aboutsummaryrefslogtreecommitdiffstats
path: root/net/rxrpc/local_event.c (follow)
AgeCommit message (Collapse)AuthorFilesLines
2018-10-04rxrpc: Drop the local endpoint arg from rxrpc_extract_addr_from_skb()David Howells1-1/+1
rxrpc_extract_addr_from_skb() doesn't use the argument that points to the local endpoint, so remove the argument. Signed-off-by: David Howells <dhowells@redhat.com>
2018-08-01rxrpc: Trace packet transmissionDavid Howells1-1/+4
Trace successful packet transmission (kernel_sendmsg() succeeded, that is) in AF_RXRPC. We can share the enum that defines the transmission points with the trace_rxrpc_tx_fail() tracepoint, so rename its constants to be applicable to both. Also, save the internal call->debug_id in the rxrpc_channel struct so that it can be used in retransmission trace lines. Signed-off-by: David Howells <dhowells@redhat.com>
2018-05-10rxrpc: Trace UDP transmission failureDavid Howells1-1/+2
Add a tracepoint to log transmission failure from the UDP transport socket being used by AF_RXRPC. Signed-off-by: David Howells <dhowells@redhat.com>
2017-08-29rxrpc: Fix IPv6 supportDavid Howells1-1/+1
Fix IPv6 support in AF_RXRPC in the following ways: (1) When extracting the address from a received IPv4 packet, if the local transport socket is open for IPv6 then fill out the sockaddr_rxrpc struct for an IPv4-mapped-to-IPv6 AF_INET6 transport address instead of an AF_INET one. (2) When sending CHALLENGE or RESPONSE packets, the transport length needs to be set from the sockaddr_rxrpc::transport_len field rather than sizeof() on the IPv4 transport address. (3) When processing an IPv4 ICMP packet received by an IPv6 socket, set up the address correctly before searching for the affected peer. Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-30rxrpc: The offset field in struct rxrpc_skb_priv is unnecessaryDavid Howells1-1/+2
The offset field in struct rxrpc_skb_priv is unnecessary as the value can always be calculated. Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-17rxrpc: Improve skb tracingDavid Howells1-2/+2
Improve sk_buff tracing within AF_RXRPC by the following means: (1) Use an enum to note the event type rather than plain integers and use an array of event names rather than a big multi ?: list. (2) Distinguish Rx from Tx packets and account them separately. This requires the call phase to be tracked so that we know what we might find in rxtx_buffer[]. (3) Add a parameter to rxrpc_{new,see,get,free}_skb() to indicate the event type. (4) A pair of 'rotate' events are added to indicate packets that are about to be rotated out of the Rx and Tx windows. (5) A pair of 'lost' events are added, along with rxrpc_lose_skb() for packet loss injection recording. Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-13rxrpc: Use rxrpc_extract_addr_from_skb() rather than doing this manuallyDavid Howells1-8/+5
There are two places that want to transmit a packet in response to one just received and manually pick the address to reply to out of the sk_buff. Make them use rxrpc_extract_addr_from_skb() instead so that IPv6 is handled automatically. Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08rxrpc: Rewrite the data and ack handling codeDavid Howells1-1/+1
Rewrite the data and ack handling code such that: (1) Parsing of received ACK and ABORT packets and the distribution and the filing of DATA packets happens entirely within the data_ready context called from the UDP socket. This allows us to process and discard ACK and ABORT packets much more quickly (they're no longer stashed on a queue for a background thread to process). (2) We avoid calling skb_clone(), pskb_pull() and pskb_trim(). We instead keep track of the offset and length of the content of each packet in the sk_buff metadata. This means we don't do any allocation in the receive path. (3) Jumbo DATA packet parsing is now done in data_ready context. Rather than cloning the packet once for each subpacket and pulling/trimming it, we file the packet multiple times with an annotation for each indicating which subpacket is there. From that we can directly calculate the offset and length. (4) A call's receive queue can be accessed without taking locks (memory barriers do have to be used, though). (5) Incoming calls are set up from preallocated resources and immediately made live. They can than have packets queued upon them and ACKs generated. If insufficient resources exist, DATA packet #1 is given a BUSY reply and other DATA packets are discarded). (6) sk_buffs no longer take a ref on their parent call. To make this work, the following changes are made: (1) Each call's receive buffer is now a circular buffer of sk_buff pointers (rxtx_buffer) rather than a number of sk_buff_heads spread between the call and the socket. This permits each sk_buff to be in the buffer multiple times. The receive buffer is reused for the transmit buffer. (2) A circular buffer of annotations (rxtx_annotations) is kept parallel to the data buffer. Transmission phase annotations indicate whether a buffered packet has been ACK'd or not and whether it needs retransmission. Receive phase annotations indicate whether a slot holds a whole packet or a jumbo subpacket and, if the latter, which subpacket. They also note whether the packet has been decrypted in place. (3) DATA packet window tracking is much simplified. Each phase has just two numbers representing the window (rx_hard_ack/rx_top and tx_hard_ack/tx_top). The hard_ack number is the sequence number before base of the