unregister problems" * tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma: (280 commits) net/mlx5: ODP support for XRC transport is not enabled by default in FW IB/hfi1: Close race condition on user context disable and close RDMA/umem: Revert broken 'off by one' fix RDMA/umem: minor bug fix in error handling path RDMA/hns: Use GFP_ATOMIC in hns_roce_v2_modify_qp cxgb4: kfree mhp after the debug print IB/rdmavt: Fix concurrency panics in QP post_send and modify to error IB/rdmavt: Fix loopback send with invalidate ordering IB/iser: Fix dma_nents type definition IB/mlx5: Set correct write permissions for implicit ODP MR bnxt_re: Clean cq for kernel consumers only RDMA/uverbs: Don't do double free of allocated PD RDMA: Handle ucontext allocations by IB/core RDMA/core: Fix a WARN() message bnxt_re: fix the regression due to changes in alloc_pbl IB/mlx4: Increase the timeout for CM cache IB/core: Abort page fault handler silently during owning process exit IB/mlx5: Validate correct PD before prefetch MR IB/mlx5: Protect against prefetch of invalid MR RDMA/uverbs: Store PR pointer before it is overwritten ...
2019-03-07kernel/fork.c: remove duplicated includeYueHaibing1-1/+0
Remove duplicated include. Link: http://lkml.kernel.org/r/20181209062952.17736-1-yuehaibing@huawei.com Signed-off-by: YueHaibing <yuehaibing@huawei.com> Reviewed-by: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-02-07mm: make mm->pinned_vm an atomic64 counterDavidlohr Bueso1-1/+1
Taking a sleeping lock to _only_ increment a variable is quite the overkill, and pretty much all users do this. Furthermore, some drivers (ie: infiniband and scif) that need pinned semantics can go to quite some trouble to actually delay via workqueue (un)accounting for pinned pages when not possible to acquire it. By making the counter atomic we no longer need to hold the mmap_sem and can simply some code around it for pinned_vm users. The counter is 64-bit such that we need not worry about overflows such as rdma user input controlled from userspace. Reviewed-by: Ira Weiny <ira.weiny@intel.com> Reviewed-by: Christoph Lameter <cl@linux.com> Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com> Reviewed-by: Jan Kara <jack@suse.cz> Signed-off-by: Davidlohr Bueso <dbueso@suse.de> Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-02-04sched/core: Convert task_struct.stack_refcount to refcount_tElena Reshetova1-3/+3
atomic_t variables are currently used to implement reference counters with the following properties: - counter is initialized to 1 using atomic_set() - a resource is freed upon counter reaching zero - once counter reaches zero, its further increments aren't allowed - counter schema uses basic atomic operations (set, inc, inc_not_zero, dec_and_test, etc.) Such atomic variables should be converted to a newly provided refcount_t type and API that prevents accidental counter overflows and underflows. This is important since overflows and underflows can lead to use-after-free situation and be exploitable. The variable task_struct.stack_refcount is used as pure reference counter. Convert it to refcount_t and fix up the operations. ** Important note for maintainers: Some functions from refcount_t API defined in lib/refcount.c have different memory ordering guarantees than their atomic counterparts. The full comparison can be seen in https://lkml.org/lkml/2017/11/15/57 and it is hopefully soon in state to be merged to the documentation tree. Normally the differences should not matter since refcount_t provides enough guarantees to satisfy the refcounting use cases, but in some rare cases it might matter. Please double check that you don't have some undocumented memory guarantees for this variable usage. For the task_struct.stack_refcount it might make a difference in following places: - try_get_task_stack(): increment in refcount_inc_not_zero() only guarantees control dependency on success vs. fully ordered atomic counterpart - put_task_stack(): decrement in refcount_dec_and_test() only provides RELEASE ordering and control dependency on success vs. fully ordered atomic counterpart Suggested-by: Kees Cook <keescook@chromium.org> Signed-off-by: Elena Reshetova <elena.reshetova@intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: David Windsor <dwindsor@gmail.com> Reviewed-by: Hans Liljestrand <ishkamiel@gmail.com> Reviewed-by: Andrea Parri <andrea.parri@amarulasolutions.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: akpm@linux-foundation.org Cc: viro@zeniv.linux.org.uk Link: https://lkml.kernel.org/r/1547814450-18902-6-git-send-email-elena.reshetova@intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-02-04sched/core: Convert task_struct.usage to refcount_tElena Reshetova1-2/+2
