aboutsummaryrefslogtreecommitdiffstats
path: root/mm/huge_memory.c (follow)
AgeCommit message (Collapse)AuthorFilesLines
2012-10-15mm: huge_memory: Fix build error.Ralf Baechle1-0/+1
Certain configurations won't implicitly pull in <linux/pagemap.h> resulting in the following build error: mm/huge_memory.c: In function 'release_pte_page': mm/huge_memory.c:1697:2: error: implicit declaration of function 'unlock_page' [-Werror=implicit-function-declaration] mm/huge_memory.c: In function '__collapse_huge_page_isolate': mm/huge_memory.c:1757:3: error: implicit declaration of function 'trylock_page' [-Werror=implicit-function-declaration] cc1: some warnings being treated as errors Reported-by: David Daney <david.daney@cavium.com> Signed-off-by: Ralf Baechle <ralf@linux-mips.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09mm: thp: Use more portable PMD clearing sequenece in zap_huge_pmd().David Miller1-2/+3
Invalidation sequences are handled in various ways on various architectures. One way, which sparc64 uses, is to let the set_*_at() functions accumulate pending flushes into a per-cpu array. Then the flush_tlb_range() et al. calls process the pending TLB flushes. In this regime, the __tlb_remove_*tlb_entry() implementations are essentially NOPs. The canonical PTE zap in mm/memory.c is: ptent = ptep_get_and_clear_full(mm, addr, pte, tlb->fullmm); tlb_remove_tlb_entry(tlb, pte, addr); With a subsequent tlb_flush_mmu() if needed. Mirror this in the THP PMD zapping using: orig_pmd = pmdp_get_and_clear(tlb->mm, addr, pmd); page = pmd_page(orig_pmd); tlb_remove_pmd_tlb_entry(tlb, pmd, addr); And we properly accomodate TLB flush mechanims like the one described above. Signed-off-by: David S. Miller <davem@davemloft.net> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Gerald Schaefer <gerald.schaefer@de.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09mm: Add and use update_mmu_cache_pmd() in transparent huge page code.David Miller1-3/+3
The transparent huge page code passes a PMD pointer in as the third argument of update_mmu_cache(), which expects a PTE pointer. This never got noticed because X86 implements update_mmu_cache() as a macro and thus we don't get any type checking, and X86 is the only architecture which supports transparent huge pages currently. Before other architectures can support transparent huge pages properly we need to add a new interface which will take a PMD pointer as the third argument rather than a PTE pointer. [akpm@linux-foundation.org: implement update_mm_cache_pmd() for s390] Signed-off-by: David S. Miller <davem@davemloft.net> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Gerald Schaefer <gerald.schaefer@de.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09mm, thp: fix mapped pages avoiding unevictable list on mlockDavid Rientjes1-1/+10
When a transparent hugepage is mapped and it is included in an mlock() range, follow_page() incorrectly avoids setting the page's mlock bit and moving it to the unevictable lru. This is evident if you try to mlock(), munlock(), and then mlock() a range again. Currently: #define MAP_SIZE (4 << 30) /* 4GB */ void *ptr = mmap(NULL, MAP_SIZE, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0); mlock(ptr, MAP_SIZE); $ grep -E "Unevictable|Inactive\(anon" /proc/meminfo Inactive(anon): 6304 kB Unevictable: 4213924 kB munlock(ptr, MAP_SIZE); Inactive(anon): 4186252 kB Unevictable: 19652 kB mlock(ptr, MAP_SIZE); Inactive(anon): 4198556 kB Unevictable: 21684 kB Notice that less than 2MB was added to the unevictable list; this is because these pages in the range are not transparent hugepages since the 4GB range was allocated with mmap() and has no specific alignment. If posix_memalign() were used instead, unevictable would not have grown at all on the second mlock(). The fix is to call mlock_vma_page() so that the mlock bit is set and the page is added to the unevictable list. With this patch: mlock(ptr, MAP_SIZE); Inactive(anon): 4056 kB Unevictable: 4213940 kB munlock(ptr, MAP_SIZE); Inactive(anon): 4198268 kB Unevictable: 19636 kB mlock(ptr, MAP_SIZE); Inactive(anon): 4008 kB Unevictable: 4213940 kB Signed-off-by: David Rientjes <rientjes@google.com> Acked-by: Hugh Dickins <hughd@google.com> Reviewed-by: Andrea Arcangeli <aarcange@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michel Lespinasse <walken@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09mm: move all mmu notifier invocations to be done outside the PT lockSagi Grimberg1-6/+36
In order to allow sleeping during mmu notifier calls, we need to avoid invoking them under the page table spinlock. This patch solves the problem by calling invalidate_page notification after releasing the lock (but before freeing the page itself), or by wrapping the page invalidation with calls to invalidate_range_begin and invalidate_range_end. To prevent accidental changes to the invalidate_range_end arguments after the call to invalidate_range_begin, the patch introduces a convention of saving the arguments in consistently named locals: unsigned long mmun_start; /* For mmu_notifiers */ unsigned long mmun_end; /* For mmu_notifiers */ ... mmun_start = ... mmun_end = ... mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); ... mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); The patch changes code to use this convention for all calls to mmu_notifier_invalidate_range_start/end, except those where the calls are close enough so that anyone who glances at