aboutsummaryrefslogtreecommitdiffstats
path: root/mm (follow)
AgeCommit message (Collapse)AuthorFilesLines
2017-09-04Merge branch 'linus' into locking/core, to fix up conflictsIngo Molnar8-66/+116
Conflicts: mm/page_alloc.c Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-08-31Merge branch 'akpm' (patches from Andrew)Linus Torvalds2-3/+12
Merge more fixes from Andrew Morton: "6 fixes" * emailed patches from Andrew Morton <akpm@linux-foundation.org>: scripts/dtc: fix '%zx' warning include/linux/compiler.h: don't perform compiletime_assert with -O0 mm, madvise: ensure poisoned pages are removed from per-cpu lists mm, uprobes: fix multiple free of ->uprobes_state.xol_area kernel/kthread.c: kthread_worker: don't hog the cpu mm,page_alloc: don't call __node_reclaim() with oom_lock held.
2017-08-31mm, madvise: ensure poisoned pages are removed from per-cpu listsMel Gorman1-0/+6
Wendy Wang reported off-list that a RAS HWPOISON-SOFT test case failed and bisected it to the commit 479f854a207c ("mm, page_alloc: defer debugging checks of pages allocated from the PCP"). The problem is that a page that was poisoned with madvise() is reused. The commit removed a check that would trigger if DEBUG_VM was enabled but re-enabling the check only fixes the problem as a side-effect by printing a bad_page warning and recovering. The root of the problem is that an madvise() can leave a poisoned page on the per-cpu list. This patch drains all per-cpu lists after pages are poisoned so that they will not be reused. Wendy reports that the test case in question passes with this patch applied. While this could be done in a targeted fashion, it is over-complicated for such a rare operation. Link: http://lkml.kernel.org/r/20170828133414.7qro57jbepdcyz5x@techsingularity.net Fixes: 479f854a207c ("mm, page_alloc: defer debugging checks of pages allocated from the PCP") Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Reported-by: Wang, Wendy <wendy.wang@intel.com> Tested-by: Wang, Wendy <wendy.wang@intel.com> Acked-by: David Rientjes <rientjes@google.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: "Hansen, Dave" <dave.hansen@intel.com> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Naoya Horiguchi <nao.horiguchi@gmail.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-08-31mm,page_alloc: don't call __node_reclaim() with oom_lock held.Tetsuo Handa1-3/+6
We are doing a last second memory allocation attempt before calling out_of_memory(). But since slab shrinker functions might indirectly wait for other thread's __GFP_DIRECT_RECLAIM && !__GFP_NORETRY memory allocations via sleeping locks, calling slab shrinker functions from node_reclaim() from get_page_from_freelist() with oom_lock held has possibility of deadlock. Therefore, make sure that last second memory allocation attempt does not call slab shrinker functions. Link: http://lkml.kernel.org/r/1503577106-9196-1-git-send-email-penguin-kernel@I-love.SAKURA.ne.jp Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-08-31mm/mmu_notifier: kill invalidate_pageJérôme Glisse1-14/+0
The invalidate_page callback suffered from two pitfalls. First it used to happen after the page table lock was release and thus a new page might have setup before the call to invalidate_page() happened. This is in a weird way fixed by commit c7ab0d2fdc84 ("mm: convert try_to_unmap_one() to use page_vma_mapped_walk()") that moved the callback under the page table lock but this also broke several existing users of the mmu_notifier API that assumed they could sleep inside this callback. The second pitfall was invalidate_page() being the only callback not taking a range of address in respect to invalidation but was giving an address and a page. Lots of the callback implementers assumed this could never be THP and thus failed to invalidate the appropriate range for THP. By killing this callback we unify the mmu_notifier callback API to always take a virtual address range as input. Finally this also simplifies the end user life as there is now two clear choices: - invalidate_range_start()/end() callback (which allow you to sleep) - invalidate_range() where you can not sleep but happen right after page table update under page table lock Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Cc: Bernhard Held <berny156@gmx.de> Cc: Adam Borowski <kilobyte@angband.pl> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Radim Krčmář <rkrcmar@redhat.com> Cc: Wanpeng Li <kernellwp@gmail.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Takashi Iwai <tiwai@suse.de> Cc: Nadav Amit <nadav.amit@gmail.com> Cc: Mike Galbraith <efault@gmx.de> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: axie <axie@amd.com> Cc: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-08-31mm/rmap: update to new mmu_notifier semantic v2Jérôme Glisse1-3/+32
Replace all mmu_notifier_invalidate_page() calls by *_invalidate_range() and make sure it is bracketed by calls to *_invalidate_range_start()/end(). Note that because we can not presume the pmd value or pte value we have to assume the worst and unconditionaly report an invalidation as happening. Changed since v2: - try_to_unmap_one() only one call to mmu_notifier_invalidate_range() - compute end with PAGE_SIZE << compound_order(page) - fix PageHuge() case in try_to_unmap_one() Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Reviewed-by: Andrea Arcangeli <aarcange@redhat.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Bernhard Held <berny156@gmx.de> Cc: Adam Borowski <kilobyte@angband.pl> Cc: Radim Krčmář <rkrcmar@redhat.com> Cc: Wanpeng Li <kernellwp@gmail.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Takashi Iwai <tiwai@suse.de> Cc: Nadav Amit <nadav.amit@gmail.com> Cc: Mike Galbraith <efault@gmx.de> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: axie <axie@amd.com> Cc: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-08-31dax: update to new mmu_notifier semanticJérôme Glisse1-5/+21
Replace all mmu_notifier_invalidate_page() calls by *_invalidate_range() and make sure it is bracketed by calls to *_invalidate_range_start()/end(). Note that because we can not presume the pmd value or pte value we have to assume the worst and unconditionaly report an invalidation as happening. Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Bernhard Held <berny156@gmx.de> Cc: Adam Borowski <kilobyte@angband.pl> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Radim Krčmář <rkrcmar@redhat.com> Cc: Wanpeng Li <kernellwp@gmail.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Takashi Iwai <tiwai@suse.de> Cc: Nadav Amit <nadav.amit@gmail.com> Cc: Mike Galbraith <efault@gmx.de> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: axie <axie@amd.com> Cc: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-08-29Revert "rmap: do not call mmu_notifier_invalidate_page() under ptl"Linus Torvalds1-30/+22
This reverts commit aac2fea94f7a3df8ad1eeb477eb2643f81fd5393. It turns out that that patch was complete and utter garbage, and broke KVM, resulting in odd oopses. Quoting Andrea Arcangeli: "The aforementioned commit has 3 bugs. 1) mmu_notifier_invalidate_range cannot be used in replacement of mmu_notifier_invalidate_range_start/end. For KVM mmu_notifier_invalidate_range is a noop and rightfully so. A MMU notifier implementation has to implement either ->invalidate_range method or the invalidate_range_start/end methods, not both. And if you implement invalidate_range_start/end like KVM is forced to do, calling mmu_notifier_invalidate_range in common code is a noop for KVM. For those MMU notifiers that can get away only implementing ->invalidate_range, the ->invalidate_range is implicitly called by mmu_notifier_invalidate_range_end(). And only those secondary MMUs that share the same pagetable with the primary MMU (like AMD iommuv2) can get away only implementing ->invalidate_range. So all cases (THP on/off) are broken right now. To fix this is enough to replace mmu_notifier_invalidate_range with mmu_notifier_invalidate_range_start;mmu_notifier_invalidate_range_end. Either that or call multiple mmu_notifier_invalidate_page like before. 2) address + (1UL << compound_order(page) is buggy, it should be PAGE_SIZE << compound_order(page), it's bytes not pages, 2M not 512. 3) The whole invalidate_range thing was an attempt to call a single invalidate while walking multiple 4k ptes that maps the same THP (after a pmd virtual split without physical compound page THP split). It's unclear if the rmap_walk will always provide an address that is 2M aligned as parameter to try_to_unmap_one, in presence of THP. I think it needs also an address &= (PAGE_SIZE << compound_order(page)) - 1 to be safe" In general, we should stop making excuses for horrible MMU notifier users. It's much more important that the core VM is sane and safe, than letting MMU notifiers sleep. So if some MMU notifier is sleeping under a spinlock, we need to fix the notifier, not try to make excuses for that garbage in the core VM. Reported-and-tested-by: Bernhard Held <berny156@gmx.de> Reported-and-tested-by: Adam Borowski <kilobyte@angband.pl> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Radim Krčmář <rkrcmar@redhat.com> Cc: Wanpeng Li <kernellwp@gmail.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Takashi Iwai <tiwai@suse.de> Cc: Nadav Amit <nadav.amit@gmail.com> Cc: Mike Galbraith <efault@gmx.de> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Jérôme Glisse <jglisse@redhat.com> Cc: axie <axie@amd.com> Cc: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-08-28page waitqueue: always add new entries at the endLinus Torvalds1-1/+1
Commit 3510ca20ece0 ("Minor page waitqueue cleanups") made the page queue code always add new waiters to the back of the queue, which helps upcoming patches to batch the wakeups for some horrid loads where the wait queues grow to thousands of entries. However, I forgot about the nasrt add_page_wait_queue() special case code that is only used by the cachefiles code. That one still continued to add the new wait queue entries at the beginning of the list. Fix it, because any sane batched wakeup will require that we don't suddenly start getting new entries at the beginning of the list that we already handled in a previous batch. [ The current code always does the whole list while holding the lock, so wait queue ordering doesn't matter for correctness, but even then it's better to add later entries at the end from a fairness standpoint ] Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-08-27Avoid page waitqueue race leaving possible page locker waitingLinus Torvalds1-4/+5
