Age | Commit message (Collapse) | Author | Files | Lines |
|
The current code in device_resume_noirq() causes the entire early
resume and resume phases of device suspend to be skipped for
devices for which the noirq resume phase have been skipped (due
to the LEAVE_SUSPENDED flag being set) on the premise that those
devices should stay in runtime-suspend after system-wide resume.
However, that may not be correct in two situations. First, the
middle layer (subsystem) noirq resume callback may be missing for
a given device, but its early resume callback may be present and it
may need to do something even if it decides to skip the driver
callback. Second, if the device's wakeup settings were adjusted
in the suspend phase without resuming the device (that was in
runtime suspend at that time), they most likely need to be
adjusted again in the resume phase and so the driver callback
in that phase needs to be run.
For the above reason, modify the core to allow the middle layer
->resume_late callback to run even if its ->resume_noirq callback
is missing (and the core has skipped the driver-level callback
in that phase) and to allow all device callbacks to run in the
resume phase. Also make the core set the PM-runtime status of
devices with SMART_SUSPEND set whose resume callbacks are not
skipped to "active" in the "noirq" resume phase and update the
affected subsystems (PCI and ACPI) accordingly.
After this change, middle-layer (subsystem) callbacks will always
be invoked in all phases of system suspend and resume and driver
callbacks will always run in the prepare, suspend, resume, and
complete phases for all devices.
For devices with SMART_SUSPEND set, driver callbacks will be
skipped in the late and noirq phases of system suspend if those
devices remain in runtime suspend in __device_suspend_late().
Driver callbacks will also be skipped for them during the
noirq and early phases of the "thaw" transition related to
hibernation in that case.
Setting LEAVE_SUSPENDED means that the driver allows its callbacks
to be skipped in the noirq and early phases of system resume, but
some additional conditions need to be met for that to happen (among
other things, the power.may_skip_resume flag needs to be set for the
device during system suspend for the driver callbacks to be skipped
during the subsequent resume transition).
For all devices with SMART_SUSPEND set whose driver callbacks are
invoked during system resume, the PM-runtime status will be set to
"active" (by the core).
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Alan Stern <stern@rowland.harvard.edu>
Acked-by: Bjorn Helgaas <bhelgaas@google.com>
|
|
Fold four functions in the PM core that each have only one caller
now into their callers.
No intentional functional impact.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Alan Stern <stern@rowland.harvard.edu>
|
|
The code to handle the SMART_SUSPEND driver PM flag is hard to follow
and somewhat inconsistent with respect to devices without middle-layer
(subsystem) callbacks.
Namely, for those devices the core takes the role of a middle layer
in providing the expected ordering of execution of callbacks (under
the assumption that the drivers setting SMART_SUSPEND can reuse their
PM-runtime callbacks directly for system-wide suspend). To that end,
it prevents driver ->suspend_late and ->suspend_noirq callbacks from
being executed for devices that are still runtime-suspended in
__device_suspend_late(), because running the same callback funtion
that was previously run by PM-runtime for them may be invalid.
However, it does that only for devices without any middle-layer
callbacks for the late/noirq/early suspend/resume phases even
though it would be simpler and more consistent to skip the
driver-lavel callbacks for all devices with SMART_SUSPEND set
that are runtime-suspended in __device_suspend_late().
Simplify the code in accordance with the above observation.
Suggested-by: Alan Stern <stern@rowland.harvard.edu>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Alan Stern <stern@rowland.harvard.edu>
|
|
|
|
When remapping a mapping where a portion of a VMA is remapped
into another portion of the VMA it can cause the VMA to become
split. During the copy_vma operation the VMA can actually
be remerged if it's an anonymous VMA whose pages have not yet
been faulted. This isn't normally a problem because at the end
of the remap the original portion is unmapped causing it to
become split again.
However, MREMAP_DONTUNMAP leaves that original portion in place which
means that the VMA which was split and then remerged is not actually
split at the end of the mremap. This patch fixes a bug where
we don't detect that the VMAs got remerged and we end up
putting back VM_ACCOUNT on the next mapping which is completely
unreleated. When that next mapping is unmapped it results in
incorrectly unaccounting for the memory which was never accounted,
and eventually we will underflow on the memory comittment.