the code can see the values aren't changing. This patchset is a preliminary step towards on-demand paging design to be added to the RDMA stack. Why do we want on-demand paging for Infiniband? Applications register memory with an RDMA adapter using system calls, and subsequently post IO operations that refer to the corresponding virtual addresses directly to HW. Until now, this was achieved by pinning the memory during the registration calls. The goal of on demand paging is to avoid pinning the pages of registered memory regions (MRs). This will allow users the same flexibility they get when swapping any other part of their processes address spaces. Instead of requiring the entire MR to fit in physical memory, we can allow the MR to be larger, and only fit the current working set in physical memory. Why should anyone care? What problems are users currently experiencing? This can make programming with RDMA much simpler. Today, developers that are working with more data than their RAM can hold need either to deregister and reregister memory regions throughout their process's life, or keep a single memory region and copy the data to it. On demand paging will allow these developers to register a single MR at the beginning of their process's life, and let the operating system manage which pages needs to be fetched at a given time. In the future, we might be able to provide a single memory access key for each process that would provide the entire process's address as one large memory region, and the developers wouldn't need to register memory regions at all. Is there any prospect that any other subsystems will utilise these infrastructural changes? If so, which and how, etc? As for other subsystems, I understand that XPMEM wanted to sleep in MMU notifiers, as Christoph Lameter wrote at http://lkml.indiana.edu/hypermail/linux/kernel/0802.1/0460.html and perhaps Andrea knows about other use cases. Scheduling in mmu notifications is required since we need to sync the hardware with the secondary page tables change. A TLB flush of an IO device is inherently slower than a CPU TLB flush, so our design works by sending the invalidation request to the device, and waiting for an interrupt before exiting the mmu notifier handler. Avi said: kvm may be a buyer. kvm::mmu_lock, which serializes guest page faults, also protects long operations such as destroying large ranges. It would be good to convert it into a spinlock, but as it is used inside mmu notifiers, this cannot be done. (there are alternatives, such as keeping the spinlock and using a generation counter to do the teardown in O(1), which is what the "may" is doing up there). [akpm@linux-foundation.orgpossible speed tweak in hugetlb_cow(), cleanups] Signed-off-by: Andrea Arcangeli <andrea@qumranet.com> Signed-off-by: Sagi Grimberg <sagig@mellanox.com> Signed-off-by: Haggai Eran <haggaie@mellanox.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com> Cc: Or Gerlitz <ogerlitz@mellanox.com> Cc: Haggai Eran <haggaie@mellanox.com> Cc: Shachar Raindel <raindel@mellanox.com> Cc: Liran Liss <liranl@mellanox.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Avi Kivity <avi@redhat.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09mm: thp: fix the update_mmu_cache() last argument passing in mm/huge_memory.cCatalin Marinas1-3/+3
The update_mmu_cache() takes a pointer (to pte_t by default) as the last argument but the huge_memory.c passes a pmd_t value. The patch changes the argument to the pmd_t * pointer. Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Steve Capper <steve.capper@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com> Cc: Arnd Bergmann <arnd@arndb.de> Reviewed-by: Kirill A. Shutemov <kirill@shutemov.name> Cc: Michal Hocko <mhocko@suse.cz> Cc: Gerald Schaefer <gerald.schaefer@de.ibm.com> Reviewed-by: Andrea Arcangeli <aarcange@redhat.com> Cc: Chris Metcalf <cmetcalf@tilera.com> Cc: Ralf Baechle <ralf@linux-mips.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09thp: khugepaged_prealloc_page() forgot to reset the page alloc indicatorXiao Guangrong1-0/+1
If NUMA is enabled, the indicator is not reset if the previous page request failed, ausing us to trigger the BUG_ON() in khugepaged_alloc_page(). Signed-off-by: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com> Cc: Hugh Dickins <hughd@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Michel Lespinasse <walken@google.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09mm rmap: remove vma_address check for address inside vmaMichel Lespinasse1-4/+0
In file and anon rmap, we use interval trees to find potentially relevant vmas and then call vma_address() to find the virtual address the given page might be found at in these vmas. vma_address() used to include a check that the returned address falls within the limits of the vma, but this check isn't necessary now that we always use interval trees in rmap: the interval tree just doesn't return any vmas which this check would find to be irrelevant. As a result, we can replace the use of -EFAULT error code (which then needed to be checked in every call site) with a VM_BUG_ON(). Signed-off-by: Michel Lespinasse <walken@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Daniel Santos <daniel.santos@pobox.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09mm anon rmap: replace same_anon_vma linked list with an interval tree.Michel Lespinasse1-2/+3
