aboutsummaryrefslogtreecommitdiffstats
path: root/mm/frame_vector.c (unfollow)
AgeCommit message (Collapse)AuthorFilesLines
2016-05-20mm, oom: rework oom detectionMichal Hocko3-29/+97
__alloc_pages_slowpath has traditionally relied on the direct reclaim and did_some_progress as an indicator that it makes sense to retry allocation rather than declaring OOM. shrink_zones had to rely on zone_reclaimable if shrink_zone didn't make any progress to prevent from a premature OOM killer invocation - the LRU might be full of dirty or writeback pages and direct reclaim cannot clean those up. zone_reclaimable allows to rescan the reclaimable lists several times and restart if a page is freed. This is really subtle behavior and it might lead to a livelock when a single freed page keeps allocator looping but the current task will not be able to allocate that single page. OOM killer would be more appropriate than looping without any progress for unbounded amount of time. This patch changes OOM detection logic and pulls it out from shrink_zone which is too low to be appropriate for any high level decisions such as OOM which is per zonelist property. It is __alloc_pages_slowpath which knows how many attempts have been done and what was the progress so far therefore it is more appropriate to implement this logic. The new heuristic is implemented in should_reclaim_retry helper called from __alloc_pages_slowpath. It tries to be more deterministic and easier to follow. It builds on an assumption that retrying makes sense only if the currently reclaimable memory + free pages would allow the current allocation request to succeed (as per __zone_watermark_ok) at least for one zone in the usable zonelist. This alone wouldn't be sufficient, though, because the writeback might get stuck and reclaimable pages might be pinned for a really long time or even depend on the current allocation context. Therefore there is a backoff mechanism implemented which reduces the reclaim target after each reclaim round without any progress. This means that we should eventually converge to only NR_FREE_PAGES as the target and fail on the wmark check and proceed to OOM. The backoff is simple and linear with 1/16 of the reclaimable pages for each round without any progress. We are optimistic and reset counter for successful reclaim rounds. Costly high order pages mostly preserve their semantic and those without __GFP_REPEAT fail right away while those which have the flag set will back off after the amount of reclaimable pages reaches equivalent of the requested order. The only difference is that if there was no progress during the reclaim we rely on zone watermark check. This is more logical thing to do than previous 1<<order attempts which were a result of zone_reclaimable faking the progress. [vdavydov@virtuozzo.com: check classzone_idx for shrink_zone] [hannes@cmpxchg.org: separate the heuristic into should_reclaim_retry] [rientjes@google.com: use zone_page_state_snapshot for NR_FREE_PAGES] [rientjes@google.com: shrink_zones doesn't need to return anything] Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Vladimir Davydov <vdavydov@virtuozzo.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <js1304@gmail.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-20mm, compaction: abstract compaction feedback to helpersMichal Hocko1-0/+79
Compaction can provide a wild variation of feedback to the caller. Many of them are implementation specific and the caller of the compaction (especially the page allocator) shouldn't be bound to specifics of the current implementation. This patch abstracts the feedback into three basic types: - compaction_made_progress - compaction was active and made some progress. - compaction_failed - compaction failed and further attempts to invoke it would most probably fail and therefore it is not worth retrying - compaction_withdrawn - compaction wasn't invoked for an implementation specific reasons. In the current implementation it means that the compaction was deferred, contended or the page scanners met too early without any progress. Retrying is still worthwhile. [vbabka@suse.cz: do not change thp back off behavior] [akpm@linux-foundation.org: fix typo in comment, per Hillf] Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: David Rientjes <rientjes@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <js1304@gmail.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Vladimir Davydov <vdavydov@virtuozzo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-20mm, compaction: simplify __alloc_pages_direct_compact feedback interfaceMichal Hocko1-36/+31
__alloc_pages_direct_compact communicates potential back off by two variables: - deferred_compaction tells that the compaction returned COMPACT_DEFERRED - contended_compaction is set when there is a contention on zone->lock resp. zone->lru_lock locks __alloc_pages_slowpath then backs of for THP allocation requests to prevent from long stalls. This is rather messy and it would be much cleaner to return a single compact result value and hide all the nasty details into __alloc_pages_direct_compact. This patch shouldn't introduce any functional changes. Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: David Rientjes <rientjes@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <js1304@gmail.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Vladimir Davydov <vdavydov@virtuozzo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-20mm, compaction: update compaction_result orderingMichal Hocko1-10/+16
compaction_result will be used as the primary feedback channel for compaction users. At the same time try_to_compact_pages (and potentially others) assume a certain ordering where a more specific feedback takes precendence. This gets a bit awkward when we have conflicting feedback from different zones. E.g one returing COMPACT_COMPLETE meaning the full zone has been scanned without any outcome while other returns with COMPACT_PARTIAL aka made some progress. The caller should get COMPACT_PARTIAL because that means that the compaction still can make some progress. The same applies for COMPACT_PARTIAL vs COMPACT_PARTIAL_SKIPPED. Reorder PARTIAL to be the largest one so the larger the value is the more progress we have done. Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: David Rientjes <rientjes@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <js1304@gmail.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Vladimir Davydov <vdavydov@virtuozzo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-20mm, compaction: distinguish between full and partial COMPACT_COMPLETEMichal Hocko4-4/+22
COMPACT_COMPLETE now means that compaction and free scanner met. This is not very useful information if somebody just wants to use this feedback and make any decisions based on that. The current caller might be a poor guy who just happened to scan tiny portion of the zone and that could be the reason no suitable pages were compacted. Make sure we distinguish the full and partial zone walks. Consumers should treat COMPACT_PARTIAL_SKIPPED as a potential success and be optimistic in retrying. The existing users of COMPACT_COMPLETE are conservatively changed to use COMPACT_PARTIAL_SKIPPED as well but some of them should be probably reconsidered and only defer the compaction only for COMPACT_COMPLETE with the new semantic. This patch shouldn't introduce any functional changes. Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: David Rientjes <rientjes@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <js1304@gmail.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Vladimir Davydov <vdavydov@virtuozzo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-20mm, compaction: distinguish COMPACT_DEFERRED from COMPACT_SKIPPEDMichal Hocko3-6/+11
try_to_compact_pages() can currently return COMPACT_SKIPPED even when the compaction is defered for some zone just because zone DMA is skipped in 99% of cases due to watermark checks. This makes COMPACT_DEFERRED basically unusable for the page allocator as a feedback mechanism. Make sure we distinguish those two states properly and switch their ordering in the enum. This would mean that the COMPACT_SKIPPED will be returned only when all eligible zones are skipped. As a result COMPACT_DEFERRED handling for THP in __alloc_pages_slowpath will be more precise and we would bail out rather than reclaim. Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: David Rientjes <rientjes@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <js1304@gmail.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Vladimir Davydov <vdavydov@virtuozzo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-20mm, compaction: cover all compaction mode in compact_zoneMichal Hocko1-8/+5