There is also another issue which is similar, we're currently
accouting for the number of pages in the new_vma but that's wrong.
We need to account for the length of the remap operation as that's
all that is being added. If there was a mapping already at that
location its comittment would have been adjusted as part of
the munmap at the start of the mremap.
A really simple repro can be seen in:
https://gist.github.com/bgaff/e101ce99da7d9a8c60acc641d07f312c
Fixes: e346b3813067 ("mm/mremap: add MREMAP_DONTUNMAP to mremap()")
Reported-by: syzbot <syzkaller@googlegroups.com>
Signed-off-by: Brian Geffon <bgeffon@google.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
|
|
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
|
|
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
|
|
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
|
|
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
|
|
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
|
|
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
|
|
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
|
|
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
|
|
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
|
|
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
|
|
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
|
|
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
|
|
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
|
|
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
|
|
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
|
|
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
|
|
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
|
|
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
|
|
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
|
|
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
|
|
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
|
|
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
|
|
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
|
|
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
|
|
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
|
|
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
|
|
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
|
|
The jc42 driver passes I2C client's name as hwmon device name. In case
of device tree probed devices this ends up being part of the compatible
string, "jc-42.4-temp". This name contains hyphens and the hwmon core
doesn't like this:
jc42 2-0018: hwmon: 'jc-42.4-temp' is not a valid name attribute, please fix
This changes the name to "jc42" which doesn't have any illegal
characters.
Signed-off-by: Sascha Hauer <s.hauer@pengutronix.de>
Link: https://lore.kernel.org/r/20200417092853.31206-1-s.hauer@pengutronix.de
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
|
|
Tremont CPUs support IA32_CORE_CAPABILITIES bits to indicate whether
specific SKUs have support for split lock detection.
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20200416205754.21177-4-tony.luck@intel.com
|
|
The Intel Software Developers' Manual erroneously listed bit 5 of the
IA32_CORE_CAPABILITIES register as an architectural feature. It is not.
Features enumerated by IA32_CORE_CAPABILITIES are model specific and
implementation details may vary in different cpu models. Thus it is only
safe to trust features after checking the CPU model.
Icelake client and server models are known to implement the split lock
detect feature even though they don't enumerate IA32_CORE_CAPABILITIES
[ tglx: Use switch() for readability and massage comments ]
Fixes: 6650cdd9a8cc ("x86/split_lock: Enable split lock detection by kernel")
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20200416205754.21177-3-tony.luck@intel.com
|
|
Resctrl assumes that all CPUs are online when the filesystem is mounted,
and that CPUs remember their CDP-enabled state over CPU hotplug.
This goes wrong when resctrl's CDP-enabled state changes while all the
CPUs in a domain are offline.
When a domain comes online, enable (or disable!) CDP to match resctrl's
current setting.
Fixes: 5ff193fbde20 ("x86/intel_rdt: Add basic resctrl filesystem support")
Suggested-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: <stable@vger.kernel.org>
Link: https://lkml.kernel.org/r/20200221162105.154163-1-james.morse@arm.com
|
|
If you run 'make dtbs_check' without installing the libyaml package,
the error message "dtc needs libyaml ..." is shown.
This should be checked also for 'make dt_binding_check' because dtc
needs to validate *.example.dts extracted from *.yaml files.
It is missing since commit 4f0e3a57d6eb ("kbuild: Add support for DT
binding schema checks"), but this fix-up is applicable only after commit
e10c4321dc1e ("kbuild: allow to run dt_binding_check and dtbs_check
in a single command").
I gave the Fixes tag to the latter in case somebody is interested in
back-porting this.
Fixes: e10c4321dc1e ("kbuild: allow to run dt_binding_check and dtbs_check in a single command")
Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
Signed-off-by: Rob Herring <robh@kernel.org>
|
|
The default resource group ("rdtgroup_default") is associated with the
root of the resctrl filesystem and should never be removed. New resource
groups can be created as subdirectories of the resctrl filesystem and
they can be removed from user space.