The "lock_page_killable()" function waits for exclusive access to the page lock bit using the WQ_FLAG_EXCLUSIVE bit in the waitqueue entry set. That means that if it gets woken up, other waiters may have been skipped. That, in turn, means that if it sees the page being unlocked, it *must* take that lock and return success, even if a lethal signal is also pending. So instead of checking for lethal signals first, we need to check for them after we've checked the actual bit that we were waiting for. Even if that might then delay the killing of the process. This matches the order of the old "wait_on_bit_lock()" infrastructure that the page locking used to use (and is still used in a few other areas). Note that if we still return an error after having unsuccessfully tried to acquire the page lock, that is ok: that means that some other thread was able to get ahead of us and lock the page, and when that other thread then unlocks the page, the wakeup event will be repeated. So any other pending waiters will now get properly woken up. Fixes: 62906027091f ("mm: add PageWaiters indicating tasks are waiting for a page bit") Cc: Nick Piggin <npiggin@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Jan Kara <jack@suse.cz> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Andi Kleen <ak@linux.intel.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-08-27Minor page waitqueue cleanupsLinus Torvalds1-5/+6
Tim Chen and Kan Liang have been battling a customer load that shows extremely long page wakeup lists. The cause seems to be constant NUMA migration of a hot page that is shared across a lot of threads, but the actual root cause for the exact behavior has not been found. Tim has a patch that batches the wait list traversal at wakeup time, so that we at least don't get long uninterruptible cases where we traverse and wake up thousands of processes and get nasty latency spikes. That is likely 4.14 material, but we're still discussing the page waitqueue specific parts of it. In the meantime, I've tried to look at making the page wait queues less expensive, and failing miserably. If you have thousands of threads waiting for the same page, it will be painful. We'll need to try to figure out the NUMA balancing issue some day, in addition to avoiding the excessive spinlock hold times. That said, having tried to rewrite the page wait queues, I can at least fix up some of the braindamage in the current situation. In particular: (a) we don't want to continue walking the page wait list if the bit we're waiting for already got set again (which seems to be one of the patterns of the bad load). That makes no progress and just causes pointless cache pollution chasing the pointers. (b) we don't want to put the non-locking waiters always on the front of the queue, and the locking waiters always on the back. Not only is that unfair, it means that we wake up thousands of reading threads that will just end up being blocked by the writer later anyway. Also add a comment about the layout of 'struct wait_page_key' - there is an external user of it in the cachefiles code that means that it has to match the layout of 'struct wait_bit_key' in the two first members. It so happens to match, because 'struct page *' and 'unsigned long *' end up having the same values simply because the page flags are the first member in struct page. Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Kan Liang <kan.liang@intel.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Christopher Lameter <cl@linux.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-08-25mm/memblock.c: reversed logic in memblock_discard()Pavel Tatashin1-1/+1
In recently introduced memblock_discard() there is a reversed logic bug. Memory is freed of static array instead of dynamically allocated one. Link: http://lkml.kernel.org/r/1503511441-95478-2-git-send-email-pasha.tatashin@oracle.com Fixes: 3010f876500f ("mm: discard memblock data later") Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com> Reported-by: Woody Suwalski <terraluna977@gmail.com> Tested-by: Woody Suwalski <terraluna977@gmail.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-08-25mm/madvise.c: fix freeing of locked page with MADV_FREEEric Biggers1-1/+1
If madvise(..., MADV_FREE) split a transparent hugepage, it called put_page() before unlock_page(). This was wrong because put_page() can free the page, e.g. if a concurrent madvise(..., MADV_DONTNEED) has removed it from the memory mapping. put_page() then rightfully complained about freeing a locked page. Fix this by moving the unlock_page() before put_page(). This bug was found by syzkaller, which encountered the following splat: BUG: Bad page state in process syzkaller412798 pfn:1bd800 page:ffffea0006f60000 count:0 mapcount:0 mapping: (null) index:0x20a00 flags: 0x200000000040019(locked|uptodate|dirty|swapbacked) raw: 0200000000040019 0000000000000000 0000000000020a00 00000000ffffffff raw: ffffea0006f60020 ffffea0006f60020 0000000000000000 0000000000000000 page dumped because: PAGE_FLAGS_CHECK_AT_FREE flag(s) set bad because of flags: 0x1(locked) Modules linked in: CPU: 1 PID: 3037 Comm: syzkaller412798 Not tainted 4.13.0-rc5+ #35 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: __dump_stack lib/dump_stack.c:16 [inline] dump_stack+0x194/0x257 lib/dump_stack.c:52 bad_page+0x230/0x2b0 mm/page_alloc.c:565 free_pages_check_bad+0x1f0/0x2e0 mm/page_alloc.c:943 free_pages_check mm/page_alloc.c:952 [inline] free_pages_prepare mm/page_alloc.c:1043 [inline] free_pcp_prepare mm/page_alloc.c:1068 [inline] free_hot_cold_page+0x8cf/0x12b0 mm/page_alloc.c:2584 __put_single_page mm/swap.c:79 [inline] __put_page+0xfb/0x160 mm/swap.c:113 put_page include/linux/mm.h:814 [inline] madvise_free_pte_range+0x137a/0x1ec0 mm/madvise.c:371 walk_pmd_range mm/pagewalk.c:50 [inline] walk_pud_range mm/pagewalk.c:108 [inline] walk_p4d_range mm/pagewalk.c:134 [inline] walk_pgd_range mm/pagewalk.c:160 [inline] __walk_page_range+0xc3a/0x1450 mm/pagewalk.c:249 walk_page_range+0x200/0x470 mm/pagewalk.c:326 madvise_free_page_range.isra.9+0x17d/0x230 mm/madvise.c:444 madvise_free_single_vma+0x353/0x580 mm/madvise.c:471 madvise_dontneed_free mm/madvise.c:555 [inline] madvise_vma mm/madvise.c:664 [inline] SYSC_madvise mm/madvise.c:832 [inline] SyS_madvise+0x7d3/0x13c0 mm/madvise.c:760 entry_SYSCALL_64_fastpath+0x1f/0xbe Here is a C reproducer: #define _GNU_SOURCE #include <pthread.h> #include <sys/mman.h> #include <unistd.h> #define MADV_FREE 8 #define PAGE_SIZE 4096 static void *mapping; static const size_t mapping_size = 0x1000000; static void *madvise_thrproc(void *arg) { madvise(mapping, mapping_size, (long)arg); } int main(void) { pthread_t t[2]; for (;;) { mapping = mmap(NULL, mapping_size, PROT_WRITE, MAP_POPULATE|MAP_ANONYMOUS|MAP_PRIVATE, -1, 0); munmap(mapping + mapping_size / 2, PAGE_SIZE); pthread_create(&t[0], 0, madvise_thrproc, (void*)MADV_DONTNEED); pthread_create(&t[1], 0, madvise_thrproc, (void*)MADV_FREE); pthread_join(t[0], NULL); pthread_join(t[1], NULL); munmap(mapping, mapping_size); } } Note: to see the splat, CONFIG_TRANSPARENT_HUGEPAGE=y and CONFIG_DEBUG_VM=y are needed. Google Bug Id: 64696096 Link: http://lkml.kernel.org/r/20170823205235.132061-1-ebiggers3@gmail.com Fixes: 854e9ed09ded ("mm: support madvise(MADV_FREE)") Signed-off-by: Eric Biggers <ebiggers@google.com> Acked-by: David Rientjes <rientjes@google.com> Acked-by: Minchan Kim <minchan@kernel.org> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: <stable@vger.kernel.org> [v4.5+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-08-25mm, shmem: fix handling /sys/kernel/mm/transparent_hugepage/shmem_enabledKirill A. Shutemov1-2/+2
/sys/kernel/mm/transparent_hugepage/shmem_enabled controls if we want to allocate huge pages when allocate pages for private in-kernel shmem mount. Unfortunately, as Dan noticed, I've screwed it up and the only way to make kernel allocate huge page for the mount is to use "force" there. All other values will be effectively ignored. Link: http://lkml.kernel.org/r/20170822144254.66431-1-kirill.shutemov@linux.intel.com Fixes: 5a6e75f8110c ("shmem: prepare huge= mount option and sysfs knob") Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Cc: stable <stable@vger.kernel.org> [4.8+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-08-25PM/hibernate: touch NMI watchdog when creating snapshotChen Yu1-2/+18
There is a problem that when counting the pages for creating the hibernation snapshot will take significant amount of time, especially on system with large memory. Since the counting job is performed with irq disabled, this might lead to NMI lockup. The following warning were found on a system with 1.5TB DRAM: Freezing user space processes ... (elapsed 0.002 seconds) done. OOM killer disabled. PM: Preallocating image memory... NMI watchdog: Watchdog detected hard LOCKUP on cpu 27 CPU: 27 PID: 3128 Comm: systemd-sleep Not tainted 4.13.0-0.rc2.git0.1.fc27.x86_64 #1 task: ffff9f01971ac000 task.stack: ffffb1a3f325c000 RIP: 0010:memory_bm_find_bit+0xf4/0x100 Call Trace: swsusp_set_page_free+0x2b/0x30 mark_free_pages+0x147/0x1c0 count_data_pages+0x41/0xa0 hibernate_preallocate_memory+0x80/0x450 hibernation_snapshot+0x58/0x410 hibernate+0x17c/0x310 state_store+0xdf/0xf0 kobj_attr_store+0xf/0x20 sysfs_kf_write+0x37/0x40 kernfs_fop_write+0x11c/0x1a0 __vfs_write+0x37/0x170 vfs_write+0xb1/0x1a0 SyS_write+0x55/0xc0 entry_SYSCALL_64_fastpath+0x1a/0xa5 ... done (allocated 6590003 pages) PM: Allocated 26360012 kbytes in 19.89 seconds (1325.28 MB/s) It has taken nearly 20 seconds(2.10GHz CPU) thus the NMI lockup was triggered. In case the timeout of the NMI watch dog has been set to 1 second, a safe interval should be 6590003/20 = 320k pages in theory. However there might also be some platforms running at a lower frequency, so feed the watchdog every 100k pages. [yu.c.chen@intel.com: simplification] Link: http://lkml.kernel.org/r/1503460079-29721-1-git-send-email-yu.c.chen@intel.com [yu.c.chen@intel.com: use interval of 128k instead of 100k to avoid modulus] Link: http://lkml.kernel.org/r/1503328098-5120-1-git-send-email-yu.c.chen@intel.com Signed-off-by: Chen Yu <yu.c.chen@intel.com> Reported-by: Jan Filipcewicz <jan.filipcewicz@intel.com> Suggested-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Michal Hocko <mhocko@suse.com> Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Len Brown <lenb@kernel.org> Cc: Dan Williams <dan.j.williams@intel.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-08-25Merge branch 'linus' into locking/core, to pick up fixesIngo Molnar12-96/+120
