aboutsummaryrefslogtreecommitdiffstats
path: root/mm/page_alloc.c (follow)
AgeCommit message (Collapse)AuthorFilesLines
2016-01-15mm/page_alloc.c: remove unused struct zone *z variableAlexander Kuleshov1-2/+0
Remove unused struct zone *z variable which appeared in 86051ca5eaf5 ("mm: fix usemap initialization"). Signed-off-by: Alexander Kuleshov <kuleshovmail@gmail.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-15x86, mm: introduce vmem_altmap to augment vmemmap_populate()Dan Williams1-1/+10
In support of providing struct page for large persistent memory capacities, use struct vmem_altmap to change the default policy for allocating memory for the memmap array. The default vmemmap_populate() allocates page table storage area from the page allocator. Given persistent memory capacities relative to DRAM it may not be feasible to store the memmap in 'System Memory'. Instead vmem_altmap represents pre-allocated "device pages" to satisfy vmemmap_alloc_block_buf() requests. Signed-off-by: Dan Williams <dan.j.williams@intel.com> Reported-by: kbuild test robot <lkp@intel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-15thp: introduce deferred_split_huge_page()Kirill A. Shutemov1-7/+20
Currently we don't split huge page on partial unmap. It's not an ideal situation. It can lead to memory overhead. Furtunately, we can detect partial unmap on page_remove_rmap(). But we cannot call split_huge_page() from there due to locking context. It's also counterproductive to do directly from munmap() codepath: in many cases we will hit this from exit(2) and splitting the huge page just to free it up in small pages is not what we really want. The patch introduce deferred_split_huge_page() which put the huge page into queue for splitting. The splitting itself will happen when we get memory pressure via shrinker interface. The page will be dropped from list on freeing through compound page destructor. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-15mm: rework mapcount accounting to enable 4k mapping of THPsKirill A. Shutemov1-3/+10
We're going to allow mapping of individual 4k pages of THP compound. It means we need to track mapcount on per small page basis. Straight-forward approach is to use ->_mapcount in all subpages to track how many time this subpage is mapped with PMDs or PTEs combined. But this is rather expensive: mapping or unmapping of a THP page with PMD would require HPAGE_PMD_NR atomic operations instead of single we have now. The idea is to store separately how many times the page was mapped as whole -- compound_mapcount. This frees up ->_mapcount in subpages to track PTE mapcount. We use the same approach as with compound page destructor and compound order to store compound_mapcount: use space in first tail page, ->mapping this time. Any time we map/unmap whole compound page (THP or hugetlb) -- we increment/decrement compound_mapcount. When we map part of compound page with PTE we operate on ->_mapcount of the subpage. page_mapcount() counts both: PTE and PMD mappings of the page. Basically, we have mapcount for a subpage spread over two counters. It makes tricky to detect when last mapcount for a page goes away. We introduced PageDoubleMap() for this. When we split THP PMD for the first time and there's other PMD mapping left we offset up ->_mapcount in all subpages by one and set PG_double_map on the compound page. These additional references go away with last compound_mapcount. This approach provides a way to detect when last mapcount goes away on per small page basis without introducing new overhead for most common cases. [akpm@linux-foundation.org: fix typo in comment] [mhocko@suse.com: ignore partial THP when moving task] Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-15mm: sanitize page->mapping for tail pagesKirill A. Shutemov1-0/+6
We don't define meaning of page->mapping for tail pages. Currently it's always NULL, which can be inconsistent with head page and potentially lead to problems. Let's poison the pointer to catch all illigal uses. page_rmapping(), page_mapping() and page_anon_vma() are changed to look on head page. The only illegal use I've caught so far is __GPF_COMP pages from sound subsystem, mapped with PTEs. do_shared_fault() is changed to use page_rmapping() instead of direct access to fault_page->mapping. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: Jérôme Glisse <jglisse@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Jerome Marchand <jmarchan@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-14mm, oom: give __GFP_NOFAIL allocations access to memory reservesMichal Hocko1-1/+14
__GFP_NOFAIL is a big hammer used to ensure that the allocation request can never fail. This is a strong requirement and as such it also deserves a special treatment when the system is OOM. The primary problem here is that the allocation request might have come with some locks held and the oom victim might be blocked on the same locks. This is basically an OOM deadlock situation. This patch tries to reduce the risk of such a deadlocks by giving __GFP_NOFAIL allocations a special treatment and let them dive into memory reserves after oom killer invocation. This should help them to make a progress and release resources they are holding. The OOM victim should compensate for the reserves consumption. Signed-off-by: Michal Hocko <mhocko@suse.com> Suggested-by: Andrea Arcangeli <aarcange@redhat.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Johannes Weiner <hannes@cmpxchg.org> Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-14mm/page_alloc.c: use list_for_each_entry in mark_free_pages()Geliang Tang1-5/+5
Use list_for_each_entry instead of list_for_each + list_entry to simplify the code. Signed-off-by: Geliang Tang <geliangtang@163.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-14mm/page_alloc.c: use list_{first,last}_entry instead of list_entryGeliang Tang1-12/+11
To make the intention clearer, use list_{first,last}_entry instead of list_entry. Signed-off-by: Geliang Tang <geliangtang@163.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-14mm/page_alloc.c: remove unnecessary parameter from __rmqueueMel Gorman1-3/+3
Commit 0aaa29a56e4f ("mm, page_alloc: reserve pageblocks for high-order atomic allocations on demand") added an unnecessary and unused parameter to __rmqueue. It was a parameter that was used in an earlier version of the patch and then left behind. This patch cleans it up. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-14mm: page_alloc: generalize the dirty balance reserveJohannes Weiner1-18/+3
The dirty balance reserve that dirty throttling has to consider is merely memory not available to userspace allocations. There is nothing writeback-specific about it. Generalize the name so that it's reusable outside of that context. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-14mm/page_alloc.c: do not loop over ALLOC_NO_WATERMARKS without triggering reclaimMichal Hocko1-14/+18