The compiler is complaining after "mm, compaction: change COMPACT_ constants into enum" mm/compaction.c: In function `compact_zone': mm/compaction.c:1350:2: warning: enumeration value `COMPACT_DEFERRED' not handled in switch [-Wswitch] switch (ret) { ^ mm/compaction.c:1350:2: warning: enumeration value `COMPACT_COMPLETE' not handled in switch [-Wswitch] mm/compaction.c:1350:2: warning: enumeration value `COMPACT_NO_SUITABLE_PAGE' not handled in switch [-Wswitch] mm/compaction.c:1350:2: warning: enumeration value `COMPACT_NOT_SUITABLE_ZONE' not handled in switch [-Wswitch] mm/compaction.c:1350:2: warning: enumeration value `COMPACT_CONTENDED' not handled in switch [-Wswitch] compaction_suitable is allowed to return only COMPACT_PARTIAL, COMPACT_SKIPPED and COMPACT_CONTINUE so other cases are simply impossible. Put a VM_BUG_ON to catch an impossible return value. Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: David Rientjes <rientjes@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <js1304@gmail.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Vladimir Davydov <vdavydov@virtuozzo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-20mm, compaction: change COMPACT_ constants into enumMichal Hocko3-32/+42
Compaction code is doing weird dances between COMPACT_FOO -> int -> unsigned long But there doesn't seem to be any reason for that. All functions which return/use one of those constants are not expecting any other value so it really makes sense to define an enum for them and make it clear that no other values are expected. This is a pure cleanup and shouldn't introduce any functional changes. Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: David Rientjes <rientjes@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <js1304@gmail.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Vladimir Davydov <vdavydov@virtuozzo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-20vmscan: consider classzone_idx in compaction_readyMichal Hocko1-4/+4
Motivation: As pointed out by Linus [2][3] relying on zone_reclaimable as a way to communicate the reclaim progress is rater dubious. I tend to agree, not only it is really obscure, it is not hard to imagine cases where a single page freed in the loop keeps all the reclaimers looping without getting any progress because their gfp_mask wouldn't allow to get that page anyway (e.g. single GFP_ATOMIC alloc and free loop). This is rather rare so it doesn't happen in the practice but the current logic which we have is rather obscure and hard to follow a also non-deterministic. This is an attempt to make the OOM detection more deterministic and easier to follow because each reclaimer basically tracks its own progress which is implemented at the page allocator layer rather spread out between the allocator and the reclaim. The more on the implementation is described in the first patch. I have tested several different scenarios but it should be clear that testing OOM killer is quite hard to be representative. There is usually a tiny gap between almost OOM and full blown OOM which is often time sensitive. Anyway, I have tested the following 2 scenarios and I would appreciate if there are more to test. Testing environment: a virtual machine with 2G of RAM and 2CPUs without any swap to make the OOM more deterministic. 1) 2 writers (each doing dd with 4M blocks to an xfs partition with 1G file size, removes the files and starts over again) running in parallel for 10s to build up a lot of dirty pages when 100 parallel mem_eaters (anon private populated mmap which waits until it gets signal) with 80M each. This causes an OOM flood of course and I have compared both patched and unpatched kernels. The test is considered finished after there are no OOM conditions detected. This should tell us whether there are any excessive kills or some of them premature (e.g. due to dirty pages): I have performed two runs this time each after a fresh boot. * base kernel $ grep "Out of memory:" base-oom-run1.log | wc -l 78 $ grep "Out of memory:" base-oom-run2.log | wc -l 78 $ grep "Kill process" base-oom-run1.log | tail -n1 [ 91.391203] Out of memory: Kill process 3061 (mem_eater) score 39 or sacrifice child $ grep "Kill process" base-oom-run2.log | tail -n1 [ 82.141919] Out of memory: Kill process 3086 (mem_eater) score 39 or sacrifice child $ grep "DMA32 free:" base-oom-run1.log | sed 's@.*free:\([0-9]*\)kB.*@\1@' | calc_min_max.awk min: 5376.00 max: 6776.00 avg: 5530.75 std: 166.50 nr: 61 $ grep "DMA32 free:" base-oom-run2.log | sed 's@.*free:\([0-9]*\)kB.*@\1@' | calc_min_max.awk min: 5416.00 max: 5608.00 avg: 5514.15 std: 42.94 nr: 52 $ grep "DMA32.*all_unreclaimable? no" base-oom-run1.log | wc -l 1 $ grep "DMA32.*all_unreclaimable? no" base-oom-run2.log | wc -l 3 * patched kernel $ grep "Out of memory:" patched-oom-run1.log | wc -l 78 miso@tiehlicka /mnt/share/devel/miso/kvm $ grep "Out of memory:" patched-oom-run2.log | wc -l 77 e grep "Kill process" patched-oom-run1.log | tail -n1 [ 497.317732] Out of memory: Kill process 3108 (mem_eater) score 39 or sacrifice child $ grep "Kill process" patched-oom-run2.log | tail -n1 [ 316.169920] Out of memory: Kill process 3093 (mem_eater) score 39 or sacrifice child $ grep "DMA32 free:" patched-oom-run1.log | sed 's@.*free:\([0-9]*\)kB.*@\1@' | calc_min_max.awk min: 5420.00 max: 5808.00 avg: 5513.90 std: 60.45 nr: 78 $ grep "DMA32 free:" patched-oom-run2.log | sed 's@.*free:\([0-9]*\)kB.*@\1@' | calc_min_max.awk min: 5380.00 max: 6384.00 avg: 5520.94 std: 136.84 nr: 77 e grep "DMA32.*all_unreclaimable? no" patched-oom-run1.log | wc -l 2 $ grep "DMA32.*all_unreclaimable? no" patched-oom-run2.log | wc -l 3 The patched kernel run noticeably longer while invoking OOM killer same number of times. This means that the original implementation is much more aggressive and triggers the OOM killer sooner. free pages stats show that neither kernels went OOM too early most of the time, though. I guess the difference is in the backoff when retries without any progress do sleep for a while if there is memory under writeback or dirty which is highly likely considering the parallel IO. Both kernels have seen races where zone wasn't marked unreclaimable and we still hit the OOM killer. This is most likely a race where a task managed to exit between the last allocation attempt and the oom killer invocation. 2) 2 writers again with 10s of run and then 10 mem_eaters to consume as much memory as possible without triggering the OOM killer. This required a lot of tuning but I've considered 3 consecutive runs in three different boots without OOM as a success. * base kernel size=$(awk '/MemFree/{printf "%dK", ($2/10)-(16*1024)}' /proc/meminfo) * patched kernel size=$(awk '/MemFree/{printf "%dK", ($2/10)-(12*1024)}' /proc/meminfo) That means 40M more memory was usable without triggering OOM killer. The base kernel sometimes managed to handle the same as patched but it wasn't consistent and failed in at least on of the 3 runs. This seems like a minor improvement. I was testing also GPF_REPEAT costly requests (hughetlb) with fragmented memory and under memory pressure. The results are in patch 11 where the logic is implemented. In short I can see huge improvement there. I am certainly interested in other usecases as well as well as any feedback. Especially those which require higher order requests. This patch (of 14): While playing with the oom detection rework [1] I have noticed that my heavy order-9 (hugetlb) load close to OOM ended up in an endless loop where the reclaim hasn't made any progress but did_some_progress didn't reflect that and compaction_suitable was backing off because no zone is above low wmark + 1 << order. It turned out that this is in fact an old standing bug in compaction_ready which ignores the requested_highidx and did the watermark check for 0 classzone_idx. This succeeds for zone DMA most of the time as the zone is mostly unused because of lowmem protection. As a result costly high order allocatios always report a successfull progress even when there was none. This wasn't a problem so far because these allocations usually fail quite early or retry only few times with __GFP_REPEAT but this will change after later patch in this series so make sure to not lie about the progress and propagate requested_highidx down to compaction_ready and use it for both the watermak check and compaction_suitable to fix this issue. [1] http://lkml.kernel.org/r/1459855533-4600-1-git-send-email-mhocko@kernel.org [2] https://lkml.org/lkml/2015/10/12/808 [3] https://lkml.org/lkml/2015/10/13/597 Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Mel Gorman <mgorman@suse.de> Cc: David Rientjes <rientjes@google.com> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Joonsoo Kim <js1304@gmail.com> Cc: Vladimir Davydov <vdavydov@virtuozzo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-20mm: vmscan: reduce size of inactive file listRik van Riel3-131/+42