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-08-20Sanitize 'move_pages()' permission checksLinus Torvalds1-8/+3
The 'move_paghes()' system call was introduced long long ago with the same permission checks as for sending a signal (except using CAP_SYS_NICE instead of CAP_SYS_KILL for the overriding capability). That turns out to not be a great choice - while the system call really only moves physical page allocations around (and you need other capabilities to do a lot of it), you can check the return value to map out some the virtual address choices and defeat ASLR of a binary that still shares your uid. So change the access checks to the more common 'ptrace_may_access()' model instead. This tightens the access checks for the uid, and also effectively changes the CAP_SYS_NICE check to CAP_SYS_PTRACE, but it's unlikely that anybody really _uses_ this legacy system call any more (we hav ebetter NUMA placement models these days), so I expect nobody to notice. Famous last words. Reported-by: Otto Ebeling <otto.ebeling@iki.fi> Acked-by: Eric W. Biederman <ebiederm@xmission.com> Cc: Willy Tarreau <w@1wt.eu> Cc: stable@kernel.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-08-18mm/vmalloc.c: don't unconditonally use __GFP_HIGHMEMLaura Abbott1-5/+8
Commit 19809c2da28a ("mm, vmalloc: use __GFP_HIGHMEM implicitly") added use of __GFP_HIGHMEM for allocations. vmalloc_32 may use GFP_DMA/GFP_DMA32 which does not play nice with __GFP_HIGHMEM and will trigger a BUG in gfp_zone. Only add __GFP_HIGHMEM if we aren't using GFP_DMA/GFP_DMA32. Bugzilla: https://bugzilla.redhat.com/show_bug.cgi?id=1482249 Link: http://lkml.kernel.org/r/20170816220705.31374-1-labbott@redhat.com Fixes: 19809c2da28a ("mm, vmalloc: use __GFP_HIGHMEM implicitly") Signed-off-by: Laura Abbott <labbott@redhat.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-08-18mm/mempolicy: fix use after free when calling get_mempolicyzhong jiang1-5/+0
I hit a use after free issue when executing trinity and repoduced it with KASAN enabled. The related call trace is as follows. BUG: KASan: use after free in SyS_get_mempolicy+0x3c8/0x960 at addr ffff8801f582d766 Read of size 2 by task syz-executor1/798 INFO: Allocated in mpol_new.part.2+0x74/0x160 age=3 cpu=1 pid=799 __slab_alloc+0x768/0x970 kmem_cache_alloc+0x2e7/0x450 mpol_new.part.2+0x74/0x160 mpol_new+0x66/0x80 SyS_mbind+0x267/0x9f0 system_call_fastpath+0x16/0x1b INFO: Freed in __mpol_put+0x2b/0x40 age=4 cpu=1 pid=799 __slab_free+0x495/0x8e0 kmem_cache_free+0x2f3/0x4c0 __mpol_put+0x2b/0x40 SyS_mbind+0x383/0x9f0 system_call_fastpath+0x16/0x1b INFO: Slab 0xffffea0009cb8dc0 objects=23 used=8 fp=0xffff8801f582de40 flags=0x200000000004080 INFO: Object 0xffff8801f582d760 @offset=5984 fp=0xffff8801f582d600 Bytes b4 ffff8801f582d750: ae 01 ff ff 00 00 00 00 5a 5a 5a 5a 5a 5a 5a 5a ........ZZZZZZZZ Object ffff8801f582d760: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkkkkkkkkkkkkk Object ffff8801f582d770: 6b 6b 6b 6b 6b 6b 6b a5 kkkkkkk. Redzone ffff8801f582d778: bb bb bb bb bb bb bb bb ........ Padding ffff8801f582d8b8: 5a 5a 5a 5a 5a 5a 5a 5a ZZZZZZZZ Memory state around the buggy address: ffff8801f582d600: fb fb fb fc fc fc fc fc fc fc fc fc fc fc fc fc ffff8801f582d680: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc >ffff8801f582d700: fc fc fc fc fc fc fc fc fc fc fc fc fb fb fb fc !shared memory policy is not protected against parallel removal by other thread which is normally protected by the mmap_sem. do_get_mempolicy, however, drops the lock midway while we can still access it later. Early premature up_read is a historical artifact from times when put_user was called in this path see https://lwn.net/Articles/124754/ but that is gone since 8bccd85ffbaf ("[PATCH] Implement sys_* do_* layering in the memory policy layer."). but when we have the the current mempolicy ref count model. The issue was introduced accordingly. Fix the issue by removing the premature release. Link: http://lkml.kernel.org/r/1502950924-27521-1-git-send-email-zhongjiang@huawei.com Signed-off-by: zhong jiang <zhongjiang@huawei.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: <stable@vger.kernel.org> [2.6+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-08-18mm/cma_debug.c: fix stack corruption due to sprintf usagePrakash Gupta1-1/+1
name[] in cma_debugfs_add_one() can only accommodate 16 chars including NULL to store sprintf output. It's common for cma device name to be larger than 15 chars. This can cause stack corrpution. If the gcc stack protector is turned on, this can cause a panic due to stack corruption. Below is one example trace: Kernel panic - not syncing: stack-protector: Kernel stack is corrupted in: ffffff8e69a75730 Call trace: dump_backtrace+0x0/0x2c4 show_stack+0x20/0x28 dump_stack+0xb8/0xf4 panic+0x154/0x2b0 print_tainted+0x0/0xc0 cma_debugfs_init+0x274/0x290 do_one_initcall+0x5c/0x168 kernel_init_freeable+0x1c8/0x280 Fix the short sprintf buffer in cma_debugfs_add_one() by using scnprintf() instead of sprintf(). Link: http://lkml.kernel.org/r/1502446217-21840-1-git-send-email-guptap@codeaurora.org Fixes: f318dd083c81 ("cma: Store a name in the cma structure") Signed-off-by: Prakash Gupta <guptap@codeaurora.org> Acked-by: Laura Abbott <labbott@redhat.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-08-18mm, oom: fix potential data corruption when oom_reaper races with writerMichal Hocko2-34/+42
Wenwei Tao has noticed that our current assumption that the oom victim is dying and never doing any visible changes after it dies, and so the oom_reaper can tear it down, is not entirely true. __task_will_free_mem consider a task dying when SIGNAL_GROUP_EXIT is set but do_group_exit sends SIGKILL to all threads _after_ the flag is set. So there is a race window when some threads won't have fatal_signal_pending while the oom_reaper could start unmapping the address space. Moreover some paths might not check for fatal signals before each PF/g-u-p/copy_from_user. We already have a protection for oom_reaper vs. PF races by checking MMF_UNSTABLE. This has been, however, checked only for kernel threads (use_mm users) which can outlive the oom victim. A simple fix would be to extend the current check in handle_mm_fault for all tasks but that wouldn't be sufficient because the current check assumes that a kernel thread would bail out after EFAULT from get_user*/copy_from_user and never re-read the same address which would succeed because the PF path has established page tables already. This seems to be the case for the only existing use_mm user currently (virtio driver) but it is rather fragile in general. This is even more fragile in general for more complex paths such as generic_perform_write which can re-read the same address more times (e.g. iov_iter_copy_from_user_atomic to fail and then iov_iter_fault_in_readable on retry). Therefore we have to implement MMF_UNSTABLE protection in a robust way and never make a potentially corrupted content visible. That requires to hook deeper into the PF path and check for the flag _every time_ before a pte for anonymous memory is established (that means all !VM_SHARED mappings). The corruption can be triggered artificially (http://lkml.kernel.org/r/201708040646.v746kkhC024636@www262.sakura.ne.jp) but there doesn't seem to be any real life bug report. The race window should be quite tight to trigger most of the time. Link: http://lkml.kernel.org/r/20170807113839.16695-3-mhocko@kernel.org Fixes: aac453635549 ("mm, oom: introduce oom reaper") Signed-off-by: Michal Hocko <mhocko@suse.com> Reported-by: Wenwei Tao <wenwei.tww@alibaba-inc.com> Tested-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Andrea Argangeli <andrea@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-08-18mm: fix double mmap_sem unlock on MMF_UNSTABLE enforced SIGBUSMichal Hocko1-1/+11
Tetsuo Handa has noticed that MMF_UNSTABLE SIGBUS path in handle_mm_fault causes a lockdep splat Out of memory: Kill process 1056 (a.out) score 603 or sacrifice child Killed process 1056 (a.out) total-vm:4268108kB, anon-rss:2246048kB, file-rss:0kB, shmem-rss:0kB a.out (1169) used greatest stack depth: 11664 bytes left DEBUG_LOCKS_WARN_ON(depth <= 0) ------------[ cut here ]------------ WARNING: CPU: 6 PID: 1339 at kernel/locking/lockdep.c:3617 lock_release+0x172/0x1e0 CPU: 6 PID: 1339 Comm: a.out Not tainted 4.13.0-rc3-next-20170803+ #142 Hardware name: VMware, Inc. VMware Virtual Platform/440BX Desktop Reference Platform, BIOS 6.00 07/02/2015 RIP: 0010:lock_release+0x172/0x1e0 Call Trace: up_read+0x1a/0x40 __do_page_fault+0x28e/0x4c0 do_page_fault+0x30/0x80 page_fault+0x28/0x30 The reason is that the page fault path might have dropped the mmap_sem and returned with VM_FAULT_RETRY. MMF_UNSTABLE check however rewrites the error path to VM_FAULT_SIGBUS and we always expect mmap_sem taken in that path. Fix this by taking mmap_sem when VM_FAULT_RETRY is held in the MMF_UNSTABLE path. We cannot simply add VM_FAULT_SIGBUS to the existing error code because all arch specific page fault handlers and g-u-p would have to learn a new error code combination. Link: http://lkml.kernel.org/r/20170807113839.16695-2-mhocko@kernel.org Fixes: 3f70dc38cec2 ("mm: make sure that kthreads will not refault oom reaped memory") Reported-by: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp> Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: David Rientjes <rientjes@google.com> Cc: Andrea Argangeli <andrea@kernel.org> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Wenwei Tao <wenwei.tww@alibaba-inc.com> Cc: <stable@vger.kernel.org> [4.9+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-08-18slub: fix per memcg cache leak on css offlineVladimir Davydov1-1/+2