There exists a safeguard in the directory removal code
(rdtgroup_rmdir()) that ensures that only subdirectories can be removed
by testing that the directory to be removed has to be a child of the
root directory.
A possible deadlock was recently fixed with
334b0f4e9b1b ("x86/resctrl: Fix a deadlock due to inaccurate reference").
This fix involved associating the private data of the "mon_groups"
and "mon_data" directories to the resource group to which they belong
instead of NULL as before. A consequence of this change was that
the original safeguard code preventing removal of "mon_groups" and
"mon_data" found in the root directory failed resulting in attempts to
remove the default resource group that ends in a BUG:
kernel BUG at mm/slub.c:3969!
invalid opcode: 0000 [#1] SMP PTI
Call Trace:
rdtgroup_rmdir+0x16b/0x2c0
kernfs_iop_rmdir+0x5c/0x90
vfs_rmdir+0x7a/0x160
do_rmdir+0x17d/0x1e0
do_syscall_64+0x55/0x1d0
entry_SYSCALL_64_after_hwframe+0x44/0xa9
Fix this by improving the directory removal safeguard to ensure that
subdirectories of the resctrl root directory can only be removed if they
are a child of the resctrl filesystem's root _and_ not associated with
the default resource group.
Fixes: 334b0f4e9b1b ("x86/resctrl: Fix a deadlock due to inaccurate reference")
Reported-by: Sai Praneeth Prakhya <sai.praneeth.prakhya@intel.com>
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Tested-by: Sai Praneeth Prakhya <sai.praneeth.prakhya@intel.com>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/884cbe1773496b5dbec1b6bd11bb50cffa83603d.1584461853.git.reinette.chatre@intel.com
|
|
Drop needless newlines from tracepoint format strings, they only add
empty lines to perf tracing output.
Signed-off-by: Tommi Rantala <tommi.t.rantala@nokia.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
Use tracepoint_string() for string literals that are used in the
wbt_step tracepoint, so that userspace tools can display the string
content.
Signed-off-by: Tommi Rantala <tommi.t.rantala@nokia.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
CONFIG_IOSCHED_DEADLINE was removed with
commit f382fb0bcef4 ("block: remove legacy IO schedulers")
and setting of the scheduler was removed with
commit a5fd8ddce2af ("s390/dasd: remove setting of scheduler from driver").
So get rid of the select.
Reported-by: Krzysztof Kozlowski <krzk@kernel.org>
Signed-off-by: Stefan Haberland <sth@linux.ibm.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
kmemleak reports several memory leaks from devicetree unittest.
This is the fix for problem 5 of 5.
When overlay 'overlay_bad_add_dup_prop' is applied, the apply code
properly detects that a memory leak will occur if the overlay is removed
since the duplicate property is located in a base devicetree node and
reports via printk():
OF: overlay: WARNING: memory leak will occur if overlay removed, property: /testcase-data-2/substation@100/motor-1/rpm_avail
OF: overlay: WARNING: memory leak will occur if overlay removed, property: /testcase-data-2/substation@100/motor-1/rpm_avail
The overlay is removed when the apply code detects multiple changesets
modifying the same property. This is reported via printk():
OF: overlay: ERROR: multiple fragments add, update, and/or delete property /testcase-data-2/substation@100/motor-1/rpm_avail
As a result of this error, the overlay is removed resulting in the
expected memory leak.
Add another device node level to the overlay so that the duplicate
property is located in a node added by the overlay, thus no memory
leak will occur when the overlay is removed.
Thus users of kmemleak will not have to debug this leak in the future.
Fixes: 2fe0e8769df9 ("of: overlay: check prevents multiple fragments touching same property")
Reported-by: Erhard F. <erhard_f@mailbox.org>
Signed-off-by: Frank Rowand <frank.rowand@sony.com>
Signed-off-by: Rob Herring <robh@kernel.org>
|
|
kmemleak reports several memory leaks from devicetree unittest.