__alloc_pages_slowpath is looping over ALLOC_NO_WATERMARKS requests if __GFP_NOFAIL is requested. This is fragile because we are basically relying on somebody else to make the reclaim (be it the direct reclaim or OOM killer) for us. The caller might be holding resources (e.g. locks) which block other other reclaimers from making any progress for example. Remove the retry loop and rely on __alloc_pages_slowpath to invoke all allowed reclaim steps and retry logic. We have to be careful about __GFP_NOFAIL allocations from the PF_MEMALLOC context even though this is a very bad idea to begin with because no progress can be gurateed at all. We shouldn't break the __GFP_NOFAIL semantic here though. It could be argued that this is essentially GFP_NOWAIT context which we do not support but PF_MEMALLOC is much harder to check for existing users because they might happen deep down the code path performed much later after setting the flag so we cannot really rule out there is no kernel path triggering this combination. Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Mel Gorman <mgorman@suse.de> Acked-by: David Rientjes <rientjes@google.com> Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp> Acked-by: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-14mm/page_alloc.c: get rid of __alloc_pages_high_priority()Michal Hocko1-27/+9
__alloc_pages_high_priority doesn't do anything special other than it calls get_page_from_freelist and loops around GFP_NOFAIL allocation until it succeeds. It would be better if the first part was done in __alloc_pages_slowpath where we modify the zonelist because this would be easier to read and understand. Opencoding the function into its only caller allows to simplify it a bit as well. This patch doesn't introduce any functional changes. [akpm@linux-foundation.org: coding-style fixes] Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Mel Gorman <mgorman@suse.de> Acked-by: David Rientjes <rientjes@google.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-14mm/zonelist: enumerate zonelists array indexYaowei Bai1-5/+4
Hardcoding index to zonelists array in gfp_zonelist() is not a good idea, let's enumerate it to improve readability. No functional change. [akpm@linux-foundation.org: coding-style fixes] [akpm@linux-foundation.org: fix CONFIG_NUMA=n build] [n-horiguchi@ah.jp.nec.com: fix warning in comparing enumerator] Signed-off-by: Yaowei Bai <baiyaowei@cmss.chinamobile.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-14mm/cma: always check which page caused allocation failureJoonsoo Kim1-3/+20
Now, we have tracepoint in test_pages_isolated() to notify pfn which cannot be isolated. But, in alloc_contig_range(), some error path doesn't call test_pages_isolated() so it's still hard to know exact pfn that causes allocation failure. This patch change this situation by calling test_pages_isolated() in almost error path. In allocation failure case, some overhead is added by this change, but, allocation failure is really rare event so it would not matter. In fatal signal pending case, we don't call test_pages_isolated() because this failure is intentional one. There was a bogus outer_start problem due to unchecked buddy order and this patch also fix it. Before this patch, it didn't matter, because end result is same thing. But, after this patch, tracepoint will report failed pfn so it should be accurate. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Nazarewicz <mina86@mina86.com> Cc: David Rientjes <rientjes@google.com> Cc: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-14memcg: only account kmem allocations marked as __GFP_ACCOUNTVladimir Davydov1-1/+2
Black-list kmem accounting policy (aka __GFP_NOACCOUNT) turned out to be fragile and difficult to maintain, because there seem to be many more allocations that should not be accounted than those that should be. Besides, false accounting an allocation might result in much worse consequences than not accounting at all, namely increased memory consumption due to pinned dead kmem caches. So this patch switches kmem accounting to the white-policy: now only those kmem allocations that are marked as __GFP_ACCOUNT are accounted to memcg. Currently, no kmem allocations are marked like this. The following patches will mark several kmem allocations that are known to be easily triggered from userspace and therefore should be accounted to memcg. Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Tejun Heo <tj@kernel.org> Cc: Greg Thelen <gthelen@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-12-12mm: fix swapped Movable and Reclaimable in /proc/pagetypeinfoVlastimil Babka1-1/+2
Commit 016c13daa5c9 ("mm, page_alloc: use masks and shifts when converting GFP flags to migrate types") has swapped MIGRATE_MOVABLE and MIGRATE_RECLAIMABLE in the enum definition. However, migratetype_names wasn't updated to reflect that. As a result, the file /proc/pagetypeinfo shows the counts for Movable as Reclaimable and vice versa. Additionally, commit 0aaa29a56e4f ("mm, page_alloc: reserve pageblocks for high-order atomic allocations on demand") introduced MIGRATE_HIGHATOMIC, but did not add a letter to distinguish it into show_migration_types(), so it doesn't appear in the listing of free areas during page alloc failures or oom kills. This patch fixes both problems. The atomic reserves will show with a letter 'H' in the free areas listings. Fixes: 016c13daa5c9 ("mm, page_alloc: use masks and shifts when converting GFP flags to migrate types") Fixes: 0aaa29a56e4f ("mm, page_alloc: reserve pageblocks for high-order atomic allocations on demand") Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Mel Gorman <mgorman@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-10Fix alloc_node_mem_map() to work on ia64 againTony Luck1-3/+4
In commit a1c34a3bf00a ("mm: Don't offset memmap for flatmem") Laura fixed a problem for Srinivas relating to the bottom 2MB of RAM on an ARM IFC6410 board. One small wrinkle on ia64 is that it allocates the node_mem_map earlier in arch code, so it skips the block of code where "offset" is initialized. Move initialization of start and offset before the check for the node_mem_map so that they will always be available in the latter part of the function. Tested-by: Laura Abbott <laura@labbott.name> Fixes: a1c34a3bf00a (mm: Don't offset memmap for flatmem) Signed-off-by: Tony Luck <tony.luck@intel.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-06mm: use 'unsigned int' for page orderKirill A. Shutemov1-13/+16
Let's try to be consistent about data type of page order. [sfr@canb.auug.org.au: fix build (type of pageblock_order)] [hughd@google.com: some configs end up with MAX_ORDER and pageblock_order having different types] Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Andrea Arcangeli <aarcange@redhat.com> Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-06mm: make compound_head() robustKirill A. Shutemov1-17/+31