To avoid a possible deadlock, sysfs_slab_remove() schedules an asynchronous work to delete sysfs entries corresponding to the kmem cache. To ensure the cache isn't freed before the work function is called, it takes a reference to the cache kobject. The reference is supposed to be released by the work function. However, the work function (sysfs_slab_remove_workfn()) does nothing in case the cache sysfs entry has already been deleted, leaking the kobject and the corresponding cache. This may happen on a per memcg cache destruction, because sysfs entries of a per memcg cache are deleted on memcg offline if the cache is empty (see __kmemcg_cache_deactivate()). The kmemleak report looks like this: unreferenced object 0xffff9f798a79f540 (size 32): comm "kworker/1:4", pid 15416, jiffies 4307432429 (age 28687.554s) hex dump (first 32 bytes): 6b 6d 61 6c 6c 6f 63 2d 31 36 28 31 35 39 39 3a kmalloc-16(1599: 6e 65 77 72 6f 6f 74 29 00 23 6b c0 ff ff ff ff newroot).#k..... backtrace: kmemleak_alloc+0x4a/0xa0 __kmalloc_track_caller+0x148/0x2c0 kvasprintf+0x66/0xd0 kasprintf+0x49/0x70 memcg_create_kmem_cache+0xe6/0x160 memcg_kmem_cache_create_func+0x20/0x110 process_one_work+0x205/0x5d0 worker_thread+0x4e/0x3a0 kthread+0x109/0x140 ret_from_fork+0x2a/0x40 unreferenced object 0xffff9f79b6136840 (size 416): comm "kworker/1:4", pid 15416, jiffies 4307432429 (age 28687.573s) hex dump (first 32 bytes): 40 fb 80 c2 3e 33 00 00 00 00 00 40 00 00 00 00 @...>3.....@.... 00 00 00 00 00 00 00 00 10 00 00 00 10 00 00 00 ................ backtrace: kmemleak_alloc+0x4a/0xa0 kmem_cache_alloc+0x128/0x280 create_cache+0x3b/0x1e0 memcg_create_kmem_cache+0x118/0x160 memcg_kmem_cache_create_func+0x20/0x110 process_one_work+0x205/0x5d0 worker_thread+0x4e/0x3a0 kthread+0x109/0x140 ret_from_fork+0x2a/0x40 Fix the leak by adding the missing call to kobject_put() to sysfs_slab_remove_workfn(). Link: http://lkml.kernel.org/r/20170812181134.25027-1-vdavydov.dev@gmail.com Fixes: 3b7b314053d02 ("slub: make sysfs file removal asynchronous") Signed-off-by: Vladimir Davydov <vdavydov.dev@gmail.com> Reported-by: Andrei Vagin <avagin@gmail.com> Tested-by: Andrei Vagin <avagin@gmail.com> Acked-by: Tejun Heo <tj@kernel.org> Acked-by: David Rientjes <rientjes@google.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: <stable@vger.kernel.org> [4.12.x] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-08-18mm: discard memblock data laterPavel Tatashin3-37/+21
There is existing use after free bug when deferred struct pages are enabled: The memblock_add() allocates memory for the memory array if more than 128 entries are needed. See comment in e820__memblock_setup(): * The bootstrap memblock region count maximum is 128 entries * (INIT_MEMBLOCK_REGIONS), but EFI might pass us more E820 entries * than that - so allow memblock resizing. This memblock memory is freed here: free_low_memory_core_early() We access the freed memblock.memory later in boot when deferred pages are initialized in this path: deferred_init_memmap() for_each_mem_pfn_range() __next_mem_pfn_range() type = &memblock.memory; One possible explanation for why this use-after-free hasn't been hit before is that the limit of INIT_MEMBLOCK_REGIONS has never been exceeded at least on systems where deferred struct pages were enabled. Tested by reducing INIT_MEMBLOCK_REGIONS down to 4 from the current 128, and verifying in qemu that this code is getting excuted and that the freed pages are sane. Link: http://lkml.kernel.org/r/1502485554-318703-2-git-send-email-pasha.tatashin@oracle.com Fixes: 7e18adb4f80b ("mm: meminit: initialise remaining struct pages in parallel with kswapd") Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com> Reviewed-by: Steven Sistare <steven.sistare@oracle.com> Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com> Reviewed-by: Bob Picco <bob.picco@oracle.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-08-18mm: memcontrol: fix NULL pointer crash in test_clear_page_writeback()Johannes Weiner2-15/+43
Jaegeuk and Brad report a NULL pointer crash when writeback ending tries to update the memcg stats: BUG: unable to handle kernel NULL pointer dereference at 00000000000003b0 IP: test_clear_page_writeback+0x12e/0x2c0 [...] RIP: 0010:test_clear_page_writeback+0x12e/0x2c0 Call Trace: <IRQ> end_page_writeback+0x47/0x70 f2fs_write_end_io+0x76/0x180 [f2fs] bio_endio+0x9f/0x120 blk_update_request+0xa8/0x2f0 scsi_end_request+0x39/0x1d0 scsi_io_completion+0x211/0x690 scsi_finish_command+0xd9/0x120 scsi_softirq_done+0x127/0x150 __blk_mq_complete_request_remote+0x13/0x20 flush_smp_call_function_queue+0x56/0x110 generic_smp_call_function_single_interrupt+0x13/0x30 smp_call_function_single_interrupt+0x27/0x40 call_function_single_interrupt+0x89/0x90 RIP: 0010:native_safe_halt+0x6/0x10 (gdb) l *(test_clear_page_writeback+0x12e) 0xffffffff811bae3e is in test_clear_page_writeback (./include/linux/memcontrol.h:619). 614 mod_node_page_state(page_pgdat(page), idx, val); 615 if (mem_cgroup_disabled() || !page->mem_cgroup) 616 return; 617 mod_memcg_state(page->mem_cgroup, idx, val); 618 pn = page->mem_cgroup->nodeinfo[page_to_nid(page)]; 619 this_cpu_add(pn->lruvec_stat->count[idx], val); 620 } 621 622 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 623 gfp_t gfp_mask, The issue is that writeback doesn't hold a page reference and the page might get freed after PG_writeback is cleared (and the mapping is unlocked) in test_clear_page_writeback(). The stat functions looking up the page's node or zone are safe, as those attributes are static across allocation and free cycles. But page->mem_cgroup is not, and it will get cleared if we race with truncation or migration. It appears this race window has been around for a while, but less likely to trigger when the memcg stats were updated first thing after PG_writeback is cleared. Recent changes reshuffled this code to update the global node stats before the memcg ones, though, stretching the race window out to an extent where people can reproduce the problem. Update test_clear_page_writeback() to look up and pin page->mem_cgroup before clearing PG_writeback, then not use that pointer afterward. It is a partial revert of 62cccb8c8e7a ("mm: simplify lock_page_memcg()") but leaves the pageref-holding callsites that aren't affected alone. Link: http://lkml.kernel.org/r/20170809183825.GA26387@cmpxchg.org Fixes: 62cccb8c8e7a ("mm: simplify lock_page_memcg()") Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reported-by: Jaegeuk Kim <jaegeuk@kernel.org> Tested-by: Jaegeuk Kim <jaegeuk@kernel.org> Reported-by: Bradley Bolen <bradleybolen@gmail.com> Tested-by: Brad Bolen <bradleybolen@gmail.com> Cc: Vladimir Davydov <vdavydov@virtuozzo.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: <stable@vger.kernel.org> [4.6+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-08-11mm, locking: Fix up flush_tlb_pending() related merge in do_huge_pmd_numa_page()Peter Zijlstra1-17/+5
Merge commit: 040cca3ab2f6 ("Merge branch 'linus' into locking/core, to resolve conflicts") overlooked the fact that do_huge_pmd_numa_page() now does two TLB flushes. Commit: 8b1b436dd1cc ("mm, locking: Rework {set,clear,mm}_tlb_flush_pending()") and commit: a9b802500ebb ("Revert "mm: numa: defer TLB flush for THP migration as long as possible"") Both moved the TLB flush around but slightly different, the end result being that what was one became two. Clean this up. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: David S. Miller <davem@davemloft.net> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Rik van Riel <riel@redhat.com> Cc: Russell King <linux@armlinux.org.uk> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vineet Gupta <vgupta@synopsys.com> Cc: Will Deacon <will.deacon@arm.com> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-08-11Merge branch 'linus' into locking/core, to resolve conflictsIngo Molnar11-47/+96
Conflicts: include/linux/mm_types.h mm/huge_memory.c I removed the smp_mb__before_spinlock() like the following commit does: 8b1b436dd1cc ("mm, locking: Rework {set,clear,mm}_tlb_flush_pending()") and fixed up the affected commits. Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-08-10rmap: do not call mmu_notifier_invalidate_page() under ptlKirill A. Shutemov1-22/+30
MMU notifiers can sleep, but in page_mkclean_one() we call mmu_notifier_invalidate_page() under page table lock. Let's instead use mmu_notifier_invalidate_range() outside page_vma_mapped_walk() loop. [jglisse@redhat.com: try_to_unmap_one() do not call mmu_notifier under ptl] Link: http://lkml.kernel.org/r/20170809204333.27485-1-jglisse@redhat.com Link: http://lkml.kernel.org/r/20170804134928.l4klfcnqatni7vsc@black.fi.intel.com Fixes: c7ab0d2fdc84 ("mm: convert try_to_unmap_one() to use page_vma_mapped_walk()") Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Reported-by: axie <axie@amd.com> Cc: Alex Deucher <alexander.deucher@amd.com> Cc: "Writer, Tim" <Tim.Writer@amd.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-08-10mm: fix list corruptions on shmem shrinklistCong Wang1-2/+10