The inactive file list should still be large enough to contain readahead windows and freshly written file data, but it no longer is the only source for detecting multiple accesses to file pages. The workingset refault measurement code causes recently evicted file pages that get accessed again after a shorter interval to be promoted directly to the active list. With that mechanism in place, we can afford to (on a larger system) dedicate more memory to the active file list, so we can actually cache more of the frequently used file pages in memory, and not have them pushed out by streaming writes, once-used streaming file reads, etc. This can help things like database workloads, where only half the page cache can currently be used to cache the database working set. This patch automatically increases that fraction on larger systems, using the same ratio that has already been used for anonymous memory. [hannes@cmpxchg.org: cgroup-awareness] Signed-off-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reported-by: Andres Freund <andres@anarazel.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-20mm: filemap: only do access activations on readsJohannes Weiner1-1/+1
Andres observed that his database workload is struggling with the transaction journal creating pressure on frequently read pages. Access patterns like transaction journals frequently write the same pages over and over, but in the majority of cases those pages are never read back. There are no caching benefits to be had for those pages, so activating them and having them put pressure on pages that do benefit from caching is a bad choice. Leave page activations to read accesses and don't promote pages based on writes alone. It could be said that partially written pages do contain cache-worthy data, because even if *userspace* does not access the unwritten part, the kernel still has to read it from the filesystem for correctness. However, a counter argument is that these pages enjoy at least *some* protection over other inactive file pages through the writeback cache, in the sense that dirty pages are written back with a delay and cache reclaim leaves them alone until they have been written back to disk. Should that turn out to be insufficient and we see increased read IO from partial writes under memory pressure, we can always go back and update grab_cache_page_write_begin() to take (pos, len) so that it can tell partial writes from pages that don't need partial reads. But for now, keep it simple. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reported-by: Andres Freund <andres@anarazel.de> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-20mm: workingset: only do workingset activations on readsRik van Riel1-1/+5
This is a follow-up to http://www.spinics.net/lists/linux-mm/msg101739.html where Andres reported his database workingset being pushed out by the minimum size enforcement of the inactive file list - currently 50% of cache - as well as repeatedly written file pages that are never actually read. Two changes fell out of the discussions. The first change observes that pages that are only ever written don't benefit from caching beyond what the writeback cache does for partial page writes, and so we shouldn't promote them to the active file list where they compete with pages whose cached data is actually accessed repeatedly. This change comes in two patches - one for in-cache write accesses and one for refaults triggered by writes, neither of which should promote a cache page. Second, with the refault detection we don't need to set 50% of the cache aside for used-once cache anymore since we can detect frequently used pages even when they are evicted between accesses. We can allow the active list to be bigger and thus protect a bigger workingset that isn't challenged by streamers. Depending on the access patterns, this can increase major faults during workingset transitions for better performance during stable phases. This patch (of 3): When rewriting a page, the data in that page is replaced with new data. This means that evicting something else from the active file list, in order to cache data that will be replaced by something else, is likely to be a waste of memory. It is better to save the active list for frequently read pages, because reads actually use the data that is in the page. This patch ignores partial writes, because it is unclear whether the complexity of identifying those is worth any potential performance gain obtained from better caching pages that see repeated partial writes at large enough intervals to not get caught by the use-twice promotion code used for the inactive file list. Signed-off-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reported-by: Andres Freund <andres@anarazel.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-20irqchip: nps: add 64BIT dependencyArnd Bergmann1-0/+1
The newly added nps irqchip driver causes build warnings on ARM64. include/soc/nps/common.h: In function 'nps_host_reg_non_cl': include/soc/nps/common.h:148:9: warning: cast to pointer from integer of different size [-Wint-to-pointer-cast] As the driver is only used on ARC, we don't need to see it without COMPILE_TEST elsewhere, and we can avoid the warnings by only building on 32-bit architectures even with CONFIG_COMPILE_TEST. Acked-by: Marc Zyngier <narc.zyngier@arm.com> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Vineet Gupta <vgupta@synopsys.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19mm, page_alloc: restore the original nodemask if the fast path allocation failedMel Gorman1-0/+6
The page allocator fast path uses either the requested nodemask or cpuset_current_mems_allowed if cpusets are enabled. If the allocation context allows watermarks to be ignored then it can also ignore memory policies. However, on entering the allocator slowpath the nodemask may still be cpuset_current_mems_allowed and the policies are enforced. This patch resets the nodemask appropriately before entering the slowpath. Link: http://lkml.kernel.org/r/20160504143628.GU2858@techsingularity.net Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Cc: Jesper Dangaard Brouer <brouer@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19mm, page_alloc: uninline the bad page part of check_new_page()Vlastimil Babka1-16/+17
Bad pages should be rare so the code handling them doesn't need to be inline for performance reasons. Put it to separate function which returns void. This also assumes that the initial page_expected_state() result will match the result of the thorough check, i.e. the page doesn't become "good" in the meanwhile. This matches the same expectations already in place in free_pages_check(). !DEBUG_VM bloat-o-meter: add/remove: 1/0 grow/shrink: 0/1 up/down: 134/-274 (-140) function old new delta check_new_page_bad - 134 +134 get_page_from_freelist 3468 3194 -274 Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19mm, page_alloc: don't duplicate code in free_pcp_prepareMel Gorman1-78/+55
The new free_pcp_prepare() function shares a lot of code with free_pages_prepare(), which makes this a maintenance risk when some future patch modifies only one of them. We should be able to achieve the same effect (skipping free_pages_check() from !DEBUG_VM configs) by adding a parameter to free_pages_prepare() and making it inline, so the checks (and the order != 0 parts) are eliminated from the call from free_pcp_prepare(). !DEBUG_VM: bloat-o-meter reports no difference, as my gcc was already inlining free_pages_prepare() and the elimination seems to work as expected DEBUG_VM bloat-o-meter: add/remove: 0/1 grow/shrink: 2/0 up/down: 1035/-778 (257) function old new delta __free_pages_ok 297 1060 +763 free_hot_cold_page 480 752 +272 free_pages_prepare 778 - -778 Here inlining didn't occur before, and added some code, but it's ok for a debug option. [akpm@linux-foundation.org: fix build] Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19mm, page_alloc: defer debugging checks of pages allocated from the PCPMel Gorman1-28/+64
Every page allocated checks a number of page fields for validity. This catches corruption bugs of pages that are already freed but it is expensive. This patch weakens the debugging check by checking PCP pages only when the PCP lists are being refilled. All compound pages are checked. This potentially avoids debugging checks entirely if the PCP lists are never emptied and refilled so some corruption issues may be missed. Full checking requires DEBUG_VM. With the two deferred debugging patches applied, the impact to a page allocator microbenchmark is 4.6.0-rc3 4.6.0-rc3 inline-v3r6 deferalloc-v3r7 Min alloc-odr0-1 344.00 ( 0.00%) 317.00 ( 7.85%) Min alloc-odr0-2 248.00 ( 0.00%) 231.00 ( 6.85%) Min alloc-odr0-4 209.00 ( 0.00%) 192.00 ( 8.13%) Min alloc-odr0-8 181.00 ( 0.00%) 166.00 ( 8.29%) Min alloc-odr0-16 168.00 ( 0.00%) 154.00 ( 8.33%) Min alloc-odr0-32 161.00 ( 0.00%) 148.00 ( 8.07%) Min alloc-odr0-64 158.00 ( 0.00%) 145.00 ( 8.23%) Min alloc-odr0-128 156.00 ( 0.00%) 143.00 ( 8.33%) Min alloc-odr0-256 168.00 ( 0.00%) 154.00 ( 8.33%) Min alloc-odr0-512 178.00 ( 0.00%) 167.00 ( 6.18%) Min alloc-odr0-1024 186.00 ( 0.00%) 174.00 ( 6.45%) Min alloc-odr0-2048 192.00 ( 0.00%) 180.00 ( 6.25%) Min alloc-odr0-4096 198.00 ( 0.00%) 184.00 ( 7.07%) Min alloc-odr0-8192 200.00 ( 0.00%) 188.00 ( 6.00%) Min alloc-odr0-16384 201.00 ( 0.00%) 188.00 ( 6.47%) Min free-odr0-1 189.00 ( 0.00%) 180.00 ( 4.76%) Min free-odr0-2 132.00 ( 0.00%) 126.00 ( 4.55%) Min free-odr0-4 104.00 ( 0.00%) 99.00 ( 4.81%) Min free-odr0-8 90.00 ( 0.00%) 85.00 ( 5.56%) Min free-odr0-16 84.00 ( 0.00%) 80.00 ( 4.76%) Min free-odr0-32 80.00 ( 0.00%) 76.00 ( 5.00%) Min free-odr0-64 78.00 ( 0.00%) 74.00 ( 5.13%) Min free-odr0-128 77.00 ( 0.00%) 73.00 ( 5.19%) Min free-odr0-256 94.00 ( 0.00%) 91.00 ( 3.19%) Min free-odr0-512 108.00 ( 0.00%) 112.00 ( -3.70%) Min free-odr0-1024 115.00 ( 0.00%) 118.00 ( -2.61%) Min free-odr0-2048 120.00 ( 0.00%) 125.00 ( -4.17%) Min free-odr0-4096 123.00 ( 0.00%) 129.00 ( -4.88%) Min free-odr0-8192 126.00 ( 0.00%) 130.00 ( -3.17%) Min free-odr0-16384 126.00 ( 0.00%) 131.00 ( -3.97%) Note that the free paths for large numbers of pages is impacted as the debugging cost gets shifted into that path when the page data is no longer necessarily cache-hot. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Jesper Dangaard Brouer <brouer@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19mm, page_alloc: defer debugging checks of freed pages until a PCP drainMel Gorman1-51/+101