When a large VMA (anon or private file mapping) is first touched, which will populate its anon_vma field, and then split into many regions through the use of mprotect(), the original anon_vma ends up linking all of the vmas on a linked list. This can cause rmap to become inefficient, as we have to walk potentially thousands of irrelevent vmas before finding the one a given anon page might fall into. By replacing the same_anon_vma linked list with an interval tree (where each avc's interval is determined by its vma's start and last pgoffs), we can make rmap efficient for this use case again. While the change is large, all of its pieces are fairly simple. Most places that were walking the same_anon_vma list were looking for a known pgoff, so they can just use the anon_vma_interval_tree_foreach() interval tree iterator instead. The exception here is ksm, where the page's index is not known. It would probably be possible to rework ksm so that the index would be known, but for now I have decided to keep things simple and just walk the entirety of the interval tree there. When updating vma's that already have an anon_vma assigned, we must take care to re-index the corresponding avc's on their interval tree. This is done through the use of anon_vma_interval_tree_pre_update_vma() and anon_vma_interval_tree_post_update_vma(), which remove the avc's from their interval tree before the update and re-insert them after the update. The anon_vma stays locked during the update, so there is no chance that rmap would miss the vmas that are being updated. Signed-off-by: Michel Lespinasse <walken@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Daniel Santos <daniel.santos@pobox.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09thp: make MADV_HUGEPAGE check for mm->def_flagsGerald Schaefer1-0/+4
This adds a check to hugepage_madvise(), to refuse MADV_HUGEPAGE if VM_NOHUGEPAGE is set in mm->def_flags. On s390, the VM_NOHUGEPAGE flag will be set in mm->def_flags for kvm processes, to prevent any future thp mappings. In order to also prevent MADV_HUGEPAGE on such an mm, hugepage_madvise() should check mm->def_flags. Signed-off-by: Gerald Schaefer <gerald.schaefer@de.ibm.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: Hillf Danton <dhillf@gmail.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09thp: introduce pmdp_invalidate()Gerald Schaefer1-2/+1
On s390, a valid page table entry must not be changed while it is attached to any CPU. So instead of pmd_mknotpresent() and set_pmd_at(), an IDTE operation would be necessary there. This patch introduces the pmdp_invalidate() function, to allow architecture-specific implementations. Signed-off-by: Gerald Schaefer <gerald.schaefer@de.ibm.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: Hillf Danton <dhillf@gmail.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09thp: remove assumptions on pgtable_t typeGerald Schaefer1-42/+8
The thp page table pre-allocation code currently assumes that pgtable_t is of type "struct page *". This may not be true for all architectures, so this patch removes that assumption by replacing the functions prepare_pmd_huge_pte() and get_pmd_huge_pte() with two new functions that can be defined architecture-specific. It also removes two VM_BUG_ON checks for page_count() and page_mapcount() operating on a pgtable_t. Apart from the VM_BUG_ON removal, there will be no functional change introduced by this patch. Signed-off-by: Gerald Schaefer <gerald.schaefer@de.ibm.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: Hillf Danton <dhillf@gmail.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09thp: remove unnecessary set_recommended_min_free_kbytesXiao Guangrong1-5/+0
Since it is called in start_khugepaged Signed-off-by: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09thp: use khugepaged_enabled to remove duplicate codeXiao Guangrong1-9/+2
Use khugepaged_enabled to see whether thp is enabled Signed-off-by: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09thp: remove khugepaged_loopXiao Guangrong1-10/+4
Merge khugepaged_loop into khugepaged Signed-off-by: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09thp: introduce khugepaged_prealloc_page and khugepaged_alloc_pageXiao Guangrong1-68/+98
They are used to abstract the difference between NUMA enabled and NUMA disabled to make the code more readable Signed-off-by: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09thp: release page in page pre-alloc pathXiao Guangrong1-12/+7
If NUMA is enabled, we can release the page in the page pre-alloc operation, then the CONFIG_NUMA dependent code can be reduced Signed-off-by: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09thp: merge page pre-alloc in khugepaged_loop into khugepaged_do_scanXiao Guangrong1-52/+45
There are two pre-alloc operations in these two function, the different is: - it allows to sleep if page alloc fail in khugepaged_loop - it exits immediately if page alloc fail in khugepaged_do_scan Actually, in khugepaged_do_scan, we can allow the pre-alloc to sleep on the first failure, then the operation in khugepaged_loop can be removed Signed-off-by: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09thp: remove some code depend on CONFIG_NUMAXiao Guangrong1-7/+3
If NUMA is disabled, hpage is used as page pre-alloc, so there are two cases for hpage: - it is !NULL, means the page is not consumed otherwise, - the page has been consumed If NUMA is enabled, hpage is just used as alloc-fail indicator which is not a real page, NULL means not fail triggered. So, we can release the page only if !IS_ERR_OR_NULL Signed-off-by: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09thp: remove wake_up_interruptible in the exit pathXiao Guangrong1-14/+21