Hugh has pointed that compound_head() call can be unsafe in some context. There's one example: CPU0 CPU1 isolate_migratepages_block() page_count() compound_head() !!PageTail() == true put_page() tail->first_page = NULL head = tail->first_page alloc_pages(__GFP_COMP) prep_compound_page() tail->first_page = head __SetPageTail(p); !!PageTail() == true <head == NULL dereferencing> The race is pure theoretical. I don't it's possible to trigger it in practice. But who knows. We can fix the race by changing how encode PageTail() and compound_head() within struct page to be able to update them in one shot. The patch introduces page->compound_head into third double word block in front of compound_dtor and compound_order. Bit 0 encodes PageTail() and the rest bits are pointer to head page if bit zero is set. The patch moves page->pmd_huge_pte out of word, just in case if an architecture defines pgtable_t into something what can have the bit 0 set. hugetlb_cgroup uses page->lru.next in the second tail page to store pointer struct hugetlb_cgroup. The patch switch it to use page->private in the second tail page instead. The space is free since ->first_page is removed from the union. The patch also opens possibility to remove HUGETLB_CGROUP_MIN_ORDER limitation, since there's now space in first tail page to store struct hugetlb_cgroup pointer. But that's out of scope of the patch. That means page->compound_head shares storage space with: - page->lru.next; - page->next; - page->rcu_head.next; That's too long list to be absolutely sure, but looks like nobody uses bit 0 of the word. page->rcu_head.next guaranteed[1] to have bit 0 clean as long as we use call_rcu(), call_rcu_bh(), call_rcu_sched(), or call_srcu(). But future call_rcu_lazy() is not allowed as it makes use of the bit and we can get false positive PageTail(). [1] http://lkml.kernel.org/g/20150827163634.GD4029@linux.vnet.ibm.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: David Rientjes <rientjes@google.com> Cc: Vlastimil Babka <vbabka@suse.cz> Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Christoph Lameter <cl@linux.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-06mm: pack compound_dtor and compound_order into one word in struct pageKirill A. Shutemov1-1/+10
The patch halves space occupied by compound_dtor and compound_order in struct page. For compound_order, it's trivial long -> short conversion. For get_compound_page_dtor(), we now use hardcoded table for destructor lookup and store its index in the struct page instead of direct pointer to destructor. It shouldn't be a big trouble to maintain the table: we have only two destructor and NULL currently. This patch free up one word in tail pages for reuse. This is preparation for the next patch. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Andrea Arcangeli <aarcange@redhat.com> Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-06mm, page_alloc: only enforce watermarks for order-0 allocationsMel Gorman1-14/+39
The primary purpose of watermarks is to ensure that reclaim can always make forward progress in PF_MEMALLOC context (kswapd and direct reclaim). These assume that order-0 allocations are all that is necessary for forward progress. High-order watermarks serve a different purpose. Kswapd had no high-order awareness before they were introduced (https://lkml.kernel.org/r/413AA7B2.4000907@yahoo.com.au). This was particularly important when there were high-order atomic requests. The watermarks both gave kswapd awareness and made a reserve for those atomic requests. There are two important side-effects of this. The most important is that a non-atomic high-order request can fail even though free pages are available and the order-0 watermarks are ok. The second is that high-order watermark checks are expensive as the free list counts up to the requested order must be examined. With the introduction of MIGRATE_HIGHATOMIC it is no longer necessary to have high-order watermarks. Kswapd and compaction still need high-order awareness which is handled by checking that at least one suitable high-order page is free. With the patch applied, there was little difference in the allocation failure rates as the atomic reserves are small relative to the number of allocation attempts. The expected impact is that there will never be an allocation failure report that shows suitable pages on the free lists. The one potential side-effect of this is that in a vanilla kernel, the watermark checks may have kept a free page for an atomic allocation. Now, we are 100% relying on the HighAtomic reserves and an early allocation to have allocated them. If the first high-order atomic allocation is after the system is already heavily fragmented then it'll fail. [akpm@linux-foundation.org: simplify __zone_watermark_ok(), per Vlastimil] Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Vitaly Wool <vitalywool@gmail.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-06mm, page_alloc: reserve pageblocks for high-order atomic allocations on demandMel Gorman1-8/+130
High-order watermark checking exists for two reasons -- kswapd high-order awareness and protection for high-order atomic requests. Historically the kernel depended on MIGRATE_RESERVE to preserve min_free_kbytes as high-order free pages for as long as possible. This patch introduces MIGRATE_HIGHATOMIC that reserves pageblocks for high-order atomic allocations on demand and avoids using those blocks for order-0 allocations. This is more flexible and reliable than MIGRATE_RESERVE was. A MIGRATE_HIGHORDER pageblock is created when an atomic high-order allocation request steals a pageblock but limits the total number to 1% of the zone. Callers that speculatively abuse atomic allocations for long-lived high-order allocations to access the reserve will quickly fail. Note that SLUB is currently not such an abuser as it reclaims at least once. It is possible that the pageblock stolen has few suitable high-order pages and will need to steal again in the near future but there would need to be strong justification to search all pageblocks for an ideal candidate. The pageblocks are unreserved if an allocation fails after a direct reclaim attempt. The watermark checks account for the reserved pageblocks when the allocation request is not a high-order atomic allocation. The reserved pageblocks can not be used for order-0 allocations. This may allow temporary wastage until a failed reclaim reassigns the pageblock. This is deliberate as the intent of the reservation is to satisfy a limited number of atomic high-order short-lived requests if the system requires them. The stutter benchmark was used to evaluate this but while it was running there was a systemtap script that randomly allocated between 1 high-order page and 12.5% of memory's worth of order-3 pages using GFP_ATOMIC. This is much larger than the potential reserve and it does not attempt to be realistic. It is intended to stress random high-order allocations from an unknown source, show that there is a reduction in failures without introducing an anomaly where atomic allocations are more reliable than regular allocations. The amount of memory reserved varied throughout the workload as reserves were created and reclaimed under memory pressure. The allocation failures once the workload warmed up were as follows; 4.2-rc5-vanilla 70% 4.2-rc5-atomic-reserve 56% The failure rate was also measured while building multiple kernels. The failure rate was 14% but is 6% with this patch applied. Overall, this is a small reduction but the reserves are small relative to the number of allocation requests. In early versions of the patch, the failure rate reduced by a much larger amount but that required much larger reserves and perversely made atomic allocations seem more reliable than regular allocations. [yalin.wang2010@gmail.com: fix redundant check and a memory leak] Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Vitaly Wool <vitalywool@gmail.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: yalin wang <yalin.wang2010@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-06mm, page_alloc: remove MIGRATE_RESERVEMel Gorman1-140/+8