We saw many list corruption warnings on shmem shrinklist: WARNING: CPU: 18 PID: 177 at lib/list_debug.c:59 __list_del_entry+0x9e/0xc0 list_del corruption. prev->next should be ffff9ae5694b82d8, but was ffff9ae5699ba960 Modules linked in: intel_rapl sb_edac edac_core x86_pkg_temp_thermal coretemp iTCO_wdt iTCO_vendor_support crct10dif_pclmul crc32_pclmul ghash_clmulni_intel raid0 dcdbas shpchp wmi hed i2c_i801 ioatdma lpc_ich i2c_smbus acpi_cpufreq tcp_diag inet_diag sch_fq_codel ipmi_si ipmi_devintf ipmi_msghandler igb ptp crc32c_intel pps_core i2c_algo_bit i2c_core dca ipv6 crc_ccitt CPU: 18 PID: 177 Comm: kswapd1 Not tainted 4.9.34-t3.el7.twitter.x86_64 #1 Hardware name: Dell Inc. PowerEdge C6220/0W6W6G, BIOS 2.2.3 11/07/2013 Call Trace: dump_stack+0x4d/0x66 __warn+0xcb/0xf0 warn_slowpath_fmt+0x4f/0x60 __list_del_entry+0x9e/0xc0 shmem_unused_huge_shrink+0xfa/0x2e0 shmem_unused_huge_scan+0x20/0x30 super_cache_scan+0x193/0x1a0 shrink_slab.part.41+0x1e3/0x3f0 shrink_slab+0x29/0x30 shrink_node+0xf9/0x2f0 kswapd+0x2d8/0x6c0 kthread+0xd7/0xf0 ret_from_fork+0x22/0x30 WARNING: CPU: 23 PID: 639 at lib/list_debug.c:33 __list_add+0x89/0xb0 list_add corruption. prev->next should be next (ffff9ae5699ba960), but was ffff9ae5694b82d8. (prev=ffff9ae5694b82d8). Modules linked in: intel_rapl sb_edac edac_core x86_pkg_temp_thermal coretemp iTCO_wdt iTCO_vendor_support crct10dif_pclmul crc32_pclmul ghash_clmulni_intel raid0 dcdbas shpchp wmi hed i2c_i801 ioatdma lpc_ich i2c_smbus acpi_cpufreq tcp_diag inet_diag sch_fq_codel ipmi_si ipmi_devintf ipmi_msghandler igb ptp crc32c_intel pps_core i2c_algo_bit i2c_core dca ipv6 crc_ccitt CPU: 23 PID: 639 Comm: systemd-udevd Tainted: G W 4.9.34-t3.el7.twitter.x86_64 #1 Hardware name: Dell Inc. PowerEdge C6220/0W6W6G, BIOS 2.2.3 11/07/2013 Call Trace: dump_stack+0x4d/0x66 __warn+0xcb/0xf0 warn_slowpath_fmt+0x4f/0x60 __list_add+0x89/0xb0 shmem_setattr+0x204/0x230 notify_change+0x2ef/0x440 do_truncate+0x5d/0x90 path_openat+0x331/0x1190 do_filp_open+0x7e/0xe0 do_sys_open+0x123/0x200 SyS_open+0x1e/0x20 do_syscall_64+0x61/0x170 entry_SYSCALL64_slow_path+0x25/0x25 The problem is that shmem_unused_huge_shrink() moves entries from the global sbinfo->shrinklist to its local lists and then releases the spinlock. However, a parallel shmem_setattr() could access one of these entries directly and add it back to the global shrinklist if it is removed, with the spinlock held. The logic itself looks solid since an entry could be either in a local list or the global list, otherwise it is removed from one of them by list_del_init(). So probably the race condition is that, one CPU is in the middle of INIT_LIST_HEAD() but the other CPU calls list_empty() which returns true too early then the following list_add_tail() sees a corrupted entry. list_empty_careful() is designed to fix this situation. [akpm@linux-foundation.org: add comments] Link: http://lkml.kernel.org/r/20170803054630.18775-1-xiyou.wangcong@gmail.com Fixes: 779750d20b93 ("shmem: split huge pages beyond i_size under memory pressure") Signed-off-by: Cong Wang <xiyou.wangcong@gmail.com> Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-08-10mm/balloon_compaction.c: don't zero ballooned pagesWei Wang1-1/+1
Revert commit bb01b64cfab7 ("mm/balloon_compaction.c: enqueue zero page to balloon device")' Zeroing ballon pages is rather time consuming, especially when a lot of pages are in flight. E.g. 7GB worth of ballooned memory takes 2.8s with __GFP_ZERO while it takes ~491ms without it. The original commit argued that zeroing will help ksmd to merge these pages on the host but this argument is assuming that the host actually marks balloon pages for ksm which is not universally true. So we pay performance penalty for something that even might not be used in the end which is wrong. The host can zero out pages on its own when there is a need. [mhocko@kernel.org: new changelog text] Link: http://lkml.kernel.org/r/1501761557-9758-1-git-send-email-wei.w.wang@intel.com Fixes: bb01b64cfab7 ("mm/balloon_compaction.c: enqueue zero page to balloon device") Signed-off-by: Wei Wang <wei.w.wang@intel.com> Acked-by: Michael S. Tsirkin <mst@redhat.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: zhenwei.pi <zhenwei.pi@youruncloud.com> Cc: David Hildenbrand <david@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-08-10mm: fix KSM data corruptionMinchan Kim1-1/+2
Nadav reported KSM can corrupt the user data by the TLB batching race[1]. That means data user written can be lost. Quote from Nadav Amit: "For this race we need 4 CPUs: CPU0: Caches a writable and dirty PTE entry, and uses the stale value for write later. CPU1: Runs madvise_free on the range that includes the PTE. It would clear the dirty-bit. It batches TLB flushes. CPU2: Writes 4 to /proc/PID/clear_refs , clearing the PTEs soft-dirty. We care about the fact that it clears the PTE write-bit, and of course, batches TLB flushes. CPU3: Runs KSM. Our purpose is to pass the following test in write_protect_page(): if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) || (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte))) Since it will avoid TLB flush. And we want to do it while the PTE is stale. Later, and before replacing the page, we would be able to change the page. Note that all the operations the CPU1-3 perform canhappen in parallel since they only acquire mmap_sem for read. We start with two identical pages. Everything below regards the same page/PTE. CPU0 CPU1 CPU2 CPU3 ---- ---- ---- ---- Write the same value on page [cache PTE as dirty in TLB] MADV_FREE pte_mkclean() 4 > clear_refs pte_wrprotect() write_protect_page() [ success, no flush ] pages_indentical() [ ok ] Write to page different value [Ok, using stale PTE] replace_page() Later, CPU1, CPU2 and CPU3 would flush the TLB, but that is too late. CPU0 already wrote on the page, but KSM ignored this write, and it got lost" In above scenario, MADV_FREE is fixed by changing TLB batching API including [set|clear]_tlb_flush_pending. Remained thing is soft-dirty part. This patch changes soft-dirty uses TLB batching API instead of flush_tlb_mm and KSM checks pending TLB flush by using mm_tlb_flush_pending so that it will flush TLB to avoid data lost if there are other parallel threads pending TLB flush. [1] http://lkml.kernel.org/r/BD3A0EBE-ECF4-41D4-87FA-C755EA9AB6BD@gmail.com Link: http://lkml.kernel.org/r/20170802000818.4760-8-namit@vmware.com Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Nadav Amit <namit@vmware.com> Reported-by: Nadav Amit <namit@vmware.com> Tested-by: Nadav Amit <namit@vmware.com> Reviewed-by: Andrea Arcangeli <aarcange@redhat.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Hugh Dickins <hughd@google.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Andy Lutomirski <luto@kernel.org> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jeff Dike <jdike@addtoit.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Nadav Amit <nadav.amit@gmail.com> Cc: Rik van Riel <riel@redhat.com> Cc: Russell King <linux@armlinux.org.uk> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-08-10mm: fix MADV_[FREE|DONTNEED] TLB flush miss problemMinchan Kim1-2/+16
Nadav reported parallel MADV_DONTNEED on same range has a stale TLB problem and Mel fixed it[1] and found same problem on MADV_FREE[2]. Quote from Mel Gorman: "The race in question is CPU 0 running madv_free and updating some PTEs while CPU 1 is also running madv_free and looking at the same PTEs. CPU 1 may have writable TLB entries for a page but fail the pte_dirty check (because CPU 0 has updated it already) and potentially fail to flush. Hence, when madv_free on CPU 1 returns, there are still potentially writable TLB entries and the underlying PTE is still present so that a subsequent write does not necessarily propagate the dirty bit to the underlying PTE any more. Reclaim at some unknown time at the future may then see that the PTE is still clean and discard the page even though a write has happened in the meantime. I think this is possible but I could have missed some protection in madv_free that prevents it happening." This patch aims for solving both problems all at once and is ready for other problem with KSM, MADV_FREE and soft-dirty story[3]. TLB batch API(tlb_[gather|finish]_mmu] uses [inc|dec]_tlb_flush_pending and mmu_tlb_flush_pending so that when tlb_finish_mmu is called, we can catch there are parallel threads going on. In that case, forcefully, flush TLB to prevent for user to access memory via stale TLB entry although it fail to gather page table entry. I confirmed this patch works with [4] test program Nadav gave so this patch supersedes "mm: Always flush VMA ranges affected by zap_page_range v2" in current mmotm. NOTE: This patch modifies arch-specific TLB gathering interface(x86, ia64, s390, sh, um). It seems most of architecture are straightforward but s390 need to be careful because tlb_flush_mmu works only if mm->context.flush_mm is set to non-zero which happens only a pte entry really is cleared by ptep_get_and_clear and friends. However, this problem never changes the pte entries but need to flush to prevent memory access from stale tlb. [1] http://lkml.kernel.org/r/20170725101230.5v7gvnjmcnkzzql3@techsingularity.net [2] http://lkml.kernel.org/r/20170725100722.2dxnmgypmwnrfawp@suse.de [3] http://lkml.kernel.org/r/BD3A0EBE-ECF4-41D4-87FA-C755EA9AB6BD@gmail.com [4] https://patchwork.kernel.org/patch/9861621/ [minchan@kernel.org: decrease tlb flush pending count in tlb_finish_mmu] Link: http://lkml.kernel.org/r/20170808080821.GA31730@bbox Link: http://lkml.kernel.org/r/20170802000818.4760-7-namit@vmware.com Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Nadav Amit <namit@vmware.com> Reported-by: Nadav Amit <namit@vmware.com> Reported-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Mel Gorman <mgorman@techsingularity.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Russell King <linux@armlinux.org.uk> Cc: Tony Luck <tony.luck@intel.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Cc: Jeff Dike <jdike@addtoit.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Hugh Dickins <hughd@google.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Nadav Amit <nadav.amit@gmail.com> Cc: Rik van Riel <riel@redhat.com> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-08-10mm: make tlb_flush_pending globalMinchan Kim1-4/+0