Every page free checks a number of page fields for validity. This catches premature frees and corruptions but it is also expensive. This patch weakens the debugging check by checking PCP pages at the time they are drained from the PCP list. This will trigger the bug but the site that freed the corrupt page will be lost. To get the full context, a kernel rebuild with DEBUG_VM is necessary. [akpm@linux-foundation.org: fix build] Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Jesper Dangaard Brouer <brouer@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19cpuset: use static key better and convert to new APIVlastimil Babka3-22/+36
An important function for cpusets is cpuset_node_allowed(), which optimizes on the fact if there's a single root CPU set, it must be trivially allowed. But the check "nr_cpusets() <= 1" doesn't use the cpusets_enabled_key static key the right way where static keys eliminate branching overhead with jump labels. This patch converts it so that static key is used properly. It's also switched to the new static key API and the checking functions are converted to return bool instead of int. We also provide a new variant __cpuset_zone_allowed() which expects that the static key check was already done and they key was enabled. This is needed for get_page_from_freelist() where we want to also avoid the relatively slower check when ALLOC_CPUSET is not set in alloc_flags. The impact on the page allocator microbenchmark is less than expected but the cleanup in itself is worthwhile. 4.6.0-rc2 4.6.0-rc2 multcheck-v1r20 cpuset-v1r20 Min alloc-odr0-1 348.00 ( 0.00%) 348.00 ( 0.00%) Min alloc-odr0-2 254.00 ( 0.00%) 254.00 ( 0.00%) Min alloc-odr0-4 213.00 ( 0.00%) 213.00 ( 0.00%) Min alloc-odr0-8 186.00 ( 0.00%) 183.00 ( 1.61%) Min alloc-odr0-16 173.00 ( 0.00%) 171.00 ( 1.16%) Min alloc-odr0-32 166.00 ( 0.00%) 163.00 ( 1.81%) Min alloc-odr0-64 162.00 ( 0.00%) 159.00 ( 1.85%) Min alloc-odr0-128 160.00 ( 0.00%) 157.00 ( 1.88%) Min alloc-odr0-256 169.00 ( 0.00%) 166.00 ( 1.78%) Min alloc-odr0-512 180.00 ( 0.00%) 180.00 ( 0.00%) Min alloc-odr0-1024 188.00 ( 0.00%) 187.00 ( 0.53%) Min alloc-odr0-2048 194.00 ( 0.00%) 193.00 ( 0.52%) Min alloc-odr0-4096 199.00 ( 0.00%) 198.00 ( 0.50%) Min alloc-odr0-8192 202.00 ( 0.00%) 201.00 ( 0.50%) Min alloc-odr0-16384 203.00 ( 0.00%) 202.00 ( 0.49%) Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Zefan Li <lizefan@huawei.com> Cc: Jesper Dangaard Brouer <brouer@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19mm, page_alloc: inline pageblock lookup in page free fast pathsMel Gorman4-97/+102
The function call overhead of get_pfnblock_flags_mask() is measurable in the page free paths. This patch uses an inlined version that is faster. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Jesper Dangaard Brouer <brouer@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19mm, page_alloc: remove unnecessary variable from free_pcppages_bulkMel Gorman1-4/+3
The original count is never reused so it can be removed. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Jesper Dangaard Brouer <brouer@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19mm, page_alloc: pull out side effects from free_pages_checkMel Gorman1-5/+8
Check without side-effects should be easier to maintain. It also removes the duplicated cpupid and flags reset done in !DEBUG_VM variant of both free_pcp_prepare() and then bulkfree_pcp_prepare(). Finally, it enables the next patch. It shouldn't result in new branches, thanks to inlining of the check. !DEBUG_VM bloat-o-meter: add/remove: 0/0 grow/shrink: 0/2 up/down: 0/-27 (-27) function old new delta __free_pages_ok 748 739 -9 free_pcppages_bulk 1403 1385 -18 DEBUG_VM: add/remove: 0/0 grow/shrink: 0/1 up/down: 0/-28 (-28) function old new delta free_pages_prepare 806 778 -28 This is also slightly faster because cpupid information is not set on tail pages so we can avoid resets there. Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19mm, page_alloc: un-inline the bad part of free_pages_checkMel Gorman1-8/+13
From: Vlastimil Babka <vbabka@suse.cz> !DEBUG_VM size and bloat-o-meter: add/remove: 1/0 grow/shrink: 0/2 up/down: 124/-370 (-246) function old new delta free_pages_check_bad - 124 +124 free_pcppages_bulk 1288 1171 -117 __free_pages_ok 948 695 -253 DEBUG_VM: add/remove: 1/0 grow/shrink: 0/1 up/down: 124/-214 (-90) function old new delta free_pages_check_bad - 124 +124 free_pages_prepare 1112 898 -214 [akpm@linux-foundation.org: fix whitespace] Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19mm, page_alloc: check multiple page fields with a single branchMel Gorman1-12/+43
Every page allocated or freed is checked for sanity to avoid corruptions that are difficult to detect later. A bad page could be due to a number of fields. Instead of using multiple branches, this patch combines multiple fields into a single branch. A detailed check is only necessary if that check fails. 4.6.0-rc2 4.6.0-rc2 initonce-v1r20 multcheck-v1r20 Min alloc-odr0-1 359.00 ( 0.00%) 348.00 ( 3.06%) Min alloc-odr0-2 260.00 ( 0.00%) 254.00 ( 2.31%) Min alloc-odr0-4 214.00 ( 0.00%) 213.00 ( 0.47%) Min alloc-odr0-8 186.00 ( 0.00%) 186.00 ( 0.00%) Min alloc-odr0-16 173.00 ( 0.00%) 173.00 ( 0.00%) Min alloc-odr0-32 165.00 ( 0.00%) 166.00 ( -0.61%) Min alloc-odr0-64 162.00 ( 0.00%) 162.00 ( 0.00%) Min alloc-odr0-128 161.00 ( 0.00%) 160.00 ( 0.62%) Min alloc-odr0-256 170.00 ( 0.00%) 169.00 ( 0.59%) Min alloc-odr0-512 181.00 ( 0.00%) 180.00 ( 0.55%) Min alloc-odr0-1024 190.00 ( 0.00%) 188.00 ( 1.05%) Min alloc-odr0-2048 196.00 ( 0.00%) 194.00 ( 1.02%) Min alloc-odr0-4096 202.00 ( 0.00%) 199.00 ( 1.49%) Min alloc-odr0-8192 205.00 ( 0.00%) 202.00 ( 1.46%) Min alloc-odr0-16384 205.00 ( 0.00%) 203.00 ( 0.98%) Again, the benefit is marginal but avoiding excessive branches is important. Ideally the paths would not have to check these conditions at all but regrettably abandoning the tests would make use-after-free bugs much harder to detect. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Jesper Dangaard Brouer <brouer@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19mm, page_alloc: remove field from alloc_contextMel Gorman3-8/+7
The classzone_idx can be inferred from preferred_zoneref so remove the unnecessary field and save stack space. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Jesper Dangaard Brouer <brouer@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19mm, page_alloc: avoid looking up the first zone in a zonelist twiceMel Gorman5-40/+43
The allocator fast path looks up the first usable zone in a zonelist and then get_page_from_freelist does the same job in the zonelist iterator. This patch preserves the necessary information. 4.6.0-rc2 4.6.0-rc2 fastmark-v1r20 initonce-v1r20 Min alloc-odr0-1 364.00 ( 0.00%) 359.00 ( 1.37%) Min alloc-odr0-2 262.00 ( 0.00%) 260.00 ( 0.76%) Min alloc-odr0-4 214.00 ( 0.00%) 214.00 ( 0.00%) Min alloc-odr0-8 186.00 ( 0.00%) 186.00 ( 0.00%) Min alloc-odr0-16 173.00 ( 0.00%) 173.00 ( 0.00%) Min alloc-odr0-32 165.00 ( 0.00%) 165.00 ( 0.00%) Min alloc-odr0-64 161.00 ( 0.00%) 162.00 ( -0.62%) Min alloc-odr0-128 159.00 ( 0.00%) 161.00 ( -1.26%) Min alloc-odr0-256 168.00 ( 0.00%) 170.00 ( -1.19%) Min alloc-odr0-512 180.00 ( 0.00%) 181.00 ( -0.56%) Min alloc-odr0-1024 190.00 ( 0.00%) 190.00 ( 0.00%) Min alloc-odr0-2048 196.00 ( 0.00%) 196.00 ( 0.00%) Min alloc-odr0-4096 202.00 ( 0.00%) 202.00 ( 0.00%) Min alloc-odr0-8192 206.00 ( 0.00%) 205.00 ( 0.49%) Min alloc-odr0-16384 206.00 ( 0.00%) 205.00 ( 0.49%) The benefit is negligible and the results are within the noise but each cycle counts. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Jesper Dangaard Brouer <brouer@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19mm, page_alloc: shortcut watermark checks for order-0 pagesMel Gorman1-1/+27