This is the fix for problem 4 of 5.
target_path was not freed in the non-error path.
Fixes: e0a58f3e08d4 ("of: overlay: remove a dependency on device node full_name")
Reported-by: Erhard F. <erhard_f@mailbox.org>
Signed-off-by: Frank Rowand <frank.rowand@sony.com>
Signed-off-by: Rob Herring <robh@kernel.org>
|
|
kmemleak reports several memory leaks from devicetree unittest.
This is the fix for problem 3 of 5.
of_unittest_overlay_high_level() failed to kfree the newly created
property when the property named 'name' is skipped.
Fixes: 39a751a4cb7e ("of: change overlay apply input data from unflattened to FDT")
Reported-by: Erhard F. <erhard_f@mailbox.org>
Signed-off-by: Frank Rowand <frank.rowand@sony.com>
Signed-off-by: Rob Herring <robh@kernel.org>
|
|
kmemleak reports several memory leaks from devicetree unittest.
This is the fix for problem 2 of 5.
of_unittest_platform_populate() left an elevated reference count for
grandchild nodes (which are platform devices). Fix the platform
device reference counts so that the memory will be freed.
Fixes: fb2caa50fbac ("of/selftest: add testcase for nodes with same name and address")
Reported-by: Erhard F. <erhard_f@mailbox.org>
Signed-off-by: Frank Rowand <frank.rowand@sony.com>
Signed-off-by: Rob Herring <robh@kernel.org>
|
|
kmemleak reports several memory leaks from devicetree unittest.
This is the fix for problem 1 of 5.
of_unittest_changeset() reaches deeply into the dynamic devicetree
functions. Several nodes were left with an elevated reference
count and thus were not properly cleaned up. Fix the reference
counts so that the memory will be freed.
Fixes: 201c910bd689 ("of: Transactional DT support.")
Reported-by: Erhard F. <erhard_f@mailbox.org>
Signed-off-by: Frank Rowand <frank.rowand@sony.com>
Signed-off-by: Rob Herring <robh@kernel.org>
|
|
There's a conversion from a plain text binding file into 4 yaml ones.
The old file got removed, causing this new warning:
Warning: MAINTAINERS references a file that doesn't exist: Documentation/devicetree/bindings/arm/arm-boards
Address it by replacing the old reference by the new ones
Fixes: 4b900070d50d ("dt-bindings: arm: Add Versatile YAML schema")
Fixes: 2d483550b6d2 ("dt-bindings: arm: Drop the non-YAML bindings")
Fixes: 7db625b9fa75 ("dt-bindings: arm: Add RealView YAML schema")
Fixes: 4fb00d9066c1 ("dt-bindings: arm: Add Versatile Express and Juno YAML schema")
Fixes: 33fbfb3eaf4e ("dt-bindings: arm: Add Integrator YAML schema")
Signed-off-by: Mauro Carvalho Chehab <mchehab+huawei@kernel.org>
Acked-by: Linus Walleij <linus.walleij@linaro.org>
Signed-off-by: Rob Herring <robh@kernel.org>
|
|
Changeset f5a98bfe7b37 ("dt-bindings: display: Convert Allwinner display pipeline to schemas")
split Documentation/devicetree/bindings/display/sunxi/sun4i-drm.txt
into several files. Yet, it kept the old place at MAINTAINERS.
Update it to point to the new place.
Fixes: f5a98bfe7b37 ("dt-bindings: display: Convert Allwinner display pipeline to schemas")
Signed-off-by: Mauro Carvalho Chehab <mchehab+huawei@kernel.org>
Signed-off-by: Rob Herring <robh@kernel.org>
|
|
Replaced num property with reg property, fixed errors
reported by dt-binding-check.
Fixes: ea52c21268e6 ("dt-bindings: iio: dac: Add docs for AD5770R DAC")
Signed-off-by: Alexandru Tachici <alexandru.tachici@analog.com>
[robh: Fix required property list, fix Fixes tag]
Signed-off-by: Rob Herring <robh@kernel.org>
|