Currently, tlb_flush_pending is used only for CONFIG_[NUMA_BALANCING| COMPACTION] but upcoming patches to solve subtle TLB flush batching problem will use it regardless of compaction/NUMA so this patch doesn't remove the dependency. [akpm@linux-foundation.org: remove more ifdefs from world's ugliest printk statement] Link: http://lkml.kernel.org/r/20170802000818.4760-6-namit@vmware.com Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Nadav Amit <namit@vmware.com> Acked-by: Mel Gorman <mgorman@techsingularity.net> Cc: "David S. Miller" <davem@davemloft.net> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Hugh Dickins <hughd@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jeff Dike <jdike@addtoit.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Nadav Amit <nadav.amit@gmail.com> Cc: Rik van Riel <riel@redhat.com> Cc: Russell King <linux@armlinux.org.uk> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-08-10mm: refactor TLB gathering APIMinchan Kim1-7/+21
This patch is a preparatory patch for solving race problems caused by TLB batch. For that, we will increase/decrease TLB flush pending count of mm_struct whenever tlb_[gather|finish]_mmu is called. Before making it simple, this patch separates architecture specific part and rename it to arch_tlb_[gather|finish]_mmu and generic part just calls it. It shouldn't change any behavior. Link: http://lkml.kernel.org/r/20170802000818.4760-5-namit@vmware.com Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Nadav Amit <namit@vmware.com> Acked-by: Mel Gorman <mgorman@techsingularity.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Russell King <linux@armlinux.org.uk> Cc: Tony Luck <tony.luck@intel.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Cc: Jeff Dike <jdike@addtoit.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Hugh Dickins <hughd@google.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Nadav Amit <nadav.amit@gmail.com> Cc: Rik van Riel <riel@redhat.com> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-08-10Revert "mm: numa: defer TLB flush for THP migration as long as possible"Nadav Amit2-6/+7
While deferring TLB flushes is a good practice, the reverted patch caused pending TLB flushes to be checked while the page-table lock is not taken. As a result, in architectures with weak memory model (PPC), Linux may miss a memory-barrier, miss the fact TLB flushes are pending, and cause (in theory) a memory corruption. Since the alternative of using smp_mb__after_unlock_lock() was considered a bit open-coded, and the performance impact is expected to be small, the previous patch is reverted. This reverts b0943d61b8fa ("mm: numa: defer TLB flush for THP migration as long as possible"). Link: http://lkml.kernel.org/r/20170802000818.4760-4-namit@vmware.com Signed-off-by: Nadav Amit <namit@vmware.com> Suggested-by: Mel Gorman <mgorman@suse.de> Acked-by: Mel Gorman <mgorman@suse.de> Acked-by: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: "David S. Miller" <davem@davemloft.net> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Hugh Dickins <hughd@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jeff Dike <jdike@addtoit.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Nadav Amit <nadav.amit@gmail.com> Cc: Russell King <linux@armlinux.org.uk> Cc: Tony Luck <tony.luck@intel.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-08-10mm: migrate: prevent racy access to tlb_flush_pendingNadav Amit2-3/+3
Patch series "fixes of TLB batching races", v6. It turns out that Linux TLB batching mechanism suffers from various races. Races that are caused due to batching during reclamation were recently handled by Mel and this patch-set deals with others. The more fundamental issue is that concurrent updates of the page-tables allow for TLB flushes to be batched on one core, while another core changes the page-tables. This other core may assume a PTE change does not require a flush based on the updated PTE value, while it is unaware that TLB flushes are still pending. This behavior affects KSM (which may result in memory corruption) and MADV_FREE and MADV_DONTNEED (which may result in incorrect behavior). A proof-of-concept can easily produce the wrong behavior of MADV_DONTNEED. Memory corruption in KSM is harder to produce in practice, but was observed by hacking the kernel and adding a delay before flushing and replacing the KSM page. Finally, there is also one memory barrier missing, which may affect architectures with weak memory model. This patch (of 7): Setting and clearing mm->tlb_flush_pending can be performed by multiple threads, since mmap_sem may only be acquired for read in task_numa_work(). If this happens, tlb_flush_pending might be cleared while one of the threads still changes PTEs and batches TLB flushes. This can lead to the same race between migration and change_protection_range() that led to the introduction of tlb_flush_pending. The result of this race was data corruption, which means that this patch also addresses a theoretically possible data corruption. An actual data corruption was not observed, yet the race was was confirmed by adding assertion to check tlb_flush_pending is not set by two threads, adding artificial latency in change_protection_range() and using sysctl to reduce kernel.numa_balancing_scan_delay_ms. Link: http://lkml.kernel.org/r/20170802000818.4760-2-namit@vmware.com Fixes: 20841405940e ("mm: fix TLB flush race between migration, and change_protection_range") Signed-off-by: Nadav Amit <namit@vmware.com> Acked-by: Mel Gorman <mgorman@suse.de> Acked-by: Rik van Riel <riel@redhat.com> Acked-by: Minchan Kim <minchan@kernel.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Hugh Dickins <hughd@google.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jeff Dike <jdike@addtoit.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Russell King <linux@armlinux.org.uk> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-08-10userfaultfd: hugetlbfs: remove superfluous page unlock in VM_SHARED caseAndrea Arcangeli1-1/+1
huge_add_to_page_cache->add_to_page_cache implicitly unlocks the page before returning in case of errors. The error returned was -EEXIST by running UFFDIO_COPY on a non-hole offset of a VM_SHARED hugetlbfs mapping. It was an userland bug that triggered it and the kernel must cope with it returning -EEXIST from ioctl(UFFDIO_COPY) as expected. page dumped because: VM_BUG_ON_PAGE(!PageLocked(page)) kernel BUG at mm/filemap.c:964! invalid opcode: 0000 [#1] SMP CPU: 1 PID: 22582 Comm: qemu-system-x86 Not tainted 4.11.11-300.fc26.x86_64 #1 RIP: unlock_page+0x4a/0x50 Call Trace: hugetlb_mcopy_atomic_pte+0xc0/0x320 mcopy_atomic+0x96f/0xbe0 userfaultfd_ioctl+0x218/0xe90 do_vfs_ioctl+0xa5/0x600 SyS_ioctl+0x79/0x90 entry_SYSCALL_64_fastpath+0x1a/0xa9 Link: http://lkml.kernel.org/r/20170802165145.22628-2-aarcange@redhat.com Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Tested-by: Maxime Coquelin <maxime.coquelin@redhat.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: "Dr. David Alan Gilbert" <dgilbert@redhat.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Alexey Perevalov <a.perevalov@samsung.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-08-10mm: ratelimit PFNs busy info messageJonathan Toppins1-1/+1
The RDMA subsystem can generate several thousand of these messages per second eventually leading to a kernel crash. Ratelimit these messages to prevent this crash. Doug said: "I've been carrying a version of this for several kernel versions. I don't remember when they started, but we have one (and only one) class of machines: Dell PE R730xd, that generate these errors. When it happens, without a rate limit, we get rcu timeouts and kernel oopses. With the rate limit, we just get a lot of annoying kernel messages but the machine continues on, recovers, and eventually the memory operations all succeed" And: "> Well... why are all these EBUSY's occurring? It sounds inefficient > (at least) but if it is expected, normal and unavoidable then > perhaps we should just remove that message altogether? I don't have an answer to that question. To be honest, I haven't looked real hard. We never had this at all, then it started out of the blue, but only on our Dell 730xd machines (and it hits all of them), but no other classes or brands of machines. And we have our 730xd machines loaded up with different brands and models of cards (for instance one dedicated to mlx4 hardware, one for qib, one for mlx5, an ocrdma/cxgb4 combo, etc), so the fact that it hit all of the machines meant it wasn't tied to any particular brand/model of RDMA hardware. To me, it always smelled of a hardware oddity specific to maybe the CPUs or mainboard chipsets in these machines, so given that I'm not an mm expert anyway, I never chased it down. A few other relevant details: it showed up somewhere around 4.8/4.9 or thereabouts. It never happened before, but the prinkt has been there since the 3.18 days, so possibly the test to trigger this message was changed, or something else in the allocator changed such that the situation started happening on these machines? And, like I said, it is specific to our 730xd machines (but they are all identical, so that could mean it's something like their specific ram configuration is causing the allocator to hit this on these machine but not on other machines in the cluster, I don't want to say it's necessarily the model of chipset or CPU, there are other bits of identicalness between these machines)" Link: http://lkml.kernel.org/r/499c0f6cc10d6eb829a67f2a4d75b4228a9b356e.1501695897.git.jtoppins@redhat.com Signed-off-by: Jonathan Toppins <jtoppins@redhat.com> Reviewed-by: Doug Ledford <dledford@redhat.com> Tested-by: Doug Ledford <dledford@redhat.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-08-10mm: fix global NR_SLAB_.*CLAIMABLE counter readsJohannes Weiner2-5/+6