Watermarks have to be checked on every allocation including the number of pages being allocated and whether reserves can be accessed. The reserves only matter if memory is limited and the free_pages adjustment only applies to high-order pages. This patch adds a shortcut for order-0 pages that avoids numerous calculations if there is plenty of free memory yielding the following performance difference in a page allocator microbenchmark; 4.6.0-rc2 4.6.0-rc2 optfair-v1r20 fastmark-v1r20 Min alloc-odr0-1 380.00 ( 0.00%) 364.00 ( 4.21%) Min alloc-odr0-2 273.00 ( 0.00%) 262.00 ( 4.03%) Min alloc-odr0-4 227.00 ( 0.00%) 214.00 ( 5.73%) Min alloc-odr0-8 196.00 ( 0.00%) 186.00 ( 5.10%) Min alloc-odr0-16 183.00 ( 0.00%) 173.00 ( 5.46%) Min alloc-odr0-32 173.00 ( 0.00%) 165.00 ( 4.62%) Min alloc-odr0-64 169.00 ( 0.00%) 161.00 ( 4.73%) Min alloc-odr0-128 169.00 ( 0.00%) 159.00 ( 5.92%) Min alloc-odr0-256 180.00 ( 0.00%) 168.00 ( 6.67%) Min alloc-odr0-512 190.00 ( 0.00%) 180.00 ( 5.26%) Min alloc-odr0-1024 198.00 ( 0.00%) 190.00 ( 4.04%) Min alloc-odr0-2048 204.00 ( 0.00%) 196.00 ( 3.92%) Min alloc-odr0-4096 209.00 ( 0.00%) 202.00 ( 3.35%) Min alloc-odr0-8192 213.00 ( 0.00%) 206.00 ( 3.29%) Min alloc-odr0-16384 214.00 ( 0.00%) 206.00 ( 3.74%) Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Jesper Dangaard Brouer <brouer@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19mm, page_alloc: reduce cost of fair zone allocation policy retryMel Gorman1-18/+14
The fair zone allocation policy is not without cost but it can be reduced slightly. This patch removes an unnecessary local variable, checks the likely conditions of the fair zone policy first, uses a bool instead of a flags check and falls through when a remote node is encountered instead of doing a full restart. The benefit is marginal but it's there 4.6.0-rc2 4.6.0-rc2 decstat-v1r20 optfair-v1r20 Min alloc-odr0-1 377.00 ( 0.00%) 380.00 ( -0.80%) Min alloc-odr0-2 273.00 ( 0.00%) 273.00 ( 0.00%) Min alloc-odr0-4 226.00 ( 0.00%) 227.00 ( -0.44%) Min alloc-odr0-8 196.00 ( 0.00%) 196.00 ( 0.00%) Min alloc-odr0-16 183.00 ( 0.00%) 183.00 ( 0.00%) Min alloc-odr0-32 175.00 ( 0.00%) 173.00 ( 1.14%) Min alloc-odr0-64 172.00 ( 0.00%) 169.00 ( 1.74%) Min alloc-odr0-128 170.00 ( 0.00%) 169.00 ( 0.59%) Min alloc-odr0-256 183.00 ( 0.00%) 180.00 ( 1.64%) Min alloc-odr0-512 191.00 ( 0.00%) 190.00 ( 0.52%) Min alloc-odr0-1024 199.00 ( 0.00%) 198.00 ( 0.50%) Min alloc-odr0-2048 204.00 ( 0.00%) 204.00 ( 0.00%) Min alloc-odr0-4096 210.00 ( 0.00%) 209.00 ( 0.48%) Min alloc-odr0-8192 213.00 ( 0.00%) 213.00 ( 0.00%) Min alloc-odr0-16384 214.00 ( 0.00%) 214.00 ( 0.00%) The benefit is marginal at best but one of the most important benefits, avoiding a second search when falling back to another node is not triggered by this particular test so the benefit for some corner cases is understated. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Jesper Dangaard Brouer <brouer@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19mm, page_alloc: shorten the page allocator fast pathMel Gorman1-16/+17
The page allocator fast path checks page multiple times unnecessarily. This patch avoids all the slowpath checks if the first allocation attempt succeeds. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Jesper Dangaard Brouer <brouer@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19mm, page_alloc: check once if a zone has isolated pageblocksMel Gorman1-1/+3
When bulk freeing pages from the per-cpu lists the zone is checked for isolated pageblocks on every release. This patch checks it once per drain. [mgorman@techsingularity.net: fix locking radce, per Vlastimil] Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Jesper Dangaard Brouer <brouer@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19mm, page_alloc: move __GFP_HARDWALL modifications out of the fastpathMel Gorman1-3/+5
__GFP_HARDWALL only has meaning in the context of cpusets but the fast path always applies the flag on the first attempt. Move the manipulations into the cpuset paths where they will be masked by a static branch in the common case. With the other micro-optimisations in this series combined, the impact on a page allocator microbenchmark is 4.6.0-rc2 4.6.0-rc2 decstat-v1r20 micro-v1r20 Min alloc-odr0-1 381.00 ( 0.00%) 377.00 ( 1.05%) Min alloc-odr0-2 275.00 ( 0.00%) 273.00 ( 0.73%) Min alloc-odr0-4 229.00 ( 0.00%) 226.00 ( 1.31%) Min alloc-odr0-8 199.00 ( 0.00%) 196.00 ( 1.51%) Min alloc-odr0-16 186.00 ( 0.00%) 183.00 ( 1.61%) Min alloc-odr0-32 179.00 ( 0.00%) 175.00 ( 2.23%) Min alloc-odr0-64 174.00 ( 0.00%) 172.00 ( 1.15%) Min alloc-odr0-128 172.00 ( 0.00%) 170.00 ( 1.16%) Min alloc-odr0-256 181.00 ( 0.00%) 183.00 ( -1.10%) Min alloc-odr0-512 193.00 ( 0.00%) 191.00 ( 1.04%) Min alloc-odr0-1024 201.00 ( 0.00%) 199.00 ( 1.00%) Min alloc-odr0-2048 206.00 ( 0.00%) 204.00 ( 0.97%) Min alloc-odr0-4096 212.00 ( 0.00%) 210.00 ( 0.94%) Min alloc-odr0-8192 215.00 ( 0.00%) 213.00 ( 0.93%) Min alloc-odr0-16384 216.00 ( 0.00%) 214.00 ( 0.93%) Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Jesper Dangaard Brouer <brouer@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19mm, page_alloc: simplify last cpupid resetMel Gorman1-4/+1
The current reset unnecessarily clears flags and makes pointless calculations. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Jesper Dangaard Brouer <brouer@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19mm, page_alloc: remove unnecessary initialisation from __alloc_pages_nodemask()Mel Gorman1-2/+5
page is guaranteed to be set before it is read with or without the initialisation. [akpm@linux-foundation.org: fix warning] Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Jesper Dangaard Brouer <brouer@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19mm, page_alloc: remove unnecessary initialisation in get_page_from_freelistMel Gorman1-1/+1
Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Jesper Dangaard Brouer <brouer@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19mm, page_alloc: remove unnecessary local variable in get_page_from_freelistMel Gorman1-2/+1
zonelist here is a copy of a struct field that is used once. Ditch it. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Jesper Dangaard Brouer <brouer@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19mm, page_alloc: convert nr_fair_skipped to boolMel Gorman1-3/+3
The number of zones skipped to a zone expiring its fair zone allocation quota is irrelevant. Convert to bool. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Jesper Dangaard Brouer <brouer@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19mm, page_alloc: convert alloc_flags to unsignedMel Gorman5-22/+27
alloc_flags is a bitmask of flags but it is signed which does not necessarily generate the best code depending on the compiler. Even without an impact, it makes more sense that this be unsigned. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Jesper Dangaard Brouer <brouer@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19mm, page_alloc: avoid unnecessary zone lookups during pageblock operationsMel Gorman1-13/+9
Pageblocks have an associated bitmap to store migrate types and whether the pageblock should be skipped during compaction. The bitmap may be associated with a memory section or a zone but the zone is looked up unconditionally. The compiler should optimise this away automatically so this is a cosmetic patch only in many cases. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Jesper Dangaard Brouer <brouer@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19mm, page_alloc: use __dec_zone_state for order-0 page allocationMel Gorman1-1/+2
__dec_zone_state is cheaper to use for removing an order-0 page as it has fewer conditions to check. The performance difference on a page allocator microbenchmark is; 4.6.0-rc2 4.6.0-rc2 optiter-v1r20 decstat-v1r20 Min alloc-odr0-1 382.00 ( 0.00%) 381.00 ( 0.26%) Min alloc-odr0-2 282.00 ( 0.00%) 275.00 ( 2.48%) Min alloc-odr0-4 233.00 ( 0.00%) 229.00 ( 1.72%) Min alloc-odr0-8 203.00 ( 0.00%) 199.00 ( 1.97%) Min alloc-odr0-16 188.00 ( 0.00%) 186.00 ( 1.06%) Min alloc-odr0-32 182.00 ( 0.00%) 179.00 ( 1.65%) Min alloc-odr0-64 177.00 ( 0.00%) 174.00 ( 1.69%) Min alloc-odr0-128 175.00 ( 0.00%) 172.00 ( 1.71%) Min alloc-odr0-256 184.00 ( 0.00%) 181.00 ( 1.63%) Min alloc-odr0-512 197.00 ( 0.00%) 193.00 ( 2.03%) Min alloc-odr0-1024 203.00 ( 0.00%) 201.00 ( 0.99%) Min alloc-odr0-2048 209.00 ( 0.00%) 206.00 ( 1.44%) Min alloc-odr0-4096 214.00 ( 0.00%) 212.00 ( 0.93%) Min alloc-odr0-8192 218.00 ( 0.00%) 215.00 ( 1.38%) Min alloc-odr0-16384 219.00 ( 0.00%) 216.00 ( 1.37%) Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Jesper Dangaard Brouer <brouer@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19mm, page_alloc: inline the fast path of the zonelist iteratorMel Gorman3-20/+21
The page allocator iterates through a zonelist for zones that match the addressing limitations and nodemask of the caller but many allocations will not be restricted. Despite this, there is always functional call overhead which builds up. This patch inlines the optimistic basic case and only calls the iterator function for the complex case. A hindrance was