MIGRATE_RESERVE preserves an old property of the buddy allocator that existed prior to fragmentation avoidance -- min_free_kbytes worth of pages tended to remain contiguous until the only alternative was to fail the allocation. At the time it was discovered that high-order atomic allocations relied on this property so MIGRATE_RESERVE was introduced. A later patch will introduce an alternative MIGRATE_HIGHATOMIC so this patch deletes MIGRATE_RESERVE and supporting code so it'll be easier to review. Note that this patch in isolation may look like a false regression if someone was bisecting high-order atomic allocation failures. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Vitaly Wool <vitalywool@gmail.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-06mm, page_alloc: delete the zonelist_cacheMel Gorman1-212/+0
The zonelist cache (zlc) was introduced to skip over zones that were recently known to be full. This avoided expensive operations such as the cpuset checks, watermark calculations and zone_reclaim. The situation today is different and the complexity of zlc is harder to justify. 1) The cpuset checks are no-ops unless a cpuset is active and in general are a lot cheaper. 2) zone_reclaim is now disabled by default and I suspect that was a large source of the cost that zlc wanted to avoid. When it is enabled, it's known to be a major source of stalling when nodes fill up and it's unwise to hit every other user with the overhead. 3) Watermark checks are expensive to calculate for high-order allocation requests. Later patches in this series will reduce the cost of the watermark checking. 4) The most important issue is that in the current implementation it is possible for a failed THP allocation to mark a zone full for order-0 allocations and cause a fallback to remote nodes. The last issue could be addressed with additional complexity but as the benefit of zlc is questionable, it is better to remove it. If stalls due to zone_reclaim are ever reported then an alternative would be to introduce deferring logic based on a timeout inside zone_reclaim itself and leave the page allocator fast paths alone. The impact on page-allocator microbenchmarks is negligible as they don't hit the paths where the zlc comes into play. Most page-reclaim related workloads showed no noticeable difference as a result of the removal. The impact was noticeable in a workload called "stutter". One part uses a lot of anonymous memory, a second measures mmap latency and a third copies a large file. In an ideal world the latency application would not notice the mmap latency. On a 2-node machine the results of this patch are stutter 4.3.0-rc1 4.3.0-rc1 baseline nozlc-v4 Min mmap 20.9243 ( 0.00%) 20.7716 ( 0.73%) 1st-qrtle mmap 22.0612 ( 0.00%) 22.0680 ( -0.03%) 2nd-qrtle mmap 22.3291 ( 0.00%) 22.3809 ( -0.23%) 3rd-qrtle mmap 25.2244 ( 0.00%) 25.2396 ( -0.06%) Max-90% mmap 48.0995 ( 0.00%) 28.3713 ( 41.02%) Max-93% mmap 52.5557 ( 0.00%) 36.0170 ( 31.47%) Max-95% mmap 55.8173 ( 0.00%) 47.3163 ( 15.23%) Max-99% mmap 67.3781 ( 0.00%) 70.1140 ( -4.06%) Max mmap 24447.6375 ( 0.00%) 12915.1356 ( 47.17%) Mean mmap 33.7883 ( 0.00%) 27.7944 ( 17.74%) Best99%Mean mmap 27.7825 ( 0.00%) 25.2767 ( 9.02%) Best95%Mean mmap 26.3912 ( 0.00%) 23.7994 ( 9.82%) Best90%Mean mmap 24.9886 ( 0.00%) 23.2251 ( 7.06%) Best50%Mean mmap 22.0157 ( 0.00%) 22.0261 ( -0.05%) Best10%Mean mmap 21.6705 ( 0.00%) 21.6083 ( 0.29%) Best5%Mean mmap 21.5581 ( 0.00%) 21.4611 ( 0.45%) Best1%Mean mmap 21.3079 ( 0.00%) 21.1631 ( 0.68%) Note that the maximum stall latency went from 24 seconds to 12 which is still bad but an improvement. The milage varies considerably 2-node machine on an earlier test went from 494 seconds to 47 seconds and a 4-node machine that tested an earlier version of this patch went from a worst case stall time of 6 seconds to 67ms. The nature of the benchmark is inherently unpredictable as it is hammering the system and the milage will vary between machines. There is a secondary impact with potentially more direct reclaim because zones are now being considered instead of being skipped by zlc. In this particular test run it did not occur so will not be described. However, in at least one test the following was observed 1. Direct reclaim rates were higher. This was likely due to direct reclaim being entered instead of the zlc disabling a zone and busy looping. Busy looping may have the effect of allowing kswapd to make more progress and in some cases may be better overall. If this is found then the correct action is to put direct reclaimers to sleep on a waitqueue and allow kswapd make forward progress. Busy looping on the zlc is even worse than when the allocator used to blindly call congestion_wait(). 2. There was higher swap activity as direct reclaim was active. 3. Direct reclaim efficiency was lower. This is related to 1 as more scanning activity also encountered more pages that could not be immediately reclaimed In that case, the direct page scan and reclaim rates are noticeable but it is not considered a problem for a few reasons 1. The test is primarily concerned with latency. The mmap attempts are also faulted which means there are THP allocation requests. The ZLC could cause zones to be disabled causing the process to busy loop instead of reclaiming. This looks like elevated direct reclaim activity but it's the correct action to take based on what processes requested. 2. The test hammers reclaim and compaction heavily. The number of successful THP faults is highly variable but affects the reclaim stats. It's not a realistic or reasonable measure of page reclaim activity. 3. No other page-reclaim intensive workload that was tested showed a problem. 4. If a workload is identified that benefitted from the busy looping then it should be fixed by having direct reclaimers sleep on a wait queue until woken by kswapd instead of busy looping. We had this class of problem before when congestion_waits() with a fixed timeout was a brain damaged decision but happened to benefit some workloads. If a workload is identified that relied on the zlc to busy loop then it should be fixed correctly and have a direct reclaimer sleep on a waitqueue until woken by kswapd. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: David Rientjes <rientjes@google.com> Acked-by: Christoph Lameter <cl@linux.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Vitaly Wool <vitalywool@gmail.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-06mm, page_alloc: rename __GFP_WAIT to __GFP_RECLAIMMel Gorman1-4/+5