Add the check of kthread_should_stop() to the conditions which are used to wakeup on khugepaged_wait, then kthread_stop is enough to let the thread exit Signed-off-by: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09thp: remove unnecessary khugepaged_thread checkXiao Guangrong1-4/+1
Now, khugepaged creation and cancel are completely serial under the protection of khugepaged_mutex, it is impossible that many khugepaged entities are running Signed-off-by: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09thp: move khugepaged_mutex out of khugepagedXiao Guangrong1-23/+13
Currently, hugepaged_mutex is used really complexly and hard to understand, actually, it is just used to serialize start_khugepaged and khugepaged for these reasons: - khugepaged_thread is shared between them - the thp disable path (echo never > transparent_hugepage/enabled) is nonblocking, so we need to protect khugepaged_thread to get a stable running state These can be avoided by: - use the lock to serialize the thread creation and cancel - thp disable path can not finised until the thread exits Then khugepaged_thread is fully controlled by start_khugepaged, khugepaged will be happy without the lock Signed-off-by: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09thp: remove unnecessary check in start_khugepagedXiao Guangrong1-5/+2
The check is unnecessary since if mm_slot_cache or mm_slots_hash initialize failed, no sysfs interface will be created Signed-off-by: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09thp: fix the count of THP_COLLAPSE_ALLOCXiao Guangrong1-1/+1
THP_COLLAPSE_ALLOC is double counted if NUMA is disabled since it has already been calculated in khugepaged_alloc_hugepage Signed-off-by: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09mm: kill vma flag VM_INSERTPAGEKonstantin Khlebnikov1-2/+1
Merge VM_INSERTPAGE into VM_MIXEDMAP. VM_MIXEDMAP VMA can mix pure-pfn ptes, special ptes and normal ptes. Now copy_page_range() always copies VM_MIXEDMAP VMA on fork like VM_PFNMAP. If driver populates whole VMA at mmap() it probably not expects page-faults. This patch removes special check from vma_wants_writenotify() which disables pages write tracking for VMA populated via vm_instert_page(). BDI below mapped file should not use dirty-accounting, moreover do_wp_page() can handle this. vm_insert_page() still marks vma after first usage. Usually it is called from f_op->mmap() handler under mm->mmap_sem write-lock, so it able to change vma->vm_flags. Caller must set VM_MIXEDMAP at mmap time if it wants to call this function from other places, for example from page-fault handler. Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Carsten Otte <cotte@de.ibm.com> Cc: Chris Metcalf <cmetcalf@tilera.com> Cc: Cyrill Gorcunov <gorcunov@openvz.org> Cc: Eric Paris <eparis@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Hugh Dickins <hughd@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: James Morris <james.l.morris@oracle.com> Cc: Jason Baron <jbaron@redhat.com> Cc: Kentaro Takeda <takedakn@nttdata.co.jp> Cc: Matt Helsley <matthltc@us.ibm.com> Cc: Nick Piggin <npiggin@kernel.dk> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Robert Richter <robert.richter@amd.com> Cc: Suresh Siddha <suresh.b.siddha@intel.com> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Venkatesh Pallipadi <venki@google.com> Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09mm: introduce arch-specific vma flag VM_ARCH_1Konstantin Khlebnikov1-1/+1
Combine several arch-specific vma flags into one. before patch: 0x00000200 0x01000000 0x20000000 0x40000000 x86 VM_NOHUGEPAGE VM_HUGEPAGE - VM_PAT powerpc - - VM_SAO - parisc VM_GROWSUP - - - ia64 VM_GROWSUP - - - nommu - VM_MAPPED_COPY - - others - - - - after patch: 0x00000200 0x01000000 0x20000000 0x40000000 x86 - VM_PAT VM_HUGEPAGE VM_NOHUGEPAGE powerpc - VM_SAO - - parisc - VM_GROWSUP - - ia64 - VM_GROWSUP - - nommu - VM_MAPPED_COPY - - others - VM_ARCH_1 - - And voila! One completely free bit. Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Carsten Otte <cotte@de.ibm.com> Cc: Chris Metcalf <cmetcalf@tilera.com> Cc: Cyrill Gorcunov <gorcunov@openvz.org> Cc: Eric Paris <eparis@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Hugh Dickins <hughd@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: James Morris <james.l.morris@oracle.com> Cc: Jason Baron <jbaron@redhat.com> Cc: Kentaro Takeda <takedakn@nttdata.co.jp> Cc: Matt Helsley <matthltc@us.ibm.com> Cc: Nick Piggin <npiggin@kernel.dk> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Robert Richter <robert.richter@amd.com> Cc: Suresh Siddha <suresh.b.siddha@intel.com> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Venkatesh Pallipadi <venki@google.com> Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09mm, x86, pat: rework linear pfn-mmap trackingKonstantin Khlebnikov1-16/+3