As Tetsuo points out: "Commit 385386cff4c6 ("mm: vmstat: move slab statistics from zone to node counters") broke "Slab:" field of /proc/meminfo . It shows nearly 0kB" In addition to /proc/meminfo, this problem also affects the slab counters OOM/allocation failure info dumps, can cause early -ENOMEM from overcommit protection, and miscalculate image size requirements during suspend-to-disk. This is because the patch in question switched the slab counters from the zone level to the node level, but forgot to update the global accessor functions to read the aggregate node data instead of the aggregate zone data. Use global_node_page_state() to access the global slab counters. Fixes: 385386cff4c6 ("mm: vmstat: move slab statistics from zone to node counters") Link: http://lkml.kernel.org/r/20170801134256.5400-1-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reported-by: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Josef Bacik <josef@toxicpanda.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Stefan Agner <stefan@agner.ch> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-08-10locking/lockdep: Rework FS_RECLAIM annotationPeter Zijlstra4-13/+61
A while ago someone, and I cannot find the email just now, asked if we could not implement the RECLAIM_FS inversion stuff with a 'fake' lock like we use for other things like workqueues etc. I think this should be possible which allows reducing the 'irq' states and will reduce the amount of __bfs() lookups we do. Removing the 1 IRQ state results in 4 less __bfs() walks per dependency, improving lockdep performance. And by moving this annotation out of the lockdep code it becomes easier for the mm people to extend. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Byungchul Park <byungchul.park@lge.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Michal Hocko <mhocko@kernel.org> Cc: Nikolay Borisov <nborisov@suse.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: akpm@linux-foundation.org Cc: boqun.feng@gmail.com Cc: iamjoonsoo.kim@lge.com Cc: kernel-team@lge.com Cc: kirill@shutemov.name Cc: npiggin@gmail.com Cc: walken@google.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-08-10mm, locking: Rework {set,clear,mm}_tlb_flush_pending()Peter Zijlstra2-6/+20
Commit: af2c1401e6f9 ("mm: numa: guarantee that tlb_flush_pending updates are visible before page table updates") added smp_mb__before_spinlock() to set_tlb_flush_pending(). I think we can solve the same problem without this barrier. If instead we mandate that mm_tlb_flush_pending() is used while holding the PTL we're guaranteed to observe prior set_tlb_flush_pending() instances. For this to work we need to rework migrate_misplaced_transhuge_page() a little and move the test up into do_huge_pmd_numa_page(). NOTE: this relies on flush_tlb_range() to guarantee: (1) it ensures that prior page table updates are visible to the page table walker and (2) it ensures that subsequent memory accesses are only made visible after the invalidation has completed This is required for architectures that implement TRANSPARENT_HUGEPAGE (arc, arm, arm64, mips, powerpc, s390, sparc, x86) or otherwise use mm_tlb_flush_pending() in their page-table operations (arm, arm64, x86). This appears true for: - arm (DSB ISB before and after), - arm64 (DSB ISHST before, and DSB ISH after), - powerpc (PTESYNC before and after), - s390 and x86 TLB invalidate are serializing instructions But I failed to understand the situation for: - arc, mips, sparc Now SPARC64 is a wee bit special in that flush_tlb_range() is a no-op and it flushes the TLBs using arch_{enter,leave}_lazy_mmu_mode() inside the PTL. It still needs to guarantee the PTL unlock happens _after_ the invalidate completes. Vineet, Ralf and Dave could you guys please have a look? Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Will Deacon <will.deacon@arm.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: David S. Miller <davem@davemloft.net> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Rik van Riel <riel@redhat.com> Cc: Russell King <linux@armlinux.org.uk> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vineet Gupta <vgupta@synopsys.com> Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-08-10Merge branch 'linus' into locking/core, to pick up fixesIngo Molnar11-10/+62
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-08-02mm: take memory hotplug lock within numa_zonelist_order_handler()Heiko Carstens1-0/+2
Andre Wild reported the following warning: WARNING: CPU: 2 PID: 1205 at kernel/cpu.c:240 lockdep_assert_cpus_held+0x4c/0x60 Modules linked in: CPU: 2 PID: 1205 Comm: bash Not tainted 4.13.0-rc2-00022-gfd2b2c57ec20 #10 Hardware name: IBM 2964 N96 702 (z/VM 6.4.0) task: 00000000701d8100 task.stack: 0000000073594000 Krnl PSW : 0704f00180000000 0000000000145e24 (lockdep_assert_cpus_held+0x4c/0x60) ... Call Trace: lockdep_assert_cpus_held+0x42/0x60) stop_machine_cpuslocked+0x62/0xf0 build_all_zonelists+0x92/0x150 numa_zonelist_order_handler+0x102/0x150 proc_sys_call_handler.isra.12+0xda/0x118 proc_sys_write+0x34/0x48 __vfs_write+0x3c/0x178 vfs_write+0xbc/0x1a0 SyS_write+0x66/0xc0 system_call+0xc4/0x2b0 locks held by bash/1205: #0: (sb_writers#4){.+.+.+}, at: vfs_write+0xa6/0x1a0 #1: (zl_order_mutex){+.+...}, at: numa_zonelist_order_handler+0x44/0x150 #2: (zonelists_mutex){+.+...}, at: numa_zonelist_order_handler+0xf4/0x150 Last Breaking-Event-Address: lockdep_assert_cpus_held+0x48/0x60 This can be easily triggered with e.g. echo n > /proc/sys/vm/numa_zonelist_order In commit 3f906ba23689a ("mm/memory-hotplug: switch locking to a percpu rwsem") memory hotplug locking was changed to fix a potential deadlock. This also switched the stop_machine() invocation within build_all_zonelists() to stop_machine_cpuslocked() which now expects that online cpus are locked when being called. This assumption is not true if build_all_zonelists() is being called from numa_zonelist_order_handler(). In order to fix this simply add a mem_hotplug_begin()/mem_hotplug_done() pair to numa_zonelist_order_handler(). Link: http://lkml.kernel.org/r/20170726111738.38768-1-heiko.carstens@de.ibm.com Fixes: 3f906ba23689a ("mm/memory-hotplug: switch locking to a percpu rwsem") Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com> Reported-by: Andre Wild <wild@linux.vnet.ibm.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-08-02mm/page_io.c: fix oops during block io poll in swapin pathTetsuo Handa1-0/+7
When a thread is OOM-killed during swap_readpage() operation, an oops occurs because end_swap_bio_read() is calling wake_up_process() based on an assumption that the thread which called swap_readpage() is still alive. Out of memory: Kill process 525 (polkitd) score 0 or sacrifice child Killed process 525 (polkitd) total-vm:528128kB, anon-rss:0kB, file-rss:4kB, shmem-rss:0kB oom_reaper: reaped process 525 (polkitd), now anon-rss:0kB, file-rss:0kB, shmem-rss:0kB general protection fault: 0000 [#1] SMP DEBUG_PAGEALLOC Modules linked in: nf_conntrack_netbios_ns nf_conntrack_broadcast ip6t_rpfilter ipt_REJECT nf_reject_ipv4 ip6t_REJECT nf_reject_ipv6 xt_conntrack ip_set nfnetlink ebtable_nat ebtable_broute bridge stp llc ip6table_nat nf_conntrack_ipv6 nf_defrag_ipv6 nf_nat_ipv6 ip6table_mangle ip6table_raw iptable_nat nf_conntrack_ipv4 nf_defrag_ipv4 nf_nat_ipv4 nf_nat nf_conntrack iptable_mangle iptable_raw ebtable_filter ebtables ip6table_filter ip6_tables iptable_filter coretemp ppdev pcspkr vmw_balloon sg shpchp vmw_vmci parport_pc parport i2c_piix4 ip_tables xfs libcrc32c sd_mod sr_mod cdrom ata_generic pata_acpi vmwgfx ahci libahci drm_kms_helper ata_piix syscopyarea sysfillrect sysimgblt fb_sys_fops mptspi scsi_transport_spi ttm e1000 mptscsih drm mptbase i2c_core libata serio_raw CPU: 0 PID: 0 Comm: swapper/0 Not tainted 4.13.0-rc2-next-20170725 #129 Hardware name: VMware, Inc. VMware Virtual Platform/440BX Desktop Reference Platform, BIOS 6.00 07/31/2013 task: ffffffffb7c16500 task.stack: ffffffffb7c00000 RIP: 0010:__lock_acquire+0x151/0x12f0 Call Trace: <IRQ> lock_acquire+0x59/0x80 _raw_spin_lock_irqsave+0x3b/0x4f try_to_wake_up+0x3b/0x410 wake_up_process+0x10/0x20 end_swap_bio_read+0x6f/0xf0 bio_endio+0x92/0xb0 blk_update_request+0x88/0x270 scsi_end_request+0x32/0x1c0 scsi_io_completion+0x209/0x680 scsi_finish_command+0xd4/0x120 scsi_softirq_done+0x120/0x140 __blk_mq_complete_request_remote+0xe/0x10 flush_smp_call_function_queue+0x51/0x120 generic_smp_call_function_single_interrupt+0xe/0x20 smp_trace_call_function_single_interrupt+0x22/0x30 smp_call_function_single_interrupt+0x9/0x10 call_function_single_interrupt+0xa7/0xb0 </IRQ> RIP: 0010:native_safe_halt+0x6/0x10 default_idle+0xe/0x20 arch_cpu_idle+0xa/0x10 default_idle_call+0x1e/0x30 do_idle+0x187/0x200 cpu_startup_entry+0x6e/0x70 rest_init+0xd0/0xe0 start_kernel+0x456/0x477 x86_64_start_reservations+0x24/0x26 x86_64_start_kernel+0xf7/0x11a secondary_startup_64+0xa5/0xa5 Code: c3 49 81 3f 20 9e 0b b8 41 bc 00 00 00 00 44 0f 45 e2 83 fe 01 0f 87 62 ff ff ff 89 f0 49 8b 44 c7 08 48 85 c0 0f 84 52 ff ff ff <f0> ff 80 98 01 00 00 8b 3d 5a 49 c4 01 45 8b b3 18 0c 00 00 85 RIP: __lock_acquire+0x151/0x12f0 RSP: ffffa01f39e03c50 ---[ end trace 6c441db499169b1e ]--- Kernel panic - not syncing: Fatal exception in interrupt Kernel Offset: 0x36000000 from 0xffffffff81000000 (relocation range: 0xffffffff80000000-0xffffffffbfffffff) ---[ end Kernel panic - not syncing: Fatal exception in interrupt Fix it by holding a reference to the thread. [akpm@linux-foundation.org: add comment] Fixes: 23955622ff8d231b ("swap: add block io poll in swapin path") Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Reviewed-by: Shaohua Li <shli@fb.com> Cc: Tim Chen <tim.c.chen@intel.com> Cc: Huang Ying <ying.huang@intel.com> Cc: Jens Axboe <axboe@fb.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-08-02zram: do not free pool->size_classMinchan Kim1-1/+0