__GFP_WAIT was used to signal that the caller was in atomic context and could not sleep. Now it is possible to distinguish between true atomic context and callers that are not willing to sleep. The latter should clear __GFP_DIRECT_RECLAIM so kswapd will still wake. As clearing __GFP_WAIT behaves differently, there is a risk that people will clear the wrong flags. This patch renames __GFP_WAIT to __GFP_RECLAIM to clearly indicate what it does -- setting it allows all reclaim activity, clearing them prevents it. [akpm@linux-foundation.org: fix build] [akpm@linux-foundation.org: coding-style fixes] Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Christoph Lameter <cl@linux.com> Acked-by: David Rientjes <rientjes@google.com> Cc: Vitaly Wool <vitalywool@gmail.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-06mm, page_alloc: distinguish between being unable to sleep, unwilling to sleep and avoiding waking kswapdMel Gorman1-16/+27
__GFP_WAIT has been used to identify atomic context in callers that hold spinlocks or are in interrupts. They are expected to be high priority and have access one of two watermarks lower than "min" which can be referred to as the "atomic reserve". __GFP_HIGH users get access to the first lower watermark and can be called the "high priority reserve". Over time, callers had a requirement to not block when fallback options were available. Some have abused __GFP_WAIT leading to a situation where an optimisitic allocation with a fallback option can access atomic reserves. This patch uses __GFP_ATOMIC to identify callers that are truely atomic, cannot sleep and have no alternative. High priority users continue to use __GFP_HIGH. __GFP_DIRECT_RECLAIM identifies callers that can sleep and are willing to enter direct reclaim. __GFP_KSWAPD_RECLAIM to identify callers that want to wake kswapd for background reclaim. __GFP_WAIT is redefined as a caller that is willing to enter direct reclaim and wake kswapd for background reclaim. This patch then converts a number of sites o __GFP_ATOMIC is used by callers that are high priority and have memory pools for those requests. GFP_ATOMIC uses this flag. o Callers that have a limited mempool to guarantee forward progress clear __GFP_DIRECT_RECLAIM but keep __GFP_KSWAPD_RECLAIM. bio allocations fall into this category where kswapd will still be woken but atomic reserves are not used as there is a one-entry mempool to guarantee progress. o Callers that are checking if they are non-blocking should use the helper gfpflags_allow_blocking() where possible. This is because checking for __GFP_WAIT as was done historically now can trigger false positives. Some exceptions like dm-crypt.c exist where the code intent is clearer if __GFP_DIRECT_RECLAIM is used instead of the helper due to flag manipulations. o Callers that built their own GFP flags instead of starting with GFP_KERNEL and friends now also need to specify __GFP_KSWAPD_RECLAIM. The first key hazard to watch out for is callers that removed __GFP_WAIT and was depending on access to atomic reserves for inconspicuous reasons. In some cases it may be appropriate for them to use __GFP_HIGH. The second key hazard is callers that assembled their own combination of GFP flags instead of starting with something like GFP_KERNEL. They may now wish to specify __GFP_KSWAPD_RECLAIM. It's almost certainly harmless if it's missed in most cases as other activity will wake kswapd. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Vitaly Wool <vitalywool@gmail.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-06mm, page_alloc: remove unnecessary recalculations for dirty zone balancingMel Gorman1-4/+7
File-backed pages that will be immediately written are balanced between zones. This heuristic tries to avoid having a single zone filled with recently dirtied pages but the checks are unnecessarily expensive. Move consider_zone_balanced into the alloc_context instead of checking bitmaps multiple times. The patch also gives the parameter a more meaningful name. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: David Rientjes <rientjes@google.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Christoph Lameter <cl@linux.com> Cc: Vitaly Wool <vitalywool@gmail.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-06mm, page_alloc: remove unnecessary parameter from zone_watermark_ok_safeMel Gorman1-2/+3
Overall, the intent of this series is to remove the zonelist cache which was introduced to avoid high overhead in the page allocator. Once this is done, it is necessary to reduce the cost of watermark checks. The series starts with minor micro-optimisations. Next it notes that GFP flags that affect watermark checks are abused. __GFP_WAIT historically identified callers that could not sleep and could access reserves. This was later abused to identify callers that simply prefer to avoid sleeping and have other options. A patch distinguishes between atomic callers, high-priority callers and those that simply wish to avoid sleep. The zonelist cache has been around for a long time but it is of dubious merit with a lot of complexity and some issues that are explained. The most important issue is that a failed THP allocation can cause a zone to be treated as "full". This potentially causes unnecessary stalls, reclaim activity or remote fallbacks. The issues could be fixed but it's not worth it. The series places a small number of other micro-optimisations on top before examining GFP flags watermarks. High-order watermarks enforcement can cause high-order allocations to fail even though pages are free. The watermark checks both protect high-order atomic allocations and make kswapd aware of high-order pages but there is a much better way that can be handled using migrate types. This series uses page grouping by mobility to reserve pageblocks for high-order allocations with the size of the reservation depending on demand. kswapd awareness is maintained by examining the free lists. By patch 12 in this series, there are no high-order watermark checks while preserving the properties that motivated the introduction of the watermark checks. This patch (of 10): No user of zone_watermark_ok_safe() specifies alloc_flags. This patch removes the unnecessary parameter. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: David Rientjes <rientjes@google.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Christoph Lameter <cl@linux.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-05memcg: simplify charging kmem pagesVladimir Davydov1-9/+9
Charging kmem pages proceeds in two steps. First, we try to charge the allocation size to the memcg the current task belongs to, then we allocate a page and "commit" the charge storing the pointer to the memcg in the page struct. Such a design looks overcomplicated, because there is not much sense in trying charging the allocation before actually allocating a page: we won't be able to consume much memory over the limit even if we charge after doing the actual allocation, besides we already charge user pages post factum, so being pedantic with kmem pages just looks pointless. So this patch simplifies the design by merging the "charge" and the "commit" steps into the same function, which takes the allocated page. Also, rename the charge and uncharge methods to memcg_kmem_charge and memcg_kmem_uncharge and make the charge method return error code instead of bool to conform to mem_cgroup_try_charge. Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-05mm/page_alloc.c: skip ZONE_MOVABLE if required_kernelcore is larger than totalpagesXishi Qiu1-2/+5
If kernelcore was not specified, or the kernelcore size is zero (required_movablecore >= totalpages), or the kernelcore size is larger than totalpages, there is no ZONE_MOVABLE. We should fill the zone with both kernel memory and movable memory. Signed-off-by: Xishi Qiu <qiuxishi@huawei.com> Reviewed-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Mel Gorman <mgorman@suse.de> Cc: David Rientjes <rientjes@google.com> Cc: Tang Chen <tangchen@cn.fujitsu.com> Cc: <zhongjiang@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-05mm: Don't offset memmap for flatmemLaura Abbott1-3/+6