Replace the generic vma-flag VM_PFN_AT_MMAP with x86-only VM_PAT. We can toss mapping address from remap_pfn_range() into track_pfn_vma_new(), and collect all PAT-related logic together in arch/x86/. This patch also restores orignal frustration-free is_cow_mapping() check in remap_pfn_range(), as it was before commit v2.6.28-rc8-88-g3c8bb73 ("x86: PAT: store vm_pgoff for all linear_over_vma_region mappings - v3") is_linear_pfn_mapping() checks can be removed from mm/huge_memory.c, because it already handled by VM_PFNMAP in VM_NO_THP bit-mask. [suresh.b.siddha@intel.com: Reset the VM_PAT flag as part of untrack_pfn_vma()] Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org> Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com> Cc: Venkatesh Pallipadi <venki@google.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Nick Piggin <npiggin@kernel.dk> Cc: Ingo Molnar <mingo@redhat.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Carsten Otte <cotte@de.ibm.com> Cc: Chris Metcalf <cmetcalf@tilera.com> Cc: Cyrill Gorcunov <gorcunov@openvz.org> Cc: Eric Paris <eparis@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: James Morris <james.l.morris@oracle.com> Cc: Jason Baron <jbaron@redhat.com> Cc: Kentaro Takeda <takedakn@nttdata.co.jp> Cc: Matt Helsley <matthltc@us.ibm.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Robert Richter <robert.richter@amd.com> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Venkatesh Pallipadi <venki@google.com> Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-09-28thp: avoid VM_BUG_ON page_count(page) false positives in __collapse_huge_page_copyAndrea Arcangeli1-1/+0
Speculative cache pagecache lookups can elevate the refcount from under us, so avoid the false positive. If the refcount is < 2 we'll be notified by a VM_BUG_ON in put_page_testzero as there are two put_page(src_page) in a row before returning from this function. Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Reviewed-by: Rik van Riel <riel@redhat.com> Reviewed-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Hugh Dickins <hughd@google.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Petr Holasek <pholasek@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-05-29mm/memcg: apply add/del_page to lruvecHugh Dickins1-3/+5
Take lruvec further: pass it instead of zone to add_page_to_lru_list() and del_page_from_lru_list(); and pagevec_lru_move_fn() pass lruvec down to its target functions. This cleanup eliminates a swathe of cruft in memcontrol.c, including mem_cgroup_lru_add_list(), mem_cgroup_lru_del_list() and mem_cgroup_lru_move_lists() - which never actually touched the lists. In their place, mem_cgroup_page_lruvec() to decide the lruvec, previously a side-effect of add, and mem_cgroup_update_lru_size() to maintain the lru_size stats. Whilst these are simplifications in their own right, the goal is to bring the evaluation of lruvec next to the spin_locking of the lrus, in preparation for a future patch. Signed-off-by: Hugh Dickins <hughd@google.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: Michal Hocko <mhocko@suse.cz> Acked-by: Konstantin Khlebnikov <khlebnikov@openvz.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-05-29mm, thp: drop page_table_lock to uncharge memcg pagesDavid Rientjes1-0/+2
mm->page_table_lock is hotly contested for page fault tests and isn't necessary to do mem_cgroup_uncharge_page() in do_huge_pmd_wp_page(). Signed-off-by: David Rientjes <rientjes@google.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-05-29thp, memcg: split hugepage for memcg oom on cowDavid Rientjes1-0/+3
On COW, a new hugepage is allocated and charged to the memcg. If the system is oom or the charge to the memcg fails, however, the fault handler will return VM_FAULT_OOM which results in an oom kill. Instead, it's possible to fallback to splitting the hugepage so that the COW results only in an order-0 page being allocated and charged to the memcg which has a higher liklihood to succeed. This is expensive because the hugepage must be split in the page fault handler, but it is much better than unnecessarily oom killing a process. Signed-off-by: David Rientjes <rientjes@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Johannes Weiner <jweiner@redhat.com> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Michal Hocko <mhocko@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-05-29mm, thp: allow fallback when pte_alloc_one() fails for huge pmdDavid Rientjes1-5/+8
The transparent hugepages feature is careful to not invoke the oom killer when a hugepage cannot be allocated. pte_alloc_one() failing in __do_huge_pmd_anonymous_page(), however, currently results in VM_FAULT_OOM which invokes the pagefault oom killer to kill a memory-hogging task. This is unnecessary since it's possible to drop the reference to the hugepage and fallback to allocating a small page. Signed-off-by: David Rientjes <rientjes@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-05-29mm, thp: remove unnecessary ret variableDavid Rientjes1-2/+1
The "ret" variable is unnecessary in __do_huge_pmd_anonymous_page(), so remove it. Signed-off-by: David Rientjes <rientjes@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-21thp: optimize away unnecessary page table lockingNaoya Horiguchi1-66/+59
Currently when we check if we can handle thp as it is or we need to split it into regular sized pages, we hold page table lock prior to check whether a given pmd is mapping thp or not. Because of this, when it's not "huge pmd" we suffer from unnecessary lock/unlock overhead. To remove it, this patch introduces a optimized check function and replace several similar logics with it. [akpm@linux-foundation.org: checkpatch fixes] Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: David Rientjes <rientjes@google.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Jiri Slaby <jslaby@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-05mm: thp: fix BUG on mm->nr_ptesAndrea Arcangeli1-3/+3