atomic_t variables are currently used to implement reference counters with the following properties: - counter is initialized to 1 using atomic_set() - a resource is freed upon counter reaching zero - once counter reaches zero, its further increments aren't allowed - counter schema uses basic atomic operations (set, inc, inc_not_zero, dec_and_test, etc.) Such atomic variables should be converted to a newly provided refcount_t type and API that prevents accidental counter overflows and underflows. This is important since overflows and underflows can lead to use-after-free situation and be exploitable. The variable task_struct.usage is used as pure reference counter. Convert it to refcount_t and fix up the operations. ** Important note for maintainers: Some functions from refcount_t API defined in lib/refcount.c have different memory ordering guarantees than their atomic counterparts. The full comparison can be seen in https://lkml.org/lkml/2017/11/15/57 and it is hopefully soon in state to be merged to the documentation tree. Normally the differences should not matter since refcount_t provides enough guarantees to satisfy the refcounting use cases, but in some rare cases it might matter. Please double check that you don't have some undocumented memory guarantees for this variable usage. For the task_struct.usage it might make a difference in following places: - put_task_struct(): decrement in refcount_dec_and_test() only provides RELEASE ordering and control dependency on success vs. fully ordered atomic counterpart Suggested-by: Kees Cook <keescook@chromium.org> Signed-off-by: Elena Reshetova <elena.reshetova@intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: David Windsor <dwindsor@gmail.com> Reviewed-by: Hans Liljestrand <ishkamiel@gmail.com> Reviewed-by: Andrea Parri <andrea.parri@amarulasolutions.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: akpm@linux-foundation.org Cc: viro@zeniv.linux.org.uk Link: https://lkml.kernel.org/r/1547814450-18902-5-git-send-email-elena.reshetova@intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-02-04sched/core: Convert signal_struct.sigcnt to refcount_tElena Reshetova1-3/+3
atomic_t variables are currently used to implement reference counters with the following properties: - counter is initialized to 1 using atomic_set() - a resource is freed upon counter reaching zero - once counter reaches zero, its further increments aren't allowed - counter schema uses basic atomic operations (set, inc, inc_not_zero, dec_and_test, etc.) Such atomic variables should be converted to a newly provided refcount_t type and API that prevents accidental counter overflows and underflows. This is important since overflows and underflows can lead to use-after-free situation and be exploitable. The variable signal_struct.sigcnt is used as pure reference counter. Convert it to refcount_t and fix up the operations. ** Important note for maintainers: Some functions from refcount_t API defined in lib/refcount.c have different memory ordering guarantees than their atomic counterparts. The full comparison can be seen in https://lkml.org/lkml/2017/11/15/57 and it is hopefully soon in state to be merged to the documentation tree. Normally the differences should not matter since refcount_t provides enough guarantees to satisfy the refcounting use cases, but in some rare cases it might matter. Please double check that you don't have some undocumented memory guarantees for this variable usage. For the signal_struct.sigcnt it might make a difference in following places: - put_signal_struct(): decrement in refcount_dec_and_test() only provides RELEASE ordering and control dependency on success vs. fully ordered atomic counterpart Suggested-by: Kees Cook <keescook@chromium.org> Signed-off-by: Elena Reshetova <elena.reshetova@intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: David Windsor <dwindsor@gmail.com> Reviewed-by: Hans Liljestrand <ishkamiel@gmail.com> Reviewed-by: Andrea Parri <andrea.parri@amarulasolutions.com> Reviewed-by: Oleg Nesterov <oleg@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: akpm@linux-foundation.org Cc: viro@zeniv.linux.org.uk Link: https://lkml.kernel.org/r/1547814450-18902-3-git-send-email-elena.reshetova@intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-02-04sched/core: Convert sighand_struct.count to refcount_tElena Reshetova1-4/+4