Mike reported kernel goes oops with ltp:zram03 testcase. zram: Added device: zram0 zram0: detected capacity change from 0 to 107374182400 BUG: unable to handle kernel paging request at 0000306d61727a77 IP: zs_map_object+0xb9/0x260 PGD 0 P4D 0 Oops: 0000 [#1] SMP Dumping ftrace buffer: (ftrace buffer empty) Modules linked in: zram(E) xfs(E) libcrc32c(E) btrfs(E) xor(E) raid6_pq(E) loop(E) ebtable_filter(E) ebtables(E) ip6table_filter(E) ip6_tables(E) iptable_filter(E) ip_tables(E) x_tables(E) af_packet(E) br_netfilter(E) bridge(E) stp(E) llc(E) iscsi_ibft(E) iscsi_boot_sysfs(E) nls_iso8859_1(E) nls_cp437(E) vfat(E) fat(E) intel_powerclamp(E) coretemp(E) cdc_ether(E) kvm_intel(E) usbnet(E) mii(E) kvm(E) irqbypass(E) crct10dif_pclmul(E) crc32_pclmul(E) crc32c_intel(E) iTCO_wdt(E) ghash_clmulni_intel(E) bnx2(E) iTCO_vendor_support(E) pcbc(E) ioatdma(E) ipmi_ssif(E) aesni_intel(E) i5500_temp(E) i2c_i801(E) aes_x86_64(E) lpc_ich(E) shpchp(E) mfd_core(E) crypto_simd(E) i7core_edac(E) dca(E) glue_helper(E) cryptd(E) ipmi_si(E) button(E) acpi_cpufreq(E) ipmi_devintf(E) pcspkr(E) ipmi_msghandler(E) nfsd(E) auth_rpcgss(E) nfs_acl(E) lockd(E) grace(E) sunrpc(E) ext4(E) crc16(E) mbcache(E) jbd2(E) sd_mod(E) ata_generic(E) i2c_algo_bit(E) ata_piix(E) drm_kms_helper(E) ahci(E) syscopyarea(E) sysfillrect(E) libahci(E) sysimgblt(E) fb_sys_fops(E) uhci_hcd(E) ehci_pci(E) ttm(E) ehci_hcd(E) libata(E) drm(E) megaraid_sas(E) usbcore(E) sg(E) dm_multipath(E) dm_mod(E) scsi_dh_rdac(E) scsi_dh_emc(E) scsi_dh_alua(E) scsi_mod(E) efivarfs(E) autofs4(E) [last unloaded: zram] CPU: 6 PID: 12356 Comm: swapon Tainted: G E 4.13.0.g87b2c3f-default #194 Hardware name: IBM System x3550 M3 -[7944K3G]-/69Y5698 , BIOS -[D6E150AUS-1.10]- 12/15/2010 task: ffff880158d2c4c0 task.stack: ffffc90001680000 RIP: 0010:zs_map_object+0xb9/0x260 Call Trace: zram_bvec_rw.isra.26+0xe8/0x780 [zram] zram_rw_page+0x6e/0xa0 [zram] bdev_read_page+0x81/0xb0 do_mpage_readpage+0x51a/0x710 mpage_readpages+0x122/0x1a0 blkdev_readpages+0x1d/0x20 __do_page_cache_readahead+0x1b2/0x270 ondemand_readahead+0x180/0x2c0 page_cache_sync_readahead+0x31/0x50 generic_file_read_iter+0x7e7/0xaf0 blkdev_read_iter+0x37/0x40 __vfs_read+0xce/0x140 vfs_read+0x9e/0x150 SyS_read+0x46/0xa0 entry_SYSCALL_64_fastpath+0x1a/0xa5 Code: 81 e6 00 c0 3f 00 81 fe 00 00 16 00 0f 85 9f 01 00 00 0f b7 13 65 ff 05 5e 07 dc 7e 66 c1 ea 02 81 e2 ff 01 00 00 49 8b 54 d4 08 <8b> 4a 48 41 0f af ce 81 e1 ff 0f 00 00 41 89 c9 48 c7 c3 a0 70 RIP: zs_map_object+0xb9/0x260 RSP: ffffc90001683988 CR2: 0000306d61727a77 He bisected the problem is [1]. After commit cf8e0fedf078 ("mm/zsmalloc: simplify zs_max_alloc_size handling"), zram doesn't use double pointer for pool->size_class any more in zs_create_pool so counter function zs_destroy_pool don't need to free it, either. Otherwise, it does kfree wrong address and then, kernel goes Oops. Link: http://lkml.kernel.org/r/20170725062650.GA12134@bbox Fixes: cf8e0fedf078 ("mm/zsmalloc: simplify zs_max_alloc_size handling") Signed-off-by: Minchan Kim <minchan@kernel.org> Reported-by: Mike Galbraith <efault@gmx.de> Tested-by: Mike Galbraith <efault@gmx.de> Reviewed-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Jerome Marchand <jmarchan@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-08-02kasan: avoid -Wmaybe-uninitialized warningArnd Bergmann1-0/+1
gcc-7 produces this warning: mm/kasan/report.c: In function 'kasan_report': mm/kasan/report.c:351:3: error: 'info.first_bad_addr' may be used uninitialized in this function [-Werror=maybe-uninitialized] print_shadow_for_address(info->first_bad_addr); ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ mm/kasan/report.c:360:27: note: 'info.first_bad_addr' was declared here The code seems fine as we only print info.first_bad_addr when there is a shadow, and we always initialize it in that case, but this is relatively hard for gcc to figure out after the latest rework. Adding an intialization to the most likely value together with the other struct members shuts up that warning. Fixes: b235b9808664 ("kasan: unify report headers") Link: https://patchwork.kernel.org/patch/9641417/ Link: http://lkml.kernel.org/r/20170725152739.4176967-1-arnd@arndb.de Signed-off-by: Arnd Bergmann <arnd@arndb.de> Suggested-by: Alexander Potapenko <glider@google.com> Suggested-by: Andrey Ryabinin <aryabinin@virtuozzo.com> Acked-by: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Dmitry Vyukov <dvyukov@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-08-02userfaultfd: non-cooperative: notify about unmap of destination during mremapMike Rapoport1-2/+5
When mremap is called with MREMAP_FIXED it unmaps memory at the destination address without notifying userfaultfd monitor. If the destination were registered with userfaultfd, the monitor has no way to distinguish between the old and new ranges and to properly relate the page faults that would occur in the destination region. Fixes: 897ab3e0c49e ("userfaultfd: non-cooperative: add event for memory unmaps") Link: http://lkml.kernel.org/r/1500276876-3350-1-git-send-email-rppt@linux.vnet.ibm.com Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com> Acked-by: Pavel Emelyanov <xemul@virtuozzo.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-08-02mm, mprotect: flush TLB if potentially racing with a parallel reclaim leaving stale TLB entriesMel Gorman6-1/+44
Nadav Amit identified a theoritical race between page reclaim and mprotect due to TLB flushes being batched outside of the PTL being held. He described the race as follows: CPU0 CPU1 ---- ---- user accesses memory using RW PTE [PTE now cached in TLB] try_to_unmap_one() ==> ptep_get_and_clear() ==> set_tlb_ubc_flush_pending() mprotect(addr, PROT_READ) ==> change_pte_range() ==> [ PTE non-present - no flush ] user writes using cached RW PTE ... try_to_unmap_flush() The same type of race exists for reads when protecting for PROT_NONE and also exists for operations that can leave an old TLB entry behind such as munmap, mremap and madvise. For some operations like mprotect, it's not necessarily a data integrity issue but it is a correctness issue as there is a window where an mprotect that limits access still allows access. For munmap, it's potentially a data integrity issue although the race is massive as an munmap, mmap and return to userspace must all complete between the window when reclaim drops the PTL and flushes the TLB. However, it's theoritically possible so handle this issue by flushing the mm if reclaim is potentially currently batching TLB flushes. Other instances where a flush is required for a present pte should be ok as either the page lock is held preventing parallel reclaim or a page reference count is elevated preventing a parallel free leading to corruption. In the case of page_mkclean there isn't an obvious path that userspace could take advantage of without using the operations that are guarded by this patch. Other users such as gup as a race with reclaim looks just at PTEs. huge page variants should be ok as they don't race with reclaim. mincore only looks at PTEs. userfault also should be ok as if a parallel reclaim takes place, it will either fault the page back in or read some of the data before the flush occurs triggering a fault. Note that a variant of this patch was acked by Andy Lutomirski but this was for the x86 parts on top of his PCID work which didn't make the 4.13 merge window as expected. His ack is dropped from this version and there will be a follow-on patch on top of PCID that will include his ack. [akpm@linux-foundation.org: tweak comments] [akpm@linux-foundation.org: fix spello] Link: http://lkml.kernel.org/r/20170717155523.emckq2esjro6hf3z@suse.de Reported-by: Nadav Amit <nadav.amit@gmail.com> Signed-off-by: Mel Gorman <mgorman@suse.de> Cc: Andy Lutomirski <luto@kernel.org> Cc: <stable@vger.kernel.org> [v4.4+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-08-02mm/hugetlb.c: __get_user_pages ignores certain follow_hugetlb_page errorsDaniel Jordan1-6/+3
Commit 9a291a7c9428 ("mm/hugetlb: report -EHWPOISON not -EFAULT when FOLL_HWPOISON is specified") causes __get_user_pages to ignore certain errors from follow_hugetlb_page. After such error, __get_user_pages subsequently calls faultin_page on the same VMA and start address that follow_hugetlb_page failed on instead of returning the error immediately as it should. In follow_hugetlb_page, when hugetlb_fault returns a value covered under VM_FAULT_ERROR, follow_hugetlb_page returns it without setting nr_pages to 0 as __get_user_pages expects in this case, which causes the following to happen in __get_user_pages: the "while (nr_pages)" check succeeds, we skip the "if (!vma..." check because we got a VMA the last time around, we find no page with follow_page_mask, and we call faultin_page, which calls hugetlb_fault for the second time. This issue also slightly changes how __get_user_pages works. Before, it only returned error if it had made no progress (i = 0). But now, follow_hugetlb_page can clobber "i" with an error code since its new return path doesn't check for progress. So if "i" is nonzero before a failing call to follow_hugetlb_page, that indication of progress is lost and __get_user_pages can return error even if some pages were successfully pinned. To fix this, change follow_hugetlb_page so that it updates nr_pages, allowing __get_user_pages to fail immediately and restoring the "error only if no progress" behavior to __get_user_pages. Tested that __get_user_pages returns when expected on error from hugetlb_fault in follow_hugetlb_page. Fixes: 9a291a7c9428 ("mm/hugetlb: report -EHWPOISON not -EFAULT when FOLL_HWPOISON is specified") Link: http://lkml.kernel.org/r/1500406795-58462-1-git-send-email-daniel.m.jordan@oracle.com Signed-off-by: Daniel Jordan <daniel.m.jordan@oracle.com> Acked-by: Punit Agrawal <punit.agrawal@arm.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: Gerald Schaefer <gerald.schaefer@de.ibm.com> Cc: James Morse <james.morse@arm.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: zhong jiang <zhongjiang@huawei.com> Cc: <stable@vger.kernel.org> [4.12.x] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-26kasan: Allow kasan_check_read/write() to accept pointers to volatilesDmitry Vyukov1-2/+2
Currently kasan_check_read/write() accept 'const void*', make them accept 'const volatile void*'. This is required for instrumentation of atomic operations and there is just no reason to not allow that. Signed-off-by: Dmitry Vyukov <dvyukov@google.com> Reviewed-by: Andrey Ryabinin <aryabinin@virtuozzo.com> Acked-by: Mark Rutland <mark.rutland@arm.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: kasan-dev@googlegroups.com Cc: linux-mm@kvack.org Cc: will.deacon@arm.com Link: http://lkml.kernel.org/r/33e5ec275c1ee89299245b2ebbccd63709c6021f.1498140838.git.dvyukov@google.com Signed-off-by: Ingo Molnar <mingo@kernel.org>