window, representing the last packet the other side says it has consumed. hard_ack starts from 0 and the first packet is sequence number 1. The top number is the sequence number of the highest-numbered packet residing in the buffer. Packets between hard_ack+1 and top are soft-ACK'd to indicate they've been received, but not yet consumed. Four macros, before(), before_eq(), after() and after_eq() are added to compare sequence numbers within the window. This allows for the top of the window to wrap when the hard-ack sequence number gets close to the limit. Two flags, RXRPC_CALL_RX_LAST and RXRPC_CALL_TX_LAST, are added also to indicate when rx_top and tx_top point at the packets with the LAST_PACKET bit set, indicating the end of the phase. (4) Calls are queued on the socket 'receive queue' rather than packets. This means that we don't need have to invent dummy packets to queue to indicate abnormal/terminal states and we don't have to keep metadata packets (such as ABORTs) around (5) The offset and length of a (sub)packet's content are now passed to the verify_packet security op. This is currently expected to decrypt the packet in place and validate it. However, there's now nowhere to store the revised offset and length of the actual data within the decrypted blob (there may be a header and padding to skip) because an sk_buff may represent multiple packets, so a locate_data security op is added to retrieve these details from the sk_buff content when needed. (6) recvmsg() now has to handle jumbo subpackets, where each subpacket is individually secured and needs to be individually decrypted. The code to do this is broken out into rxrpc_recvmsg_data() and shared with the kernel API. It now iterates over the call's receive buffer rather than walking the socket receive queue. Additional changes: (1) The timers are condensed to a single timer that is set for the soonest of three timeouts (delayed ACK generation, DATA retransmission and call lifespan). (2) Transmission of ACK and ABORT packets is effected immediately from process-context socket ops/kernel API calls that cause them instead of them being punted off to a background work item. The data_ready handler still has to defer to the background, though. (3) A shutdown op is added to the AF_RXRPC socket so that the AFS filesystem can shut down the socket and flush its own work items before closing the socket to deal with any in-progress service calls. Future additional changes that will need to be considered: (1) Make sure that a call doesn't hog the front of the queue by receiving data from the network as fast as userspace is consuming it to the exclusion of other calls. (2) Transmit delayed ACKs from within recvmsg() when we've consumed sufficiently more packets to avoid the background work item needing to run. Signed-off-by: David Howells <dhowells@redhat.com>
2016-08-23rxrpc: Use a tracepoint for skb accounting debuggingDavid Howells1-0/+1
Use a tracepoint to log various skb accounting points to help in debugging refcounting errors. Signed-off-by: David Howells <dhowells@redhat.com>
2016-06-15rxrpc: Rework local endpoint managementDavid Howells1-7/+3
Rework the local RxRPC endpoint management. Local endpoint objects are maintained in a flat list as before. This should be okay as there shouldn't be more than one per open AF_RXRPC socket (there can be fewer as local endpoints can be shared if their local service ID is 0 and they share the same local transport parameters). Changes: (1) Local endpoints may now only be shared if they have local service ID 0 (ie. they're not being used for listening). This prevents a scenario where process A is listening of the Cache Manager port and process B contacts a fileserver - which may then attempt to send CM requests back to B. But if A and B are sharing a local endpoint, A will get the CM requests meant for B. (2) We use a mutex to handle lookups and don't provide RCU-only lookups since we only expect to access the list when opening a socket or destroying an endpoint. The local endpoint object is pointed to by the transport socket's sk_user_data for the life of the transport socket - allowing us to refer to it directly from the sk_data_ready and sk_error_report callbacks. (3) atomic_inc_not_zero() now exists and can be used to only share a local endpoint if the last reference hasn't yet gone. (4) We can remove rxrpc_local_lock - a spinlock that had to be taken with BH processing disabled given that we assume sk_user_data won't change under us. (5) The transport socket is shut down before we clear the sk_user_data pointer so that we can be sure that the transport socket's callbacks won't be invoked once the RCU destruction is scheduled. (6) Local endpoints have a work item that handles both destruction and event processing. The means that destruction doesn't then need to wait for event processing. The event queues can then be cleared after the transport socket is shut down. (7) Local endpoints are no longer available for resurrection beyond the life of the sockets that had them open. As soon as their last ref goes, they are scheduled for destruction and may not have their usage count moved from 0. Signed-off-by: David Howells <dhowells@redhat.com>
2016-06-15rxrpc: Separate local endpoint event handling out into its own fileDavid Howells1-0/+120
Separate local endpoint event handling out into its own file preparatory to overhauling the object management aspect (which remains in the original file). Signed-off-by: David Howells <dhowells@redhat.com>