atomic_t variables are currently used to implement reference counters with the following properties: - counter is initialized to 1 using atomic_set() - a resource is freed upon counter reaching zero - once counter reaches zero, its further increments aren't allowed - counter schema uses basic atomic operations (set, inc, inc_not_zero, dec_and_test, etc.) Such atomic variables should be converted to a newly provided refcount_t type and API that prevents accidental counter overflows and underflows. This is important since overflows and underflows can lead to use-after-free situation and be exploitable. The variable sighand_struct.count is used as pure reference counter. Convert it to refcount_t and fix up the operations. ** Important note for maintainers: Some functions from refcount_t API defined in lib/refcount.c have different memory ordering guarantees than their atomic counterparts. The full comparison can be seen in https://lkml.org/lkml/2017/11/15/57 and it is hopefully soon in state to be merged to the documentation tree. Normally the differences should not matter since refcount_t provides enough guarantees to satisfy the refcounting use cases, but in some rare cases it might matter. Please double check that you don't have some undocumented memory guarantees for this variable usage. For the sighand_struct.count it might make a difference in following places: - __cleanup_sighand: decrement in refcount_dec_and_test() only provides RELEASE ordering and control dependency on success vs. fully ordered atomic counterpart Suggested-by: Kees Cook <keescook@chromium.org> Signed-off-by: Elena Reshetova <elena.reshetova@intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: David Windsor <dwindsor@gmail.com> Reviewed-by: Hans Liljestrand <ishkamiel@gmail.com> Reviewed-by: Andrea Parri <andrea.parri@amarulasolutions.com> Reviewed-by: Oleg Nesterov <oleg@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: akpm@linux-foundation.org Cc: viro@zeniv.linux.org.uk Link: https://lkml.kernel.org/r/1547814450-18902-2-git-send-email-elena.reshetova@intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-01-08Merge branch 'akpm' (patches from Andrew)Linus Torvalds1-0/+1
Merge misc fixes from Andrew Morton: "14 fixes" * emailed patches from Andrew Morton <akpm@linux-foundation.org>: mm, page_alloc: do not wake kswapd with zone lock held hugetlbfs: revert "use i_mmap_rwsem for more pmd sharing synchronization" hugetlbfs: revert "Use i_mmap_rwsem to fix page fault/truncate race" mm: page_mapped: don't assume compound page is huge or THP mm/memory.c: initialise mmu_notifier_range correctly tools/vm/page_owner: use page_owner_sort in the use example kasan: fix krealloc handling for tag-based mode kasan: make tag based mode work with CONFIG_HARDENED_USERCOPY kasan, arm64: use ARCH_SLAB_MINALIGN instead of manual aligning mm, memcg: fix reclaim deadlock with writeback mm/usercopy.c: no check page span for stack objects slab: alien caches must not be initialized if the allocation of the alien cache failed fork, memcg: fix cached_stacks case zram: idle writeback fixes and cleanup
2019-01-08fork, memcg: fix cached_stacks caseShakeel Butt1-0/+1
Commit 5eed6f1dff87 ("fork,memcg: fix crash in free_thread_stack on memcg charge fail") fixes a crash caused due to failed memcg charge of the kernel stack. However the fix misses the cached_stacks case which this patch fixes. So, the same crash can happen if the memcg charge of a cached stack is failed. Link: http://lkml.kernel.org/r/20190102180145.57406-1-shakeelb@google.com Fixes: 5eed6f1dff87 ("fork,memcg: fix crash in free_thread_stack on memcg charge fail") Signed-off-by: Shakeel Butt <shakeelb@google.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Rik van Riel <riel@surriel.com> Cc: Rik van Riel <riel@surriel.com> Cc: Roman Gushchin <guro@fb.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Tejun Heo <tj@kernel.org> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-01-08fork: record start_time lateDavid Herrmann1-2/+11
