aboutsummaryrefslogtreecommitdiffstats
path: root/tools/perf/scripts/python/export-to-postgresql.py (unfollow)
AgeCommit message (Collapse)AuthorFilesLines
2020-05-22x86/boot: Discard .discard.unreachable for arch/x86/boot/compressed/vmlinuxFangrui Song1-0/+2
With commit ce5e3f909fc0 ("efi/printf: Add 64-bit and 8-bit integer support") arch/x86/boot/compressed/vmlinux may have an undesired .discard.unreachable section coming from drivers/firmware/efi/libstub/vsprintf.stub.o. That section gets generated from unreachable() annotations when CONFIG_STACK_VALIDATION is enabled. .discard.unreachable contains an R_X86_64_PC32 relocation which will be warned about by LLD: a non-SHF_ALLOC section (.discard.unreachable) is not part of the memory image, thus conceptually the distance between a non-SHF_ALLOC and a SHF_ALLOC is not a constant which can be resolved at link time: % ld.lld -m elf_x86_64 -T arch/x86/boot/compressed/vmlinux.lds ... -o arch/x86/boot/compressed/vmlinux ld.lld: warning: vsprintf.c:(.discard.unreachable+0x0): has non-ABS relocation R_X86_64_PC32 against symbol '' Reuse the DISCARDS macro which includes .discard.* to drop .discard.unreachable. [ bp: Massage and complete the commit message. ] Reported-by: kbuild test robot <lkp@intel.com> Signed-off-by: Fangrui Song <maskray@google.com> Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Kees Cook <keescook@chromium.org> Tested-by: Arvind Sankar <nivedita@alum.mit.edu> Tested-by: Sedat Dilek <sedat.dilek@gmail.com> Link: https://lkml.kernel.org/r/20200520182010.242489-1-maskray@google.com
2020-04-21x86/boot/build: Add phony targets in arch/x86/boot/Makefile to PHONYMasahiro Yamada1-0/+2
These targets are correctly added to PHONY in arch/x86/Makefile, but not in arch/x86/boot/Makefile. Thus, with a file 'install' in the top directory, 'make install' does nothing: $ touch install $ make install make[1]: 'install' is up to date. Add them to the PHONY targets in the boot Makefile too. [ bp: Massage. ] Signed-off-by: Masahiro Yamada <masahiroy@kernel.org> Signed-off-by: Borislav Petkov <bp@suse.de> Link: https://lkml.kernel.org/r/20200215063852.8298-2-masahiroy@kernel.org
2020-04-21x86/boot/build: Make 'make bzlilo' not depend on vmlinux or $(obj)/bzImageMasahiro Yamada2-4/+4
bzlilo is an installation target because it copies files to $(INSTALL_PATH)/, then runs 'lilo'. However, arch/x86/Makefile and arch/x86/boot/Makefile have it depend on vmlinux and $(obj)/bzImage, respectively. 'make bzlilo' may update some build artifacts in the source tree. As commit 19514fc665ff ("arm, kbuild: make "make install" not depend on vmlinux") explained, this should not happen. Make 'bzlilo' not depend on any build artifact. Signed-off-by: Masahiro Yamada <masahiroy@kernel.org> Signed-off-by: Borislav Petkov <bp@suse.de> Link: https://lkml.kernel.org/r/20200215063852.8298-1-masahiroy@kernel.org
2020-04-21x86/boot/build: Add cpustr.h to targets and remove clean-filesMasahiro Yamada1-2/+1
Files in $(targets) are always cleaned up. Move the 'targets' assignment out of the ifdef and remove 'clean-files'. Signed-off-by: Masahiro Yamada <masahiroy@kernel.org> Signed-off-by: Borislav Petkov <bp@suse.de> Link: https://lkml.kernel.org/r/20200215063241.7437-1-masahiroy@kernel.org
2020-04-19Linux 5.7-rc2Linus Torvalds1-1/+1
2020-04-19mm: Fix MREMAP_DONTUNMAP accounting on VMA mergeBrian Geffon1-1/+12
When remapping a mapping where a portion of a VMA is remapped into another portion of the VMA it can cause the VMA to become split. During the copy_vma operation the VMA can actually be remerged if it's an anonymous VMA whose pages have not yet been faulted. This isn't normally a problem because at the end of the remap the original portion is unmapped causing it to become split again. However, MREMAP_DONTUNMAP leaves that original portion in place which means that the VMA which was split and then remerged is not actually split at the end of the mremap. This patch fixes a bug where we don't detect that the VMAs got remerged and we end up putting back VM_ACCOUNT on the next mapping which is completely unreleated. When that next mapping is unmapped it results in incorrectly unaccounting for the memory which was never accounted, and eventually we will underflow on the memory comittment. There is also another issue which is similar, we're currently accouting for the number of pages in the new_vma but that's wrong. We need to account for the length of the remap operation as that's all that is being added. If there was a mapping already at that location its comittment would have been adjusted as part of the munmap at the start of the mremap. A really simple repro can be seen in: https://gist.github.com/bgaff/e101ce99da7d9a8c60acc641d07f312c Fixes: e346b3813067 ("mm/mremap: add MREMAP_DONTUNMAP to mremap()") Reported-by: syzbot <syzkaller@googlegroups.com> Signed-off-by: Brian Geffon <bgeffon@google.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-18xattr.h: Replace zero-length array with flexible-array memberGustavo A. R. Silva1-1/+1