Dave Jones reports a few Fedora users hitting the BUG_ON(mm->nr_ptes...) in exit_mmap() recently. Quoting Hugh's discovery and explanation of the SMP race condition: "mm->nr_ptes had unusual locking: down_read mmap_sem plus page_table_lock when incrementing, down_write mmap_sem (or mm_users 0) when decrementing; whereas THP is careful to increment and decrement it under page_table_lock. Now most of those paths in THP also hold mmap_sem for read or write (with appropriate checks on mm_users), but two do not: when split_huge_page() is called by hwpoison_user_mappings(), and when called by add_to_swap(). It's conceivable that the latter case is responsible for the exit_mmap() BUG_ON mm->nr_ptes that has been reported on Fedora." The simplest way to fix it without having to alter the locking is to make split_huge_page() a noop in nr_ptes terms, so by counting the preallocated pagetables that exists for every mapped hugepage. It was an arbitrary choice not to count them and either way is not wrong or right, because they are not used but they're still allocated. Reported-by: Dave Jones <davej@redhat.com> Reported-by: Hugh Dickins <hughd@google.com> Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Hugh Dickins <hughd@google.com> Cc: David Rientjes <rientjes@google.com> Cc: Josh Boyer <jwboyer@redhat.com> Cc: <stable@vger.kernel.org> [3.0.x, 3.1.x, 3.2.x] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-02-08mm: fix UP THP spin_is_locked BUGsHugh Dickins1-2/+2
Fix CONFIG_TRANSPARENT_HUGEPAGE=y CONFIG_SMP=n CONFIG_DEBUG_VM=y CONFIG_DEBUG_SPINLOCK=n kernel: spin_is_locked() is then always false, and so triggers some BUGs in Transparent HugePage codepaths. asm-generic/bug.h mentions this problem, and provides a WARN_ON_SMP(x); but being too lazy to add VM_BUG_ON_SMP, BUG_ON_SMP, WARN_ON_SMP_ONCE, VM_WARN_ON_SMP_ONCE, just test NR_CPUS != 1 in the existing VM_BUG_ONs. Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-12memcg: fix split_huge_page_refcounts()Hugh Dickins1-10/+0
This patch started off as a cleanup: __split_huge_page_refcounts() has to cope with two scenarios, when the hugepage being split is already on LRU, and when it is not; but why does it have to split that accounting across three different sites? Consolidate it in lru_add_page_tail(), handling evictable and unevictable alike, and use standard add_page_to_lru_list() when accounting is needed (when the head is not yet on LRU). But a recent regression in -next, I guess the removal of PageCgroupAcctLRU test from mem_cgroup_split_huge_fixup(), makes this now a necessary fix: under load, the MEM_CGROUP_ZSTAT count was wrapping to a huge number, messing up reclaim calculations and causing a freeze at rmdir of cgroup. Add a VM_BUG_ON to mem_cgroup_lru_del_list() when we're about to wrap that count - this has not been the only such incident. Document that lru_add_page_tail() is for Transparent HugePages by #ifdef around it. Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-12thp: improve order in lru list for split huge pageShaohua Li1-3/+2
Put the tail subpages of an isolated hugepage under splitting in the lru reclaim head as they supposedly should be isolated too next. Queues the subpages in physical order in the lru for non isolated hugepages under splitting. That might provide some theoretical cache benefit to the buddy allocator later. Signed-off-by: Shaohua Li <shaohua.li@intel.com> Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Johannes Weiner <jweiner@redhat.com> Cc: Minchan Kim <minchan.kim@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-12thp: add tlb_remove_pmd_tlb_entryShaohua Li1-1/+2
We have tlb_remove_tlb_entry to indicate a pte tlb flush entry should be flushed, but not a corresponding API for pmd entry. This isn't a problem so far because THP is only for x86 currently and tlb_flush() under x86 will flush entire TLB. But this is confusion and could be missed if thp is ported to other arch. Also convert tlb->need_flush = 1 to a VM_BUG_ON(!tlb->need_flush) in __tlb_remove_page() as suggested by Andrea Arcangeli. The __tlb_remove_page() function is supposed to be called after tlb_remove_xxx_tlb_entry() and we can catch any misuse. Signed-off-by: Shaohua Li <shaohua.li@intel.com> Reviewed-by: Andrea Arcangeli <aarcange@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Johannes Weiner <jweiner@redhat.com> Cc: Minchan Kim <minchan.kim@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-12thp: remove unnecessary tlb flush for mprotectShaohua Li1-1/+0
change_protection() will do TLB flush later, don't need duplicate tlb flush. Signed-off-by: Shaohua Li <shaohua.li@intel.com> Reviewed-by: Andrea Arcangeli <aarcange@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Johannes Weiner <jweiner@redhat.com> Cc: Minchan Kim <minchan.kim@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-12thp: improve the error code pathShaohua Li1-21/+50
Improve the error code path. Delete unnecessary sysfs file for example. Also remove the #ifdef xxx to make code better. Signed-off-by: Shaohua Li <shaohua.li@intel.com> Reviewed-by: Andrea Arcangeli <aarcange@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Johannes Weiner <jweiner@redhat.com> Cc: Minchan Kim <minchan.kim@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-12memcg: make mem_cgroup_split_huge_fixup() more efficientKAMEZAWA Hiroyuki1-1/+2