This changes the fork(2) syscall to record the process start_time after initializing the basic task structure but still before making the new process visible to user-space. Technically, we could record the start_time anytime during fork(2). But this might lead to scenarios where a start_time is recorded long before a process becomes visible to user-space. For instance, with userfaultfd(2) and TLS, user-space can delay the execution of fork(2) for an indefinite amount of time (and will, if this causes network access, or similar). By recording the start_time late, it much closer reflects the point in time where the process becomes live and can be observed by other processes. Lastly, this makes it much harder for user-space to predict and control the start_time they get assigned. Previously, user-space could fork a process and stall it in copy_thread_tls() before its pid is allocated, but after its start_time is recorded. This can be misused to later-on cycle through PIDs and resume the stalled fork(2) yielding a process that has the same pid and start_time as a process that existed before. This can be used to circumvent security systems that identify processes by their pid+start_time combination. Even though user-space was always aware that start_time recording is flaky (but several projects are known to still rely on start_time-based identification), changing the start_time to be recorded late will help mitigate existing attacks and make it much harder for user-space to control the start_time a process gets assigned. Reported-by: Jann Horn <jannh@google.com> Signed-off-by: Tom Gundersen <teg@jklm.no> Signed-off-by: David Herrmann <dh.herrmann@gmail.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-01-04fork: fix some -Wmissing-prototypes warningsYi Wang1-5/+0
We get a warning when building kernel with W=1: kernel/fork.c:167:13: warning: no previous prototype for `arch_release_thread_stack' [-Wmissing-prototypes] kernel/fork.c:779:13: warning: no previous prototype for `fork_init' [-Wmissing-prototypes] Add the missing declaration in head file to fix this. Also, remove arch_release_thread_stack() completely because no arch seems to implement it since bb9d81264 (arch: remove tile port). Link: http://lkml.kernel.org/r/1542170087-23645-1-git-send-email-wang.yi59@zte.com.cn Signed-off-by: Yi Wang <wang.yi59@zte.com.cn> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Mike Rapoport <rppt@linux.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-28kernel/fork.c: mark 'stack_vm_area' with __maybe_unusedYueHaibing1-1/+1
Fixes gcc '-Wunused-but-set-variable' warning when CONFIG_VMAP_STACK is not set: kernel/fork.c: In function 'dup_task_struct': kernel/fork.c:843:20: warning: variable 'stack_vm_area' set but not used [-Wunused-but-set-variable] Link: http://lkml.kernel.org/r/1545965190-2381-1-git-send-email-yuehaibing@huawei.com Signed-off-by: YueHaibing <yuehaibing@huawei.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-28mm: convert totalram_pages and totalhigh_pages variables to atomicArun KS1-1/+1
totalram_pages and totalhigh_pages are made static inline function. Main motivation was that managed_page_count_lock handling was complicating things. It was discussed in length here, https://lore.kernel.org/patchwork/patch/995739/#1181785 So it seemes better to remove the lock and convert variables to atomic, with preventing poteintial store-to-read tearing as a bonus. [akpm@linux-foundation.org: coding style fixes] Link: http://lkml.kernel.org/r/1542090790-21750-4-git-send-email-arunks@codeaurora.org Signed-off-by: Arun KS <arunks@codeaurora.org> Suggested-by: Michal Hocko <mhocko@suse.com> Suggested-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru> Reviewed-by: Pavel Tatashin <pasha.tatashin@soleen.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: David Hildenbrand <david@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-28mm: reference totalram_pages and managed_pages once per functionArun KS1-2/+3
Patch series "mm: convert totalram_pages, totalhigh_pages and managed pages to atomic", v5. This series converts totalram_pages, totalhigh_pages and zone->managed_pages to atomic variables. totalram_pages, zone->managed_pages and totalhigh_pages updates are protected by managed_page_count_lock, but readers never care about it. Convert these variables to atomic to avoid readers potentially seeing a store tear. Main motivation was that managed_page_count_lock handling was complicating things. It was discussed in length here, https://lore.kernel.org/patchwork/patch/995739/#1181785 It seemes better to remove the lock and convert variables to atomic. With the change, preventing poteintial store-to-read tearing comes as a bonus. This patch (of 4): This is in preparation to a later patch which converts totalram_pages and zone->managed_pages to atomic variables. Please note that re-reading the value might lead to a different value and as such it could lead to unexpected behavior. There are no known bugs as a result of the current code but it is better to prevent from them in principle. Link: http://lkml.kernel.org/r/1542090790-21750-2-git-send-email-arunks@codeaurora.org Signed-off-by: Arun KS <arunks@codeaurora.org> Reviewed-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru> Reviewed-by: David Hildenbrand <david@redhat.