Srinivas Kandagatla reported bad page messages when trying to remove the bottom 2MB on an ARM based IFC6410 board BUG: Bad page state in process swapper pfn:fffa8 page:ef7fb500 count:0 mapcount:0 mapping: (null) index:0x0 flags: 0x96640253(locked|error|dirty|active|arch_1|reclaim|mlocked) page dumped because: PAGE_FLAGS_CHECK_AT_FREE flag(s) set bad because of flags: flags: 0x200041(locked|active|mlocked) Modules linked in: CPU: 0 PID: 0 Comm: swapper Not tainted 3.19.0-rc3-00007-g412f9ba-dirty #816 Hardware name: Qualcomm (Flattened Device Tree) unwind_backtrace show_stack dump_stack bad_page free_pages_prepare free_hot_cold_page __free_pages free_highmem_page mem_init start_kernel Disabling lock debugging due to kernel taint Removing the lower 2MB made the start of the lowmem zone to no longer be page block aligned. IFC6410 uses CONFIG_FLATMEM where alloc_node_mem_map allocates memory for the mem_map. alloc_node_mem_map will offset for unaligned nodes with the assumption the pfn/page translation functions will account for the offset. The functions for CONFIG_FLATMEM do not offset however, resulting in overrunning the memmap array. Just use the allocated memmap without any offset when running with CONFIG_FLATMEM to avoid the overrun. Signed-off-by: Laura Abbott <laura@labbott.name> Signed-off-by: Laura Abbott <lauraa@codeaurora.org> Reported-by: Srinivas Kandagatla <srinivas.kandagatla@linaro.org> Tested-by: Srinivas Kandagatla <srinivas.kandagatla@linaro.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Tested-by: Bjorn Andersson <bjorn.andersson@sonymobile.com> Cc: Santosh Shilimkar <ssantosh@kernel.org> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Kevin Hilman <khilman@linaro.org> Cc: Arnd Bergman <arnd@arndb.de> Cc: Stephen Boyd <sboyd@codeaurora.org> Cc: Andy Gross <agross@codeaurora.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Dave Hansen <dave.hansen@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-05mm: fix overflow in find_zone_movable_pfns_for_nodes()Xishi Qiu1-0/+1
If the user set "movablecore=xx" to a large number, corepages will overflow. Fix the problem. Signed-off-by: Xishi Qiu <qiuxishi@huawei.com> Reviewed-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Acked-by: Tang Chen <tangchen@cn.fujitsu.com> Acked-by: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Tang Chen <tangchen@cn.fujitsu.com> Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-05mm/page_alloc: remove unused parameter in init_currently_empty_zone()Yaowei Bai1-4/+2
Commit a2f3aa025766 ("[PATCH] Fix sparsemem on Cell") fixed an oops experienced on the Cell architecture when init-time functions, early_*(), are called at runtime by introducing an 'enum memmap_context' parameter to memmap_init_zone() and init_currently_empty_zone(). This parameter is intended to be used to tell whether the call of these two functions is being made on behalf of a hotplug event, or happening at boot-time. However, init_currently_empty_zone() does not use this parameter at all, so remove it. Signed-off-by: Yaowei Bai <bywxiaobai@163.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-10-04debugfs: Pass bool pointer to debugfs_create_bool()Viresh Kumar1-4/+4
Its a bit odd that debugfs_create_bool() takes 'u32 *' as an argument, when all it needs is a boolean pointer. It would be better to update this API to make it accept 'bool *' instead, as that will make it more consistent and often more convenient. Over that bool takes just a byte. That required updates to all user sites as well, in the same commit updating the API. regmap core was also using debugfs_{read|write}_file_bool(), directly and variable types were updated for that to be bool as well. Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org> Acked-by: Mark Brown <broonie@kernel.org> Acked-by: Charles Keepax <ckeepax@opensource.wolfsonmicro.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-09-08Merge branch 'akpm' (patches from Andrew)Linus Torvalds1-30/+50
Merge second patch-bomb from Andrew Morton: "Almost all of the rest of MM. There was an unusually large amount of MM material this time" * emailed patches from Andrew Morton <akpm@linux-foundation.org>: (141 commits) zpool: remove no-op module init/exit mm: zbud: constify the zbud_ops mm: zpool: constify the zpool_ops mm: swap: zswap: maybe_preload & refactoring zram: unify error reporting zsmalloc: remove null check from destroy_handle_cache() zsmalloc: do not take class lock in zs_shrinker_count() zsmalloc: use class->pages_per_zspage zsmalloc: consider ZS_ALMOST_FULL as migrate source zsmalloc: partial page ordering within a fullness_list zsmalloc: use shrinker to trigger auto-compaction zsmalloc: account the number of compacted pages zsmalloc/zram: introduce zs_pool_stats api zsmalloc: cosmetic compaction code adjustments zsmalloc: introduce zs_can_compact() function zsmalloc: always keep per-class stats zsmalloc: drop unused variable `nr_to_migrate' mm/memblock.c: fix comment in __next_mem_range() mm/page_alloc.c: fix type information of memoryless node memory-hotplug: fix comments in zone_spanned_pages_in_node() and zone_spanned_pages_in_node() ...
2015-09-08mm/page_alloc.c: fix type information of memoryless nodeZhen Lei1-1/+2
For a memoryless node, the output of get_pfn_range_for_nid are all zero. It will display mem from 0 to -1. Signed-off-by: Zhen Lei <thunder.leizhen@huawei.com> Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-08memory-hotplug: fix comments in zone_spanned_pages_in_node() and zone_spanned_pages_in_node()Xishi Qiu1-2/+2
When hot adding a node from add_memory(), we will add memblock first, so the node is not empty. But when called from cpu_up(), the node should be empty. Signed-off-by: Xishi Qiu <qiuxishi@huawei.com> Cc: Tang Chen <tangchen@cn.fujitsu.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Taku Izumi <izumi.taku@jp.fujitsu.com>\ Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-08mm/page_alloc.c: change sysctl_lower_zone_reserve_ratio to sysctl_lowmem_reserve_ratio in commentsYaowei Bai1-2/+2
We use sysctl_lowmem_reserve_ratio rather than sysctl_lower_zone_reserve_ratio to determine how aggressive the kernel is in defending lowmem from the possibility of being captured into pinned user memory. To avoid misleading, correct it in some comments. Signed-off-by: Yaowei Bai <bywxiaobai@163.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-08mm/page_alloc.c: fix a misleading commentYaowei Bai1-1/+1
The comment says that the per-cpu batchsize and zone watermarks are determined by present_pages which is definitely wrong, they are both calculated from managed_pages. Fix it. Signed-off-by: Yaowei Bai <bywxiaobai@163.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-08mm: rename alloc_pages_exact_node() to __alloc_pages_node()Vlastimil Babka1-2/+0