the fact that cpuset_current_mems_allowed is used in the fastpath as the allowed nodemask even though all nodes are allowed on most systems. The patch handles this by only considering cpuset_current_mems_allowed if a cpuset exists. As well as being faster in the fast-path, this removes some junk in the slowpath. The performance difference on a page allocator microbenchmark is; 4.6.0-rc2 4.6.0-rc2 statinline-v1r20 optiter-v1r20 Min alloc-odr0-1 412.00 ( 0.00%) 382.00 ( 7.28%) Min alloc-odr0-2 301.00 ( 0.00%) 282.00 ( 6.31%) Min alloc-odr0-4 247.00 ( 0.00%) 233.00 ( 5.67%) Min alloc-odr0-8 215.00 ( 0.00%) 203.00 ( 5.58%) Min alloc-odr0-16 199.00 ( 0.00%) 188.00 ( 5.53%) Min alloc-odr0-32 191.00 ( 0.00%) 182.00 ( 4.71%) Min alloc-odr0-64 187.00 ( 0.00%) 177.00 ( 5.35%) Min alloc-odr0-128 185.00 ( 0.00%) 175.00 ( 5.41%) Min alloc-odr0-256 193.00 ( 0.00%) 184.00 ( 4.66%) Min alloc-odr0-512 207.00 ( 0.00%) 197.00 ( 4.83%) Min alloc-odr0-1024 213.00 ( 0.00%) 203.00 ( 4.69%) Min alloc-odr0-2048 220.00 ( 0.00%) 209.00 ( 5.00%) Min alloc-odr0-4096 226.00 ( 0.00%) 214.00 ( 5.31%) Min alloc-odr0-8192 229.00 ( 0.00%) 218.00 ( 4.80%) Min alloc-odr0-16384 229.00 ( 0.00%) 219.00 ( 4.37%) perf indicated that next_zones_zonelist disappeared in the profile and __next_zones_zonelist did not appear. This is expected as the micro-benchmark would hit the inlined fast-path every time. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Jesper Dangaard Brouer <brouer@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19mm, page_alloc: inline zone_statisticsMel Gorman3-31/+31
zone_statistics has one call-site but it's a public function. Make it static and inline. The performance difference on a page allocator microbenchmark is; 4.6.0-rc2 4.6.0-rc2 statbranch-v1r20 statinline-v1r20 Min alloc-odr0-1 419.00 ( 0.00%) 412.00 ( 1.67%) Min alloc-odr0-2 305.00 ( 0.00%) 301.00 ( 1.31%) Min alloc-odr0-4 250.00 ( 0.00%) 247.00 ( 1.20%) Min alloc-odr0-8 219.00 ( 0.00%) 215.00 ( 1.83%) Min alloc-odr0-16 203.00 ( 0.00%) 199.00 ( 1.97%) Min alloc-odr0-32 195.00 ( 0.00%) 191.00 ( 2.05%) Min alloc-odr0-64 191.00 ( 0.00%) 187.00 ( 2.09%) Min alloc-odr0-128 189.00 ( 0.00%) 185.00 ( 2.12%) Min alloc-odr0-256 198.00 ( 0.00%) 193.00 ( 2.53%) Min alloc-odr0-512 210.00 ( 0.00%) 207.00 ( 1.43%) Min alloc-odr0-1024 216.00 ( 0.00%) 213.00 ( 1.39%) Min alloc-odr0-2048 221.00 ( 0.00%) 220.00 ( 0.45%) Min alloc-odr0-4096 227.00 ( 0.00%) 226.00 ( 0.44%) Min alloc-odr0-8192 232.00 ( 0.00%) 229.00 ( 1.29%) Min alloc-odr0-16384 232.00 ( 0.00%) 229.00 ( 1.29%) Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Jesper Dangaard Brouer <brouer@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19mm, page_alloc: reduce branches in zone_statisticsMel Gorman1-6/+10
zone_statistics has more branches than it really needs to take an unlikely GFP flag into account. Reduce the number and annotate the unlikely flag. The performance difference on a page allocator microbenchmark is; 4.6.0-rc2 4.6.0-rc2 nocompound-v1r10 statbranch-v1r10 Min alloc-odr0-1 417.00 ( 0.00%) 419.00 ( -0.48%) Min alloc-odr0-2 308.00 ( 0.00%) 305.00 ( 0.97%) Min alloc-odr0-4 253.00 ( 0.00%) 250.00 ( 1.19%) Min alloc-odr0-8 221.00 ( 0.00%) 219.00 ( 0.90%) Min alloc-odr0-16 205.00 ( 0.00%) 203.00 ( 0.98%) Min alloc-odr0-32 199.00 ( 0.00%) 195.00 ( 2.01%) Min alloc-odr0-64 193.00 ( 0.00%) 191.00 ( 1.04%) Min alloc-odr0-128 191.00 ( 0.00%) 189.00 ( 1.05%) Min alloc-odr0-256 200.00 ( 0.00%) 198.00 ( 1.00%) Min alloc-odr0-512 212.00 ( 0.00%) 210.00 ( 0.94%) Min alloc-odr0-1024 219.00 ( 0.00%) 216.00 ( 1.37%) Min alloc-odr0-2048 225.00 ( 0.00%) 221.00 ( 1.78%) Min alloc-odr0-4096 231.00 ( 0.00%) 227.00 ( 1.73%) Min alloc-odr0-8192 234.00 ( 0.00%) 232.00 ( 0.85%) Min alloc-odr0-16384 234.00 ( 0.00%) 232.00 ( 0.85%) Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Jesper Dangaard Brouer <brouer@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19mm, page_alloc: use new PageAnonHead helper in the free page fast pathMel Gorman2-2/+7
The PageAnon check always checks for compound_head but this is a relatively expensive check if the caller already knows the page is a head page. This patch creates a helper and uses it in the page free path which only operates on head pages. With this patch and "Only check PageCompound for high-order pages", the performance difference on a page allocator microbenchmark is; 4.6.0-rc2 4.6.0-rc2 vanilla nocompound-v1r20 Min alloc-odr0-1 425.00 ( 0.00%) 417.00 ( 1.88%) Min alloc-odr0-2 313.00 ( 0.00%) 308.00 ( 1.60%) Min alloc-odr0-4 257.00 ( 0.00%) 253.00 ( 1.56%) Min alloc-odr0-8 224.00 ( 0.00%) 221.00 ( 1.34%) Min alloc-odr0-16 208.00 ( 0.00%) 205.00 ( 1.44%) Min alloc-odr0-32 199.00 ( 0.00%) 199.00 ( 0.00%) Min alloc-odr0-64 195.00 ( 0.00%) 193.00 ( 1.03%) Min alloc-odr0-128 192.00 ( 0.00%) 191.00 ( 0.52%) Min alloc-odr0-256 204.00 ( 0.00%) 200.00 ( 1.96%) Min alloc-odr0-512 213.00 ( 0.00%) 212.00 ( 0.47%) Min alloc-odr0-1024 219.00 ( 0.00%) 219.00 ( 0.00%) Min alloc-odr0-2048 225.00 ( 0.00%) 225.00 ( 0.00%) Min alloc-odr0-4096 230.00 ( 0.00%) 231.00 ( -0.43%) Min alloc-odr0-8192 235.00 ( 0.00%) 234.00 ( 0.43%) Min alloc-odr0-16384 235.00 ( 0.00%) 234.00 ( 0.43%) Min free-odr0-1 215.00 ( 0.00%) 191.00 ( 11.16%) Min free-odr0-2 152.00 ( 0.00%) 136.00 ( 10.53%) Min free-odr0-4 119.00 ( 0.00%) 107.00 ( 10.08%) Min free-odr0-8 106.00 ( 0.00%) 96.00 ( 9.43%) Min free-odr0-16 97.00 ( 0.00%) 87.00 ( 10.31%) Min free-odr0-32 91.00 ( 0.00%) 83.00 ( 8.79%) Min free-odr0-64 89.00 ( 0.00%) 81.00 ( 8.99%) Min free-odr0-128 88.00 ( 0.00%) 80.00 ( 9.09%) Min free-odr0-256 106.00 ( 0.00%) 95.00 ( 10.38%) Min free-odr0-512 116.00 ( 0.00%) 111.00 ( 4.31%) Min free-odr0-1024 125.00 ( 0.00%) 118.00 ( 5.60%) Min free-odr0-2048 133.00 ( 0.00%) 126.00 ( 5.26%) Min free-odr0-4096 136.00 ( 0.00%) 130.00 ( 4.41%) Min free-odr0-8192 138.00 ( 0.00%) 130.00 ( 5.80%) Min free-odr0-16384 137.00 ( 0.00%) 130.00 ( 5.11%) There is a sizable boost to the free allocator performance. While there is an apparent boost on the allocation side, it's likely a co-incidence or due to the patches slightly reducing cache footprint. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Jesper Dangaard Brouer <brouer@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19mm, page_alloc: only check PageCompound for high-order pagesMel Gorman1-8/+17
Another year, another round of page allocator optimisations focusing this time on the alloc and free fast paths. This should be of help to workloads that are allocator-intensive from kernel space where the cost of zeroing is not nceessraily incurred. The series is motivated by the observation that page alloc microbenchmarks on multiple machines regressed between 3.12.44 and 4.4. Second, there is discussions before LSF/MM considering the possibility of adding another page allocator which is potentially hazardous but a patch series improving performance is better than whining. After the series is applied, there are still hazards. In the free paths, the debugging checking and page zone/pageblock lookups dominate but there was not an obvious solution to that. In the alloc path, the major contributers are dealing with zonelists, new page preperation, the fair zone allocation and numerous statistic updates. The fair zone allocator is removed by the per-node LRU series if that gets merged so it's nor a major concern at the moment. On normal userspace benchmarks, there is little impact as the zeroing cost is significant but it's visible aim9 4.6.0-rc3 4.6.0-rc3 vanilla deferalloc-v3 Min page_test 828693.33 ( 0.00%) 887060.00 ( 7.04%) Min brk_test 4847266.67 ( 0.00%) 4966266.67 ( 2.45%) Min exec_test 1271.00 ( 0.00%) 1275.67 ( 0.37%) Min fork_test 12371.75 ( 0.00%) 12380.00 ( 0.07%) The overall impact on a page allocator microbenchmark for a range of orders and number of pages allocated in a batch is 4.6.0-rc3 4.6.0-rc3 vanilla deferalloc-v3r7 Min alloc-odr0-1 428.00 ( 0.00%) 316.00 ( 26.17%) Min alloc-odr0-2 314.00 ( 0.00%) 231.00 ( 26.43%) Min alloc-odr0-4 256.00 ( 0.00%) 192.00 ( 25.00%) Min alloc-odr0-8 222.00 ( 0.00%) 166.00 ( 25.23%) Min alloc-odr0-16 207.00 ( 0.00%) 154.00 ( 25.60%) Min alloc-odr0-32 197.00 ( 0.00%) 148.00 ( 24.87%) Min alloc-odr0-64 193.00 ( 0.00%) 144.00 ( 25.39%) Min alloc-odr0-128 191.00 ( 0.00%) 143.00 ( 25.13%) Min alloc-odr0-256 203.00 ( 0.00%) 153.00 ( 24.63%) Min alloc-odr0-512 212.00 ( 0.00%) 165.00 ( 22.17%) Min alloc-odr0-1024 221.00 ( 0.00%) 172.00 ( 22.17%) Min alloc-odr0-2048 225.00 ( 0.00%) 179.00 ( 20.44%) Min alloc-odr0-4096 232.00 ( 0.00%) 185.00 ( 20.26%) Min alloc-odr0-8192 235.00 ( 0.00%) 187.00 ( 20.43%) Min alloc-odr0-16384 236.00 ( 0.00%) 188.00 ( 20.34%) Min alloc-odr1-1 519.00 ( 0.00%) 450.00 ( 13.29%) Min alloc-odr1-2 391.00 ( 0.00%) 336.00 ( 14.07%) Min alloc-odr1-4 313.00 ( 0.00%) 268.00 ( 14.38%) Min alloc-odr1-8 277.00 ( 0.00%) 235.00 ( 15.16%) Min alloc-odr1-16 256.00 ( 0.00%) 218.00 ( 14.84%) Min alloc-odr1-32 252.00 ( 0.00%) 212.00 ( 15.87%) Min alloc-odr1-64 244.00 ( 0.00%) 206.00 ( 15.57%) Min alloc-odr1-128 244.00 ( 0.00%) 