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Pavel Tatashin <pasha.tatashin@soleen.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-21fork,memcg: fix crash in free_thread_stack on memcg charge failRik van Riel1-2/+7
Commit 9b6f7e163cd0 ("mm: rework memcg kernel stack accounting") will result in fork failing if allocating a kernel stack for a task in dup_task_struct exceeds the kernel memory allowance for that cgroup. Unfortunately, it also results in a crash. This is due to the code jumping to free_stack and calling free_thread_stack when the memcg kernel stack charge fails, but without tsk->stack pointing at the freshly allocated stack. This in turn results in the vfree_atomic in free_thread_stack oopsing with a backtrace like this: #5 [ffffc900244efc88] die at ffffffff8101f0ab #6 [ffffc900244efcb8] do_general_protection at ffffffff8101cb86 #7 [ffffc900244efce0] general_protection at ffffffff818ff082 [exception RIP: llist_add_batch+7] RIP: ffffffff8150d487 RSP: ffffc900244efd98 RFLAGS: 00010282 RAX: 0000000000000000 RBX: ffff88085ef55980 RCX: 0000000000000000 RDX: ffff88085ef55980 RSI: 343834343531203a RDI: 343834343531203a RBP: ffffc900244efd98 R8: 0000000000000001 R9: ffff8808578c3600 R10: 0000000000000000 R11: 0000000000000001 R12: ffff88029f6c21c0 R13: 0000000000000286 R14: ffff880147759b00 R15: 0000000000000000 ORIG_RAX: ffffffffffffffff CS: 0010 SS: 0018 #8 [ffffc900244efda0] vfree_atomic at ffffffff811df2c7 #9 [ffffc900244efdb8] copy_process at ffffffff81086e37 #10 [ffffc900244efe98] _do_fork at ffffffff810884e0 #11 [ffffc900244eff10] sys_vfork at ffffffff810887ff #12 [ffffc900244eff20] do_syscall_64 at ffffffff81002a43 RIP: 000000000049b948 RSP: 00007ffcdb307830 RFLAGS: 00000246 RAX: ffffffffffffffda RBX: 0000000000896030 RCX: 000000000049b948 RDX: 0000000000000000 RSI: 00007ffcdb307790 RDI: 00000000005d7421 RBP: 000000000067370f R8: 00007ffcdb3077b0 R9: 000000000001ed00 R10: 0000000000000008 R11: 0000000000000246 R12: 0000000000000040 R13: 000000000000000f R14: 0000000000000000 R15: 000000000088d018 ORIG_RAX: 000000000000003a CS: 0033 SS: 002b The simplest fix is to assign tsk->stack right where it is allocated. Link: http://lkml.kernel.org/r/20181214231726.7ee4843c@imladris.surriel.com Fixes: 9b6f7e163cd0 ("mm: rework memcg kernel stack accounting") Signed-off-by: Rik van Riel <riel@surriel.com> Acked-by: Roman Gushchin <guro@fb.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Tejun Heo <tj@kernel.org> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-11-01Merge tag 'stackleak-v4.20-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linuxLinus Torvalds1-0/+3
Pull stackleak gcc plugin from Kees Cook: "Please pull this new GCC plugin, stackleak, for v4.20-rc1. This plugin was ported from grsecurity by Alexander Popov. It provides efficient stack content poisoning at syscall exit. This creates a defense against at least two classes of flaws: - Uninitialized stack usage. (We continue to work on improving the compiler to do this in other ways: e.g. unconditional zero init was proposed to GCC and Clang, and more plugin work has started too). - Stack content exposure. By greatly reducing the lifetime of valid stack contents, exposures via either direct read bugs or unknown cache side-channels become much more difficult to exploit. This complements the existing buddy and heap poisoning options, but provides the coverage for stacks. The x86 hooks are included in this series (which have been reviewed by Ingo, Dave Hansen, and Thomas Gleixner). The arm64 hooks have already been merged through the arm64 tree (written by Laura Abbott and reviewed by Mark Rutland and Will Deacon). With VLAs having been removed this release, there is no need for alloca() protection, so it has been removed from the plugin" * tag 'stackleak-v4.20-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux: arm64: Drop unneeded stackleak_check_alloca() stackleak: Allow runtime disabling of kernel stack erasing doc: self-protection: Add information about STACKLEAK feature fs/proc: Show STACKLEAK metrics in the /proc file system lkdtm: Add a test for STACKLEAK gcc-plugins: Add STACKLEAK plugin for tracking the kernel stack x86/entry: Add STACKLEAK erasing the kernel stack at the end of syscalls