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
2020-04-18uapi: linux: fiemap.h: Replace zero-length array with flexible-array memberGustavo A. R. Silva1-1/+1
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
2020-04-18uapi: linux: dlm_device.h: Replace zero-length array with flexible-array memberGustavo A. R. Silva1-2/+2
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
2020-04-18tpm_eventlog.h: Replace zero-length array with flexible-array memberGustavo A. R. Silva1-3/+3
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
2020-04-18ti_wilink_st.h: Replace zero-length array with flexible-array memberGustavo A. R. Silva1-3/+3
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
2020-04-18swap.h: Replace zero-length array with flexible-array memberGustavo A. R. Silva1-1/+1
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
2020-04-18skbuff.h: Replace zero-length array with flexible-array memberGustavo A. R. Silva1-1/+1
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
2020-04-18sched: topology.h: Replace zero-length array with flexible-array memberGustavo A. R. Silva1-1/+1
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
2020-04-18rslib.h: Replace zero-length array with flexible-array memberGustavo A. R. Silva1-1/+1
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
2020-04-18rio.h: Replace zero-length array with flexible-array memberGustavo A. R. Silva1-2/+2
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
2020-04-18posix_acl.h: Replace zero-length array with flexible-array memberGustavo A. R. Silva1-1/+1
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
2020-04-18platform_data: wilco-ec.h: Replace zero-length array with flexible-array memberGustavo A. R. Silva1-1/+1
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
2020-04-18memcontrol.h: Replace zero-length array with flexible-array memberGustavo A. R. Silva1-2/+2
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
2020-04-18list_lru.h: Replace zero-length array with flexible-array memberGustavo A. R. Silva1-1/+1
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
2020-04-18lib: cpu_rmap: Replace zero-length array with flexible-array memberGustavo A. R. Silva1-1/+1
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
2020-04-18irq.h: Replace zero-length array with flexible-array memberGustavo A. R. Silva1-2/+2
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
2020-04-18ihex.h: Replace zero-length array with flexible-array memberGustavo A. R. Silva1-1/+1
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
2020-04-18igmp.h: Replace zero-length array with flexible-array memberGustavo A. R. Silva1-1/+1
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
2020-04-18genalloc.h: Replace zero-length array with flexible-array memberGustavo A. R. Silva1-1/+1
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
2020-04-18ethtool.h: Replace zero-length array with flexible-array memberGustavo A. R. Silva1-2/+2
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
2020-04-18energy_model.h: Replace zero-length array with flexible-array memberGustavo A. R. Silva1-1/+1
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
2020-04-18enclosure.h: Replace zero-length array with flexible-array memberGustavo A. R. Silva1-1/+1
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
2020-04-18dirent.h: Replace zero-length array with flexible-array memberGustavo A. R. Silva1-1/+1
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
2020-04-18digsig.h: Replace zero-length array with flexible-array memberGustavo A. R. Silva1-2/+2
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
2020-04-18can: dev: peak_canfd.h: Replace zero-length array with flexible-array memberGustavo A. R. Silva1-2/+2
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
2020-04-18blk_types: Replace zero-length array with flexible-array memberGustavo A. R. Silva1-1/+1
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