In split_huge_page(), mem_cgroup_split_huge_fixup() is called to handle page_cgroup modifcations. It takes move_lock_page_cgroup() and modifies page_cgroup and LRU accounting jobs and called HPAGE_PMD_SIZE - 1 times. But thinking again, - compound_lock() is held at move_accout...then, it's not necessary to take move_lock_page_cgroup(). - LRU is locked and all tail pages will go into the same LRU as head is now on. - page_cgroup is contiguous in huge page range. This patch fixes mem_cgroup_split_huge_fixup() as to be called once per hugepage and reduce costs for spliting. [akpm@linux-foundation.org: fix typo, per Michal] Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Reviewed-by: Michal Hocko <mhocko@suse.cz> Cc: Balbir Singh <bsingharora@gmail.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-12-09thp: reduce khugepaged freezing latencyAndrea Arcangeli1-12/+4
khugepaged can sometimes cause suspend to fail, requiring that the user retry the suspend operation. Use wait_event_freezable_timeout() instead of schedule_timeout_interruptible() to avoid missing freezer wakeups. A try_to_freeze() would have been needed in the khugepaged_alloc_hugepage tight loop too in case of the allocation failing repeatedly, and wait_event_freezable_timeout will provide it too. khugepaged would still freeze just fine by trying again the next minute but it's better if it freezes immediately. Reported-by: Jiri Slaby <jslaby@suse.cz> Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Tested-by: Jiri Slaby <jslaby@suse.cz> Cc: Tejun Heo <tj@kernel.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: "Srivatsa S. Bhat" <srivatsa.bhat@linux.vnet.ibm.com> Cc: "Rafael J. Wysocki" <rjw@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-11-02mm: thp: tail page refcounting fixAndrea Arcangeli1-11/+26
Michel while working on the working set estimation code, noticed that calling get_page_unless_zero() on a random pfn_to_page(random_pfn) wasn't safe, if the pfn ended up being a tail page of a transparent hugepage under splitting by __split_huge_page_refcount(). He then found the problem could also theoretically materialize with page_cache_get_speculative() during the speculative radix tree lookups that uses get_page_unless_zero() in SMP if the radix tree page is freed and reallocated and get_user_pages is called on it before page_cache_get_speculative has a chance to call get_page_unless_zero(). So the best way to fix the problem is to keep page_tail->_count zero at all times. This will guarantee that get_page_unless_zero() can never succeed on any tail page. page_tail->_mapcount is guaranteed zero and is unused for all tail pages of a compound page, so we can simply account the tail page references there and transfer them to tail_page->_count in __split_huge_page_refcount() (in addition to the head_page->_mapcount). While debugging this s/_count/_mapcount/ change I also noticed get_page is called by direct-io.c on pages returned by get_user_pages. That wasn't entirely safe because the two atomic_inc in get_page weren't atomic. As opposed to other get_user_page users like secondary-MMU page fault to establish the shadow pagetables would never call any superflous get_page after get_user_page returns. It's safer to make get_page universally safe for tail pages and to use get_page_foll() within follow_page (inside get_user_pages()). get_page_foll() is safe to do the refcounting for tail pages without taking any locks because it is run within PT lock protected critical sections (PT lock for pte and page_table_lock for pmd_trans_huge). The standard get_page() as invoked by direct-io instead will now take the compound_lock but still only for tail pages. The direct-io paths are usually I/O bound and the compound_lock is per THP so very finegrined, so there's no risk of scalability issues with it. A simple direct-io benchmarks with all lockdep prove locking and spinlock debugging infrastructure enabled shows identical performance and no overhead. So it's worth it. Ideally direct-io should stop calling get_page() on pages returned by get_user_pages(). The spinlock in get_page() is already optimized away for no-THP builds but doing get_page() on tail pages returned by GUP is generally a rare operation and usually only run in I/O paths. This new refcounting on page_tail->_mapcount in addition to avoiding new RCU critical sections will also allow the working set estimation code to work without any further complexity associated to the tail page refcounting with THP. Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Reported-by: Michel Lespinasse <walken@google.com> Reviewed-by: Michel Lespinasse <walken@google.com> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <jweiner@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: David Gibson <david@gibson.dropbear.id.au> Cc: <stable@kernel.org> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-10-31mm/huge_memory: fix typo when updating mmu cacheHillf Danton1-1/+1
There are three cases of update_mmu_cache() in the file, and the case in function collapse_huge_page() has a typo, namely the last parameter used, which is corrected based on the other two cases. Due to the define of update_mmu_cache by X86, the only arch that implements THP currently, the change here has no really crystal point, but one or two minutes of efforts could be saved for those archs that are likely to support THP in future. Signed-off-by: Hillf Danton <dhillf@gmail.com> Cc: Johannes Weiner <jweiner@redhat.com> Reviewed-by: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-10-31mm/huge_memory: fix copying user highpageHillf Danton1-1/+1