alloc_pages_exact_node() was introduced in commit 6484eb3e2a81 ("page allocator: do not check NUMA node ID when the caller knows the node is valid") as an optimized variant of alloc_pages_node(), that doesn't fallback to current node for nid == NUMA_NO_NODE. Unfortunately the name of the function can easily suggest that the allocation is restricted to the given node and fails otherwise. In truth, the node is only preferred, unless __GFP_THISNODE is passed among the gfp flags. The misleading name has lead to mistakes in the past, see for example commits 5265047ac301 ("mm, thp: really limit transparent hugepage allocation to local node") and b360edb43f8e ("mm, mempolicy: migrate_to_node should only migrate to node"). Another issue with the name is that there's a family of alloc_pages_exact*() functions where 'exact' means exact size (instead of page order), which leads to more confusion. To prevent further mistakes, this patch effectively renames alloc_pages_exact_node() to __alloc_pages_node() to better convey that it's an optimized variant of alloc_pages_node() not intended for general usage. Both functions get described in comments. It has been also considered to really provide a convenience function for allocations restricted to a node, but the major opinion seems to be that __GFP_THISNODE already provides that functionality and we shouldn't duplicate the API needlessly. The number of users would be small anyway. Existing callers of alloc_pages_exact_node() are simply converted to call __alloc_pages_node(), with the exception of sba_alloc_coherent() which open-codes the check for NUMA_NO_NODE, so it is converted to use alloc_pages_node() instead. This means it no longer performs some VM_BUG_ON checks, and since the current check for nid in alloc_pages_node() uses a 'nid < 0' comparison (which includes NUMA_NO_NODE), it may hide wrong values which would be previously exposed. Both differences will be rectified by the next patch. To sum up, this patch makes no functional changes, except temporarily hiding potentially buggy callers. Restricting the checks in alloc_pages_node() is left for the next patch which can in turn expose more existing buggy callers. Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Robin Holt <robinmholt@gmail.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Christoph Lameter <cl@linux.com> Acked-by: Michael Ellerman <mpe@ellerman.id.au> Cc: Mel Gorman <mgorman@suse.de> Cc: David Rientjes <rientjes@google.com> Cc: Greg Thelen <gthelen@google.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Gleb Natapov <gleb@kernel.org> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Cliff Whickman <cpw@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-08mm: rename and move get/set_freepage_migratetypeVlastimil Babka1-13/+28
The pair of get/set_freepage_migratetype() functions are used to cache pageblock migratetype for a page put on a pcplist, so that it does not have to be retrieved again when the page is put on a free list (e.g. when pcplists become full). Historically it was also assumed that the value is accurate for pages on freelists (as the functions' names unfortunately suggest), but that cannot be guaranteed without affecting various allocator fast paths. It is in fact not needed and all such uses have been removed. The last remaining (but pointless) usage related to pages of freelists is in move_freepages(), which this patch removes. To prevent further confusion, rename the functions to get/set_pcppage_migratetype() and expand their description. Since all the users are now in mm/page_alloc.c, move the functions there from the shared header. Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: David Rientjes <rientjes@google.com> Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Minchan Kim <minchan@kernel.org> Acked-by: Michal Nazarewicz <mina86@mina86.com> Cc: Laura Abbott <lauraa@codeaurora.org> Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Seungho Park <seungho1.park@lge.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Acked-by: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-08mm, page_isolation: remove bogus tests for isolated pagesVlastimil Babka1-0/+4
The __test_page_isolated_in_pageblock() is used to verify whether all pages in pageblock were either successfully isolated, or are hwpoisoned. Two of the possible state of pages, that are tested, are however bogus and misleading. Both tests rely on get_freepage_migratetype(page), which however has no guarantees about pages on freelists. Specifically, it doesn't guarantee that the migratetype returned by the function actually matches the migratetype of the freelist that the page is on. Such guarantee is not its purpose and would have negative impact on allocator performance. The first test checks whether the freepage_migratetype equals MIGRATE_ISOLATE, supposedly to catch races between page isolation and allocator activity. These races should be fixed nowadays with 51bb1a4093 ("mm/page_alloc: add freepage on isolate pageblock to correct buddy list") and related patches. As explained above, the check wouldn't be able to catch them reliably anyway. For the same reason false positives can happen, although they are harmless, as the move_freepages() call would just move the page to the same freelist it's already on. So removing the test is not a bug fix, just cleanup. After this patch, we assume that all PageBuddy pages are on the correct freelist and that the races were really fixed. A truly reliable verification in the form of e.g. VM_BUG_ON() would be complicated and is arguably not needed. The second test (page_count(page) == 0 && get_freepage_migratetype(page) == MIGRATE_ISOLATE) is probably supposed (the code comes from a big memory isolation patch from 2007) to catch pages on MIGRATE_ISOLATE pcplists. However, pcplists don't contain MIGRATE_ISOLATE freepages nowadays, those are freed directly to free lists, so the check is obsolete. Remove it as well. Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Minchan Kim <minchan@kernel.org> Acked-by: Michal Nazarewicz <mina86@mina86.com> Cc: Laura Abbott <lauraa@codeaurora.org> Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Seungho Park <seungho1.park@lge.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Acked-by: Mel Gorman <mgorman@techsingularity.net> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-08mm, oom: pass an oom order of -1 when triggered by sysrqDavid Rientjes1-1/+0
The force_kill member of struct oom_control isn't needed if an order of -1 is used instead. This is the same as order == -1 in struct compact_control which requires full memory compaction. This patch introduces no functional change. Signed-off-by: David Rientjes <rientjes@google.com> Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com> Cc: Michal Hocko <mhocko@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-08mm, oom: organize oom context into structDavid Rientjes1-2/+8
There are essential elements to an oom context that are passed around to multiple functions. Organize these elements into a new struct, struct oom_control, that specifies the context for an oom condition. This patch introduces no functional change. Signed-off-by: David Rientjes <rientjes@google.com> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-08mm/page_alloc.c: remove unused variable in free_area_init_core()Wei Yang1-3/+2
Commit febd5949e134 ("mm/memory hotplug: init the zone's size when calculating node totalpages") refines the function free_area_init_core(). After doing so, these two parameters are not used anymore. This patch removes these two parameters. Signed-off-by: Wei Yang <weiyang@linux.vnet.ibm.com> Cc: Gu Zheng <guz.fnst@cn.fujitsu.com> Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-08mm/page_alloc.c: refine the calculation of highest possible node idWei Yang1-4/+2