2020-04-18blk-mq: Replace zero-length array with flexible-array memberGustavo A. R. Silva1-1/+1
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
2020-04-18bio: Replace zero-length array with flexible-array memberGustavo A. R. Silva1-1/+1
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
2020-04-18hwmon: (jc42) Fix name to have no illegal charactersSascha Hauer1-1/+1
The jc42 driver passes I2C client's name as hwmon device name. In case of device tree probed devices this ends up being part of the compatible string, "jc-42.4-temp". This name contains hyphens and the hwmon core doesn't like this: jc42 2-0018: hwmon: 'jc-42.4-temp' is not a valid name attribute, please fix This changes the name to "jc42" which doesn't have any illegal characters. Signed-off-by: Sascha Hauer <s.hauer@pengutronix.de> Link: https://lore.kernel.org/r/20200417092853.31206-1-s.hauer@pengutronix.de Signed-off-by: Guenter Roeck <linux@roeck-us.net>
2020-04-18x86/split_lock: Add Tremont family CPU modelsTony Luck1-0/+3
Tremont CPUs support IA32_CORE_CAPABILITIES bits to indicate whether specific SKUs have support for split lock detection. Signed-off-by: Tony Luck <tony.luck@intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/20200416205754.21177-4-tony.luck@intel.com
2020-04-18x86/split_lock: Bits in IA32_CORE_CAPABILITIES are not architecturalTony Luck1-14/+31
The Intel Software Developers' Manual erroneously listed bit 5 of the IA32_CORE_CAPABILITIES register as an architectural feature. It is not. Features enumerated by IA32_CORE_CAPABILITIES are model specific and implementation details may vary in different cpu models. Thus it is only safe to trust features after checking the CPU model. Icelake client and server models are known to implement the split lock detect feature even though they don't enumerate IA32_CORE_CAPABILITIES [ tglx: Use switch() for readability and massage comments ] Fixes: 6650cdd9a8cc ("x86/split_lock: Enable split lock detection by kernel") Signed-off-by: Tony Luck <tony.luck@intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/20200416205754.21177-3-tony.luck@intel.com
2020-04-17x86/resctrl: Preserve CDP enable over CPU hotplugJames Morse3-0/+16
Resctrl assumes that all CPUs are online when the filesystem is mounted, and that CPUs remember their CDP-enabled state over CPU hotplug. This goes wrong when resctrl's CDP-enabled state changes while all the CPUs in a domain are offline. When a domain comes online, enable (or disable!) CDP to match resctrl's current setting. Fixes: 5ff193fbde20 ("x86/intel_rdt: Add basic resctrl filesystem support") Suggested-by: Reinette Chatre <reinette.chatre@intel.com> Signed-off-by: James Morse <james.morse@arm.com> Signed-off-by: Borislav Petkov <bp@suse.de> Cc: <stable@vger.kernel.org> Link: https://lkml.kernel.org/r/20200221162105.154163-1-james.morse@arm.com
2020-04-17kbuild: check libyaml installation for 'make dt_binding_check'Masahiro Yamada1-1/+1
If you run 'make dtbs_check' without installing the libyaml package, the error message "dtc needs libyaml ..." is shown. This should be checked also for 'make dt_binding_check' because dtc needs to validate *.example.dts extracted from *.yaml files. It is missing since commit 4f0e3a57d6eb ("kbuild: Add support for DT binding schema checks"), but this fix-up is applicable only after commit e10c4321dc1e ("kbuild: allow to run dt_binding_check and dtbs_check in a single command"). I gave the Fixes tag to the latter in case somebody is interested in back-porting this. Fixes: e10c4321dc1e ("kbuild: allow to run dt_binding_check and dtbs_check in a single command") Signed-off-by: Masahiro Yamada <masahiroy@kernel.org> Signed-off-by: Rob Herring <robh@kernel.org>
2020-04-17x86/resctrl: Fix invalid attempt at removing the default resource groupReinette Chatre1-1/+2
The default resource group ("rdtgroup_default") is associated with the root of the resctrl filesystem and should never be removed. New resource groups can be created as subdirectories of the resctrl filesystem and they can be removed from user space. There exists a safeguard in the directory removal code (rdtgroup_rmdir()) that ensures that only subdirectories can be removed by testing that the directory to be removed has to be a child of the root directory. A possible deadlock was recently fixed with 334b0f4e9b1b ("x86/resctrl: Fix a deadlock due to inaccurate reference"). This fix involved associating the private data of the "mon_groups" and "mon_data" directories to the resource