207.00 ( 15.16%) Min alloc-odr1-256 243.00 ( 0.00%) 207.00 ( 14.81%) Min alloc-odr1-512 245.00 ( 0.00%) 209.00 ( 14.69%) Min alloc-odr1-1024 248.00 ( 0.00%) 214.00 ( 13.71%) Min alloc-odr1-2048 253.00 ( 0.00%) 220.00 ( 13.04%) Min alloc-odr1-4096 258.00 ( 0.00%) 224.00 ( 13.18%) Min alloc-odr1-8192 261.00 ( 0.00%) 229.00 ( 12.26%) Min alloc-odr2-1 560.00 ( 0.00%) 753.00 (-34.46%) Min alloc-odr2-2 424.00 ( 0.00%) 351.00 ( 17.22%) Min alloc-odr2-4 339.00 ( 0.00%) 393.00 (-15.93%) Min alloc-odr2-8 298.00 ( 0.00%) 246.00 ( 17.45%) Min alloc-odr2-16 276.00 ( 0.00%) 227.00 ( 17.75%) Min alloc-odr2-32 271.00 ( 0.00%) 221.00 ( 18.45%) Min alloc-odr2-64 264.00 ( 0.00%) 217.00 ( 17.80%) Min alloc-odr2-128 264.00 ( 0.00%) 217.00 ( 17.80%) Min alloc-odr2-256 264.00 ( 0.00%) 218.00 ( 17.42%) Min alloc-odr2-512 269.00 ( 0.00%) 223.00 ( 17.10%) Min alloc-odr2-1024 279.00 ( 0.00%) 230.00 ( 17.56%) Min alloc-odr2-2048 283.00 ( 0.00%) 235.00 ( 16.96%) Min alloc-odr2-4096 285.00 ( 0.00%) 239.00 ( 16.14%) Min alloc-odr3-1 629.00 ( 0.00%) 505.00 ( 19.71%) Min alloc-odr3-2 472.00 ( 0.00%) 374.00 ( 20.76%) Min alloc-odr3-4 383.00 ( 0.00%) 301.00 ( 21.41%) Min alloc-odr3-8 341.00 ( 0.00%) 266.00 ( 21.99%) Min alloc-odr3-16 316.00 ( 0.00%) 248.00 ( 21.52%) Min alloc-odr3-32 308.00 ( 0.00%) 241.00 ( 21.75%) Min alloc-odr3-64 305.00 ( 0.00%) 241.00 ( 20.98%) Min alloc-odr3-128 308.00 ( 0.00%) 244.00 ( 20.78%) Min alloc-odr3-256 317.00 ( 0.00%) 249.00 ( 21.45%) Min alloc-odr3-512 327.00 ( 0.00%) 256.00 ( 21.71%) Min alloc-odr3-1024 331.00 ( 0.00%) 261.00 ( 21.15%) Min alloc-odr3-2048 333.00 ( 0.00%) 266.00 ( 20.12%) Min alloc-odr4-1 767.00 ( 0.00%) 572.00 ( 25.42%) Min alloc-odr4-2 578.00 ( 0.00%) 429.00 ( 25.78%) Min alloc-odr4-4 474.00 ( 0.00%) 346.00 ( 27.00%) Min alloc-odr4-8 422.00 ( 0.00%) 310.00 ( 26.54%) Min alloc-odr4-16 399.00 ( 0.00%) 295.00 ( 26.07%) Min alloc-odr4-32 392.00 ( 0.00%) 293.00 ( 25.26%) Min alloc-odr4-64 394.00 ( 0.00%) 293.00 ( 25.63%) Min alloc-odr4-128 405.00 ( 0.00%) 305.00 ( 24.69%) Min alloc-odr4-256 417.00 ( 0.00%) 319.00 ( 23.50%) Min alloc-odr4-512 425.00 ( 0.00%) 326.00 ( 23.29%) Min alloc-odr4-1024 426.00 ( 0.00%) 329.00 ( 22.77%) Min free-odr0-1 216.00 ( 0.00%) 178.00 ( 17.59%) Min free-odr0-2 152.00 ( 0.00%) 125.00 ( 17.76%) Min free-odr0-4 120.00 ( 0.00%) 99.00 ( 17.50%) Min free-odr0-8 106.00 ( 0.00%) 85.00 ( 19.81%) Min free-odr0-16 97.00 ( 0.00%) 80.00 ( 17.53%) Min free-odr0-32 92.00 ( 0.00%) 76.00 ( 17.39%) Min free-odr0-64 89.00 ( 0.00%) 74.00 ( 16.85%) Min free-odr0-128 89.00 ( 0.00%) 73.00 ( 17.98%) Min free-odr0-256 107.00 ( 0.00%) 90.00 ( 15.89%) Min free-odr0-512 117.00 ( 0.00%) 108.00 ( 7.69%) Min free-odr0-1024 125.00 ( 0.00%) 118.00 ( 5.60%) Min free-odr0-2048 132.00 ( 0.00%) 125.00 ( 5.30%) Min free-odr0-4096 135.00 ( 0.00%) 130.00 ( 3.70%) Min free-odr0-8192 137.00 ( 0.00%) 130.00 ( 5.11%) Min free-odr0-16384 137.00 ( 0.00%) 131.00 ( 4.38%) Min free-odr1-1 318.00 ( 0.00%) 289.00 ( 9.12%) Min free-odr1-2 228.00 ( 0.00%) 207.00 ( 9.21%) Min free-odr1-4 182.00 ( 0.00%) 165.00 ( 9.34%) Min free-odr1-8 163.00 ( 0.00%) 146.00 ( 10.43%) Min free-odr1-16 151.00 ( 0.00%) 135.00 ( 10.60%) Min free-odr1-32 146.00 ( 0.00%) 129.00 ( 11.64%) Min free-odr1-64 145.00 ( 0.00%) 130.00 ( 10.34%) Min free-odr1-128 148.00 ( 0.00%) 134.00 ( 9.46%) Min free-odr1-256 148.00 ( 0.00%) 137.00 ( 7.43%) Min free-odr1-512 151.00 ( 0.00%) 140.00 ( 7.28%) Min free-odr1-1024 154.00 ( 0.00%) 143.00 ( 7.14%) Min free-odr1-2048 156.00 ( 0.00%) 144.00 ( 7.69%) Min free-odr1-4096 156.00 ( 0.00%) 142.00 ( 8.97%) Min free-odr1-8192 156.00 ( 0.00%) 140.00 ( 10.26%) Min free-odr2-1 361.00 ( 0.00%) 457.00 (-26.59%) Min free-odr2-2 258.00 ( 0.00%) 224.00 ( 13.18%) Min free-odr2-4 208.00 ( 0.00%) 223.00 ( -7.21%) Min free-odr2-8 185.00 ( 0.00%) 160.00 ( 13.51%) Min free-odr2-16 173.00 ( 0.00%) 149.00 ( 13.87%) Min free-odr2-32 166.00 ( 0.00%) 145.00 ( 12.65%) Min free-odr2-64 166.00 ( 0.00%) 146.00 ( 12.05%) Min free-odr2-128 169.00 ( 0.00%) 148.00 ( 12.43%) Min free-odr2-256 170.00 ( 0.00%) 152.00 ( 10.59%) Min free-odr2-512 177.00 ( 0.00%) 156.00 ( 11.86%) Min free-odr2-1024 182.00 ( 0.00%) 162.00 ( 10.99%) Min free-odr2-2048 181.00 ( 0.00%) 160.00 ( 11.60%) Min free-odr2-4096 180.00 ( 0.00%) 159.00 ( 11.67%) Min free-odr3-1 431.00 ( 0.00%) 367.00 ( 14.85%) Min free-odr3-2 306.00 ( 0.00%) 259.00 ( 15.36%) Min free-odr3-4 249.00 ( 0.00%) 208.00 ( 16.47%) Min free-odr3-8 224.00 ( 0.00%) 186.00 ( 16.96%) Min free-odr3-16 208.00 ( 0.00%) 176.00 ( 15.38%) Min free-odr3-32 206.00 ( 0.00%) 174.00 ( 15.53%) Min free-odr3-64 210.00 ( 0.00%) 178.00 ( 15.24%) Min free-odr3-128 215.00 ( 0.00%) 182.00 ( 15.35%) Min free-odr3-256 224.00 ( 0.00%) 189.00 ( 15.62%) Min free-odr3-512 232.00 ( 0.00%) 195.00 ( 15.95%) Min free-odr3-1024 230.00 ( 0.00%) 195.00 ( 15.22%) Min free-odr3-2048 229.00 ( 0.00%) 193.00 ( 15.72%) Min free-odr4-1 561.00 ( 0.00%) 439.00 ( 21.75%) Min free-odr4-2 418.00 ( 0.00%) 318.00 ( 23.92%) Min free-odr4-4 339.00 ( 0.00%) 269.00 ( 20.65%) Min free-odr4-8 299.00 ( 0.00%) 239.00 ( 20.07%) Min free-odr4-16 289.00 ( 0.00%) 234.00 ( 19.03%) Min free-odr4-32 291.00 ( 0.00%) 235.00 ( 19.24%) Min free-odr4-64 298.00 ( 0.00%) 238.00 ( 20.13%) Min free-odr4-128 308.00 ( 0.00%) 251.00 ( 18.51%) Min free-odr4-256 321.00 ( 0.00%) 267.00 ( 16.82%) Min free-odr4-512 327.00 ( 0.00%) 269.00 ( 17.74%) Min free-odr4-1024 326.00 ( 0.00%) 271.00 ( 16.87%) Min total-odr0-1 644.00 ( 0.00%) 494.00 ( 23.29%) Min total-odr0-2 466.00 ( 0.00%) 356.00 ( 23.61%) Min total-odr0-4 376.00 ( 0.00%) 291.00 ( 22.61%) Min total-odr0-8 328.00 ( 0.00%) 251.00 ( 23.48%) Min total-odr0-16 304.00 ( 0.00%) 234.00 ( 23.03%) Min total-odr0-32 289.00 ( 0.00%) 224.00 ( 22.49%) Min total-odr0-64 282.00 ( 0.00%) 218.00 ( 22.70%) Min total-odr0-128 280.00 ( 0.00%) 216.00 ( 22.86%) Min total-odr0-256 310.00 ( 0.00%) 243.00 ( 21.61%) Min total-odr0-512 329.00 ( 0.00%) 273.00 ( 17.02%) Min total-odr0-1024 346.00 ( 0.00%) 290.00 ( 16.18%) Min total-odr0-2048 357.00 ( 0.00%) 304.00 ( 14.85%) Min total-odr0-4096 367.00 ( 0.00%) 315.00 ( 14.17%) Min total-odr0-8192 372.00 ( 0.00%) 317.00 ( 14.78%) Min total-odr0-16384 373.00 ( 0.00%) 319.00 ( 14.48%) Min total-odr1-1 838.00 ( 0.00%) 739.00 ( 11.81%) Min total-odr1-2 619.00 ( 0.00%) 543.00 ( 12.28%) Min total-odr1-4 495.00 ( 0.00%) 433.00 ( 12.53%) Min total-odr1-8 440.00 ( 0.00%) 382.00 ( 13.18%) Min total-odr1-16 407.00 ( 0.00%) 353.00 ( 13.27%) Min total-odr1-32 398.00 ( 0.00%) 341.00 ( 14.32%) Min total-odr1-64 389.00 ( 0.00%) 336.00 ( 13.62%) Min total-odr1-128 392.00 ( 0.00%) 341.00 ( 13.01%) Min total-odr1-256 391.00 ( 0.00%) 344.00 ( 12.02%) Min total-odr1-512 396.00 ( 0.00%) 349.00 ( 11.87%) Min total-odr1-1024 402.00 ( 0.00%) 357.00 ( 11.19%) Min total-odr1-2048 409.00 ( 0.00%) 364.00 ( 11.00%) Min total-odr1-4096 414.00 ( 0.00%) 366.00 ( 11.59%) Min total-odr1-8192 417.00 ( 0.00%) 369.00 ( 11.51%) Min total-odr2-1 921.00 ( 0.00%) 1210.00 (-31.38%) Min total-odr2-2 682.00 ( 0.00%) 576.00 ( 15.54%) Min total-odr2-4 547.00 ( 0.00%) 616.00 (-12.61%) Min total-odr2-8 483.00 ( 0.00%) 406.00 ( 15.94%) Min total-odr2-16 449.00 ( 0.00%) 376.00 ( 16.26%) Min total-odr2-32 437.00 ( 0.00%) 366.00 ( 16.25%) Min total-odr2-64 431.00 ( 0.00%) 363.00 ( 15.78%) Min total-odr2-128 433.00 ( 0.00%) 365.00 ( 15.70%) Min total-odr2-256 434.00 ( 0.00%) 371.00 ( 14.52%) Min total-odr2-512 446.00 ( 0.00%) 379.00 ( 15.02%) Min total-odr2-1024 461.00 ( 0.00%) 392.00 ( 14.97%) Min total-odr2-2048 464.00 ( 0.00%) 395.00 ( 14.87%) Min total-odr2-4096 465.00 ( 0.00%) 398.00 ( 14.41%) Min total-odr3-1 1060.00 ( 0.00%) 872.00 ( 17.74%) Min total-odr3-2 778.00 ( 0.00%) 633.00 ( 18.64%) Min total-odr3-4 632.00 ( 0.00%) 510.00 ( 19.30%) Min total-odr3-8 565.00 ( 0.00%) 452.00 ( 20.00%) Min total-odr3-16 524.00 ( 0.00%) 424.00 ( 19.08%) Min total-odr3-32 514.00 ( 0.00%) 415.00 ( 19.26%) Min total-odr3-64 515.00 ( 0.00%) 419.00 ( 18.64%) Min total-odr3-128 523.00 ( 0.00%) 426.00 ( 18.55%) Min total-odr3-256 541.00 ( 0.00%) 438.00 ( 19.04%) Min total-odr3-512 559.00 ( 0.00%) 451.00 ( 19.32%) Min total-odr3-1024 561.00 ( 0.00%) 456.00 ( 18.72%) Min total-odr3-2048 562.00 ( 0.00%) 459.00 ( 18.33%) Min total-odr4-1 1328.00 ( 0.00%) 1011.00 ( 23.87%) Min total-odr4-2 997.00 ( 0.00%) 747.00 ( 25.08%) Min total-odr4-4 813.00 ( 0.00%) 615.00 ( 24.35%) Min total-odr4-8 721.00 ( 0.00%) 550.00 ( 23.72%) Min total-odr4-16 689.00 ( 0.00%) 529.00 ( 23.22%) Min total-odr4-32 683.00 ( 0.00%) 528.00 ( 22.69%) Min total-odr4-64 692.00 ( 0.00%) 531.00 ( 23.27%) Min total-odr4-128 713.00 ( 0.00%) 556.00 ( 22.02%) Min total-odr4-256 738.00 ( 0.00%) 586.00 ( 20.60%) Min total-odr4-512 753.00 ( 0.00%) 595.00 ( 20.98%) Min total-odr4-1024 752.00 ( 0.00%) 600.00 ( 20.21%) This patch (of 27): order-0 pages by definition cannot be compound so avoid the check in the fast path for those pages. [akpm@linux-foundation.org: use unlikely(order) in free_pages_prepare(), per Vlastimil] Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Jesper Dangaard Brouer <brouer@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19mm, oom_reaper: clear TIF_MEMDIE for all tasks queued for oom_reaperMichal Hocko1-6/+11