nr_node_ids records the highest possible node id, which is calculated by scanning the bitmap node_states[N_POSSIBLE]. Current implementation scan the bitmap from the beginning, which will scan the whole bitmap. This patch reverses the order by scanning from the end with find_last_bit(). Signed-off-by: Wei Yang <weiyang@linux.vnet.ibm.com> Cc: Tejun Heo <tj@kernel.org> Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-08Merge tag 'libnvdimm-for-4.3' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimmLinus Torvalds1-0/+3
Pull libnvdimm updates from Dan Williams: "This update has successfully completed a 0day-kbuild run and has appeared in a linux-next release. The changes outside of the typical drivers/nvdimm/ and drivers/acpi/nfit.[ch] paths are related to the removal of IORESOURCE_CACHEABLE, the introduction of memremap(), and the introduction of ZONE_DEVICE + devm_memremap_pages(). Summary: - Introduce ZONE_DEVICE and devm_memremap_pages() as a generic mechanism for adding device-driver-discovered memory regions to the kernel's direct map. This facility is used by the pmem driver to enable pfn_to_page() operations on the page frames returned by DAX ('direct_access' in 'struct block_device_operations'). For now, the 'memmap' allocation for these "device" pages comes from "System RAM". Support for allocating the memmap from device memory will arrive in a later kernel. - Introduce memremap() to replace usages of ioremap_cache() and ioremap_wt(). memremap() drops the __iomem annotation for these mappings to memory that do not have i/o side effects. The replacement of ioremap_cache() with memremap() is limited to the pmem driver to ease merging the api change in v4.3. Completion of the conversion is targeted for v4.4. - Similar to the usage of memcpy_to_pmem() + wmb_pmem() in the pmem driver, update the VFS DAX implementation and PMEM api to provide persistence guarantees for kernel operations on a DAX mapping. - Convert the ACPI NFIT 'BLK' driver to map the block apertures as cacheable to improve performance. - Miscellaneous updates and fixes to libnvdimm including support for issuing "address range scrub" commands, clarifying the optimal 'sector size' of pmem devices, a clarification of the usage of the ACPI '_STA' (status) property for DIMM devices, and other minor fixes" * tag 'libnvdimm-for-4.3' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm: (34 commits) libnvdimm, pmem: direct map legacy pmem by default libnvdimm, pmem: 'struct page' for pmem libnvdimm, pfn: 'struct page' provider infrastructure x86, pmem: clarify that ARCH_HAS_PMEM_API implies PMEM mapped WB add devm_memremap_pages mm: ZONE_DEVICE for "device memory" mm: move __phys_to_pfn and __pfn_to_phys to asm/generic/memory_model.h dax: drop size parameter to ->direct_access() nd_blk: change aperture mapping from WC to WB nvdimm: change to use generic kvfree() pmem, dax: have direct_access use __pmem annotation dax: update I/O path to do proper PMEM flushing pmem: add copy_from_iter_pmem() and clear_pmem() pmem, x86: clean up conditional pmem includes pmem: remove layer when calling arch_has_wmb_pmem() pmem, x86: move x86 PMEM API to new pmem.h header libnvdimm, e820: make CONFIG_X86_PMEM_LEGACY a tristate option pmem: switch to devm_ allocations devres: add devm_memremap libnvdimm, btt: write and validate parent_uuid ...
2015-08-27mm: ZONE_DEVICE for "device memory"Dan Williams1-0/+3
While pmem is usable as a block device or via DAX mappings to userspace there are several usage scenarios that can not target pmem due to its lack of struct page coverage. In preparation for "hot plugging" pmem into the vmemmap add ZONE_DEVICE as a new zone to tag these pages separately from the ones that are subject to standard page allocations. Importantly "device memory" can be removed at will by userspace unbinding the driver of the device. Having a separate zone prevents allocation and otherwise marks these pages that are distinct from typical uniform memory. Device memory has different lifetime and performance characteristics than RAM. However, since we have run out of ZONES_SHIFT bits this functionality currently depends on sacrificing ZONE_DMA. Cc: H. Peter Anvin <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Jerome Glisse <j.glisse@gmail.com> [hch: various simplifications in the arch interface] Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-08-21mm: make page pfmemalloc check more robustMichal Hocko1-3/+6
Commit c48a11c7ad26 ("netvm: propagate page->pfmemalloc to skb") added checks for page->pfmemalloc to __skb_fill_page_desc(): if (page->pfmemalloc && !page->mapping) skb->pfmemalloc = true; It assumes page->mapping == NULL implies that page->pfmemalloc can be trusted. However, __delete_from_page_cache() can set set page->mapping to NULL and leave page->index value alone. Due to being in union, a non-zero page->index will be interpreted as true page->pfmemalloc. So the assumption is invalid if the networking code can see such a page. And it seems it can. We have encountered this with a NFS over loopback setup when such a page is attached to a new skbuf. There is no copying going on in this case so the page confuses __skb_fill_page_desc which interprets the index as pfmemalloc flag and the network stack drops packets that have been allocated using the reserves unless they are to be queued on sockets handling the swapping which is the case here and that leads to hangs when the nfs client waits for a response from the server which has been dropped and thus never arrive. The struct page is already heavily packed so rather than finding another hole to put it in, let's do a trick instead. We can reuse the index again but define it to an impossible value (-1UL). This is the page index so it should never see the value that large. Replace all direct users of page->pfmemalloc by page_is_pfmemalloc which will hide this nastiness from unspoiled eyes. The information will get lost if somebody wants to use page->index obviously but that was the case before and the original code expected that the information should be persisted somewhere else if that is really needed (e.g. what SLAB and SLUB do). [akpm@linux-foundation.org: fix blooper in slub] Fixes: c48a11c7ad26 ("netvm: propagate page->pfmemalloc to skb") Signed-off-by: Michal Hocko <mhocko@suse.com> Debugged-by: Vlastimil Babka <vbabka@suse.com> Debugged-by: Jiri Bohac <jbohac@suse.com> Cc: Eric Dumazet <eric.dumazet@gmail.com> Cc: David Miller <davem@davemloft.net> Acked-by: Mel Gorman <mgorman@suse.de> Cc: <stable@vger.kernel.org> [3.6+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-08-14memory-hotplug: fix wrong edge when hot add a new nodeXishi Qiu1-0/+8
When we add a new node, the edge of memory may be wrong. e.g. system has 4 nodes, and node3 is movable, node3 mem:[24G-32G], 1. hotremove the node3, 2. then hotadd node3 with a part of memory, mem:[26G-30G], 3. call hotadd_new_pgdat() free_area_init_node() get_pfn_range_for_nid() 4. it will return wrong start_pfn and end_pfn, because we have not update the memblock. This patch also fixes a BUG_ON during hot-addition, please see http://marc.info/?l=linux-kernel&m=142961156129456&w=2 Signed-off-by: Xishi Qiu <qiuxishi@huawei.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Taku Izumi <izumi.taku@jp.fujitsu.com> Cc: Tang Chen <tangchen@cn.fujitsu.com> Cc: Gu Zheng <guz.fnst@cn.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>