2018-10-26psi: pressure stall information for CPU, memory, and IOJohannes Weiner1-0/+4
When systems are overcommitted and resources become contended, it's hard to tell exactly the impact this has on workload productivity, or how close the system is to lockups and OOM kills. In particular, when machines work multiple jobs concurrently, the impact of overcommit in terms of latency and throughput on the individual job can be enormous. In order to maximize hardware utilization without sacrificing individual job health or risk complete machine lockups, this patch implements a way to quantify resource pressure in the system. A kernel built with CONFIG_PSI=y creates files in /proc/pressure/ that expose the percentage of time the system is stalled on CPU, memory, or IO, respectively. Stall states are aggregate versions of the per-task delay accounting delays: cpu: some tasks are runnable but not executing on a CPU memory: tasks are reclaiming, or waiting for swapin or thrashing cache io: tasks are waiting for io completions These percentages of walltime can be thought of as pressure percentages, and they give a general sense of system health and productivity loss incurred by resource overcommit. They can also indicate when the system is approaching lockup scenarios and OOMs. To do this, psi keeps track of the task states associated with each CPU and samples the time they spend in stall states. Every 2 seconds, the samples are averaged across CPUs - weighted by the CPUs' non-idle time to eliminate artifacts from unused CPUs - and translated into percentages of walltime. A running average of those percentages is maintained over 10s, 1m, and 5m periods (similar to the loadaverage). [hannes@cmpxchg.org: doc fixlet, per Randy] Link: http://lkml.kernel.org/r/20180828205625.GA14030@cmpxchg.org [hannes@cmpxchg.org: code optimization] Link: http://lkml.kernel.org/r/20180907175015.GA8479@cmpxchg.org [hannes@cmpxchg.org: rename psi_clock() to psi_update_work(), per Peter] Link: http://lkml.kernel.org/r/20180907145404.GB11088@cmpxchg.org [hannes@cmpxchg.org: fix build] Link: http://lkml.kernel.org/r/20180913014222.GA2370@cmpxchg.org Link: http://lkml.kernel.org/r/20180828172258.3185-9-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: Daniel Drake <drake@endlessm.com> Tested-by: Suren Baghdasaryan <surenb@google.com> Cc: Christopher Lameter <cl@linux.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Johannes Weiner <jweiner@fb.com> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Enderborg <peter.enderborg@sony.com> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Shakeel Butt <shakeelb@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vinayak Menon <vinmenon@codeaurora.org> Cc: Randy Dunlap <rdunlap@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26mm: rework memcg kernel stack accountingRoman Gushchin1-6/+49
If CONFIG_VMAP_STACK is set, kernel stacks are allocated using __vmalloc_node_range() with __GFP_ACCOUNT. So kernel stack pages are charged against corresponding memory cgroups on allocation and uncharged on releasing them. The problem is that we do cache kernel stacks in small per-cpu caches and do reuse them for new tasks, which can belong to different memory cgroups. Each stack page still holds a reference to the original cgroup, so the cgroup can't be released until the vmap area is released. To make this happen we need more than two subsequent exits without forks in between on the current cpu, which makes it very unlikely to happen. As a result, I saw a significant number of dying cgroups (in theory, up to 2 * number_of_cpu + number_of_tasks), which can't be released even by significant memory pressure. As a cgroup structure can take a significant amount of memory (first of all, per-cpu data like memcg statistics), it leads to a noticeable waste of memory. Link: http://lkml.kernel.org/r/20180827162621.30187-1-guro@fb.com Fixes: ac496bf48d97 ("fork: Optimize task creation by caching two thread stacks per CPU if CONFIG_VMAP_STACK=y") Signed-off-by: Roman Gushchin <guro@fb.com> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: Michal Hocko <mhocko@kernel.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Konstantin Khlebnikov <koct9i@gmail.com> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>