The THP copy-on-write handler falls back to regular-sized pages for a huge page replacement upon allocation failure or if THP has been individually disabled in the target VMA. The loop responsible for copying page-sized chunks accidentally uses multiples of PAGE_SHIFT instead of PAGE_SIZE as the virtual address arg for copy_user_highpage(). Signed-off-by: Hillf Danton <dhillf@gmail.com> Acked-by: Johannes Weiner <jweiner@redhat.com> Reviewed-by: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-10-31mm/huge_memory.c: quiet sparse noiseH Hartley Sweeten1-1/+4
Quiet the sparse noise: warning: symbol 'khugepaged_scan' was not declared. Should it be static? warning: context imbalance in 'khugepaged_scan_mm_slot' - unexpected unlock Signed-off-by: H Hartley Sweeten <hsweeten@visionengravers.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: Johannes Weiner <jweiner@redhat.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-10-31thp: mremap support and TLB optimizationAndrea Arcangeli1-0/+45
This adds THP support to mremap (decreases the number of split_huge_page() calls). Here are also some benchmarks with a proggy like this: === #define _GNU_SOURCE #include <sys/mman.h> #include <stdlib.h> #include <stdio.h> #include <string.h> #include <sys/time.h> #define SIZE (5UL*1024*1024*1024) int main() { static struct timeval oldstamp, newstamp; long diffsec; char *p, *p2, *p3, *p4; if (posix_memalign((void **)&p, 2*1024*1024, SIZE)) perror("memalign"), exit(1); if (posix_memalign((void **)&p2, 2*1024*1024, SIZE)) perror("memalign"), exit(1); if (posix_memalign((void **)&p3, 2*1024*1024, 4096)) perror("memalign"), exit(1); memset(p, 0xff, SIZE); memset(p2, 0xff, SIZE); memset(p3, 0x77, 4096); gettimeofday(&oldstamp, NULL); p4 = mremap(p, SIZE, SIZE, MREMAP_FIXED|MREMAP_MAYMOVE, p3); gettimeofday(&newstamp, NULL); diffsec = newstamp.tv_sec - oldstamp.tv_sec; diffsec = newstamp.tv_usec - oldstamp.tv_usec + 1000000 * diffsec; printf("usec %ld\n", diffsec); if (p == MAP_FAILED || p4 != p3) //if (p == MAP_FAILED) perror("mremap"), exit(1); if (memcmp(p4, p2, SIZE)) printf("mremap bug\n"), exit(1); printf("ok\n"); return 0; } === THP on Performance counter stats for './largepage13' (3 runs): 69195836 dTLB-loads ( +- 3.546% ) (scaled from 50.30%) 60708 dTLB-load-misses ( +- 11.776% ) (scaled from 52.62%) 676266476 dTLB-stores ( +- 5.654% ) (scaled from 69.54%) 29856 dTLB-store-misses ( +- 4.081% ) (scaled from 89.22%) 1055848782 iTLB-loads ( +- 4.526% ) (scaled from 80.18%) 8689 iTLB-load-misses ( +- 2.987% ) (scaled from 58.20%) 7.314454164 seconds time elapsed ( +- 0.023% ) THP off Performance counter stats for './largepage13' (3 runs): 1967379311 dTLB-loads ( +- 0.506% ) (scaled from 60.59%) 9238687 dTLB-load-misses ( +- 22.547% ) (scaled from 61.87%) 2014239444 dTLB-stores ( +- 0.692% ) (scaled from 60.40%) 3312335 dTLB-store-misses ( +- 7.304% ) (scaled from 67.60%) 6764372065 iTLB-loads ( +- 0.925% ) (scaled from 79.00%) 8202 iTLB-load-misses ( +- 0.475% ) (scaled from 70.55%) 9.693655243 seconds time elapsed ( +- 0.069% ) grep thp /proc/vmstat thp_fault_alloc 35849 thp_fault_fallback 0 thp_collapse_alloc 3 thp_collapse_alloc_failed 0 thp_split 0 thp_split 0 confirms no thp split despite plenty of hugepages allocated. The measurement of only the mremap time (so excluding the 3 long memset and final long 10GB memory accessing memcmp): THP on usec 14824 usec 14862 usec 14859 THP off usec 256416 usec 255981 usec 255847 With an older kernel without the mremap optimizations (the below patch optimizes the non THP version too). THP on usec 392107 usec 390237 usec 404124 THP off usec 444294 usec 445237 usec 445820 I guess with a threaded program that sends more IPI on large SMP it'd create an even larger difference. All debug options are off except DEBUG_VM to avoid skewing the results. The only problem for native 2M mremap like it happens above both the source and destination address must be 2M aligned or the hugepmd can't be moved without a split but that is an hardware limitation. [akpm@linux-foundation.org: coding-style nitpicking] Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Johannes Weiner <jweiner@redhat.com> Acked-by: Mel Gorman <mgorman@suse.de> Acked-by: Rik van Riel <riel@redhat.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-07-25mm/huge_memory.c: minor lock simplification in __khugepaged_exitChris Wright1-4/+2
The lock is released first thing in all three branches. Simplify this by unconditionally releasing lock and remove else clause which was only there to be sure lock was released. Signed-off-by: Chris Wright <chrisw@sous-sol.org> Reviewed-by: Michal Hocko <mhocko@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Johannes Weiner <jweiner@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-06-15mm: remove khugepaged double thp vmstat update with CONFIG_NUMA=nAndrea Arcangeli1-4/+1
Johannes noticed the vmstat update is already taken care of by khugepaged_alloc_hugepage() internally. The only places that are required to update the vmstat are the callers of alloc_hugepage (callers of khugepaged_alloc_hugepage aren't). Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Reported-by: Johannes Weiner <jweiner@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Acked-by: Johannes Weiner <jweiner@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>