Right now the oom reaper will clear TIF_MEMDIE only for tasks which were successfully reaped. This is the safest option because we know that such an oom victim would only block forward progress of the oom killer without a good reason because it is highly unlikely it would release much more memory. Basically most of its memory has been already torn down. We can relax this assumption to catch more corner cases though. The first obvious one is when the oom victim clears its mm and gets stuck later on. oom_reaper would back of on find_lock_task_mm returning NULL. We can safely try to clear TIF_MEMDIE in this case because such a task would be ignored by the oom killer anyway. The flag would be cleared by that time already most of the time anyway. The less obvious one is when the oom reaper fails due to mmap_sem contention. Even if we clear TIF_MEMDIE for this task then it is not very likely that we would select another task too easily because we haven't reaped the last victim and so it would be still the #1 candidate. There is a rare race condition possible when the current victim terminates before the next select_bad_process but considering that oom_reap_task had retried several times before giving up then this sounds like a borderline thing. After this patch we should have a guarantee that the OOM killer will not be block for unbounded amount of time for most cases. Signed-off-by: Michal Hocko <mhocko@suse.com> Cc: Raushaniya Maksudova <rmaksudova@parallels.com> Cc: Michael S. Tsirkin <mst@redhat.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: David Rientjes <rientjes@google.com> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Daniel Vetter <daniel.vetter@intel.com> Cc: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19oom, oom_reaper: try to reap tasks which skip regular OOM killer pathMichal Hocko3-18/+77
If either the current task is already killed or PF_EXITING or a selected task is PF_EXITING then the oom killer is suppressed and so is the oom reaper. This patch adds try_oom_reaper which checks the given task and queues it for the oom reaper if that is safe to be done meaning that the task doesn't share the mm with an alive process. This might help to release the memory pressure while the task tries to exit. [akpm@linux-foundation.org: fix nommu build] Signed-off-by: Michal Hocko <mhocko@suse.com> Cc: Raushaniya Maksudova <rmaksudova@parallels.com> Cc: Michael S. Tsirkin <mst@redhat.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: David Rientjes <rientjes@google.com> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Daniel Vetter <daniel.vetter@intel.com> Cc: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19mm, oom: move GFP_NOFS check to out_of_memoryMichal Hocko2-14/+19
__alloc_pages_may_oom is the central place to decide when the out_of_memory should be invoked. This is a good approach for most checks there because they are page allocator specific and the allocation fails right after for all of them. The notable exception is GFP_NOFS context which is faking did_some_progress and keep the page allocator looping even though there couldn't have been any progress from the OOM killer. This patch doesn't change this behavior because we are not ready to allow those allocation requests to fail yet (and maybe we will face the reality that we will never manage to safely fail these request). Instead __GFP_FS check is moved down to out_of_memory and prevent from OOM victim selection there. There are two reasons for that - OOM notifiers might release some memory even from this context as none of the registered notifier seems to be FS related - this might help a dying thread to get an access to memory reserves and move on which will make the behavior more consistent with the case when the task gets killed from a different context. Keep a comment in __alloc_pages_may_oom to make sure we do not forget how GFP_NOFS is special and that we really want to do something about it. Note to the current oom_notifier users: The observable difference for you is that oom notifiers cannot depend on any fs locks because we could deadlock. Not that this would be allowed today because that would just lockup machine in most of the cases and ruling out the OOM killer along the way. Another difference is that callbacks might be invoked sooner now because GFP_NOFS is a weaker reclaim context and so there could be reclaimable memory which is just not reachable now. That would require GFP_NOFS only loads which are really rare and more importantly the observable result would be dropping of reconstructible object and potential performance drop which is not such a big deal when we are struggling to fulfill other important allocation requests. Signed-off-by: Michal Hocko <mhocko@suse.com> Cc: Raushaniya Maksudova <rmaksudova@parallels.com> Cc: Michael S. Tsirkin <mst@redhat.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: David Rientjes <rientjes@google.com> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Daniel Vetter <daniel.vetter@intel.com> Cc: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19memory_hotplug: introduce memhp_default_state= command line parameterVitaly Kuznetsov2-0/+19
CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE specifies the default value for the memory hotplug onlining policy. Add a command line parameter to make it possible to override the default. It may come handy for debug and testing purposes. Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Dan Williams <dan.j.williams@intel.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: David Vrabel <david.vrabel@citrix.com> Cc: David Rientjes <rientjes@google.com> Cc: Igor Mammedov <imammedo@redhat.com> Cc: Lennart Poettering <lennart@poettering.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19memory_hotplug: introduce CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINEVitaly Kuznetsov3-4/+25
This patchset continues the work I started with commit 31bc3858ea3e ("memory-hotplug: add automatic onlining policy for the newly added memory"). Initially I was going to stop there and bring the policy setting logic to userspace. I met two issues on this way: 1) It is possible to have memory hotplugged at boot (e.g. with QEMU). These blocks stay offlined if we turn the onlining policy on by userspace. 2) My attempt to bring this policy setting to systemd failed, systemd maintainers suggest to change the default in kernel or ... to use tmpfiles.d to alter the policy (which looks like a hack to me): https://github.com/systemd/systemd/pull/2938 Here I suggest to add a config option to set the default value for the policy and a kernel command line parameter to make the override. This patch (of 2): Introduce config option to set the default value for memory hotplug onlining policy (/sys/devices/system/memory/auto_online_blocks). The reason one would want to turn this option on are to have early onlining for hotpluggable memory available at boot and to not require any userspace actions to make memory hotplug work. [akpm@linux-foundation.org: tweak Kconfig text] Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Dan Williams <dan.j.williams@intel.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: David Vrabel <david.vrabel@citrix.com> Cc: David Rientjes <rientjes@google.com> Cc: Igor Mammedov <imammedo@redhat.com> Cc: Lennart Poettering <lennart@poettering.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19arch: fix has_transparent_hugepage()Hugh Dickins12-26/+23
I've just discovered that the useful-sounding has_transparent_hugepage() is actually an architecture-dependent minefield: on some arches it only builds if CONFIG_TRANSPARENT_HUGEPAGE=y, on others it's also there when not, but on some of those (arm and arm64) it then gives the wrong answer; and on mips alone it's marked __init, which would crash if called later (but so far it has not been called later). Straighten this out: make it available to all configs, with a sensible default in asm-generic/pgtable.h, removing its definitions from those arches (arc, arm, arm64, sparc, tile) which are served by the default, adding #define has_transparent_hugepage has_transparent_hugepage to those (mips, powerpc, s390, x86) which need to override the default at runtime, and removing the __init from mips (but maybe that kind of code should be avoided after init: set a static variable the first time it's called). Signed-off-by: Hugh Dickins <hughd@google.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Andres Lagar-Cavilla <andreslc@google.com> Cc: Yang Shi <yang.shi@linaro.org> Cc: Ning Qu <quning@gmail.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Konstantin Khlebnikov <koct9i@gmail.com> Acked-by: David S. Miller <davem@davemloft.net> Acked-by: Vineet Gupta <vgupta@synopsys.com> [arch/arc] Acked-by: Gerald Schaefer <gerald.schaefer@de.ibm.com> [arch/s390] Acked-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>