group to which they belong instead of NULL as before. A consequence of this change was that the original safeguard code preventing removal of "mon_groups" and "mon_data" found in the root directory failed resulting in attempts to remove the default resource group that ends in a BUG: kernel BUG at mm/slub.c:3969! invalid opcode: 0000 [#1] SMP PTI Call Trace: rdtgroup_rmdir+0x16b/0x2c0 kernfs_iop_rmdir+0x5c/0x90 vfs_rmdir+0x7a/0x160 do_rmdir+0x17d/0x1e0 do_syscall_64+0x55/0x1d0 entry_SYSCALL_64_after_hwframe+0x44/0xa9 Fix this by improving the directory removal safeguard to ensure that subdirectories of the resctrl root directory can only be removed if they are a child of the resctrl filesystem's root _and_ not associated with the default resource group. Fixes: 334b0f4e9b1b ("x86/resctrl: Fix a deadlock due to inaccurate reference") Reported-by: Sai Praneeth Prakhya <sai.praneeth.prakhya@intel.com> Signed-off-by: Reinette Chatre <reinette.chatre@intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Tested-by: Sai Praneeth Prakhya <sai.praneeth.prakhya@intel.com> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/884cbe1773496b5dbec1b6bd11bb50cffa83603d.1584461853.git.reinette.chatre@intel.com
2020-04-17blk-wbt: Drop needless newlines from tracepoint format stringsTommi Rantala1-4/+4
Drop needless newlines from tracepoint format strings, they only add empty lines to perf tracing output. Signed-off-by: Tommi Rantala <tommi.t.rantala@nokia.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2020-04-17blk-wbt: Use tracepoint_string() for wbt_step tracepoint string literalsTommi Rantala1-2/+2
Use tracepoint_string() for string literals that are used in the wbt_step tracepoint, so that userspace tools can display the string content. Signed-off-by: Tommi Rantala <tommi.t.rantala@nokia.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2020-04-17s390/dasd: remove IOSCHED_DEADLINE from DASD KconfigStefan Haberland1-1/+0
CONFIG_IOSCHED_DEADLINE was removed with commit f382fb0bcef4 ("block: remove legacy IO schedulers") and setting of the scheduler was removed with commit a5fd8ddce2af ("s390/dasd: remove setting of scheduler from driver"). So get rid of the select. Reported-by: Krzysztof Kozlowski <krzk@kernel.org> Signed-off-by: Stefan Haberland <sth@linux.ibm.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2020-04-17of: unittest: kmemleak in duplicate property updateFrank Rowand2-10/+25
kmemleak reports several memory leaks from devicetree unittest. This is the fix for problem 5 of 5. When overlay 'overlay_bad_add_dup_prop' is applied, the apply code properly detects that a memory leak will occur if the overlay is removed since the duplicate property is located in a base devicetree node and reports via printk(): OF: overlay: WARNING: memory leak will occur if overlay removed, property: /testcase-data-2/substation@100/motor-1/rpm_avail OF: overlay: WARNING: memory leak will occur if overlay removed, property: /testcase-data-2/substation@100/motor-1/rpm_avail The overlay is removed when the apply code detects multiple changesets modifying the same property. This is reported via printk(): OF: overlay: ERROR: multiple fragments add, update, and/or delete property /testcase-data-2/substation@100/motor-1/rpm_avail As a result of this error, the overlay is removed resulting in the expected memory leak. Add another device node level to the overlay so that the duplicate property is located in a node added by the overlay, thus no memory leak will occur when the overlay is removed. Thus users of kmemleak will not have to debug this leak in the future. Fixes: 2fe0e8769df9 ("of: overlay: check prevents multiple fragments touching same property") Reported-by: Erhard F. <erhard_f@mailbox.org> Signed-off-by: Frank Rowand <frank.rowand@sony.com> Signed-off-by: Rob Herring <robh@kernel.org>
2020-04-17of: overlay: kmemleak in dup_and_fixup_symbol_prop()Frank Rowand1-0/+2
kmemleak reports several memory leaks from devicetree unittest. This is the fix for problem 4 of 5. target_path was not freed in the non-error path. Fixes: e0a58f3e08d4 ("of: overlay: remove a dependency on device node full_name") Reported-by: Erhard F. <erhard_f@mailbox.org> Signed-off-by: Frank Rowand <frank.rowand@sony.com> Signed-off-by: Rob Herring <robh@kernel.org>
2020-04-17of: unittest: kmemleak in of_unittest_overlay_high_level()Frank Rowand1-1/+4
kmemleak reports several memory leaks from devicetree unittest. This is the fix for problem 3 of 5. of_unittest_overlay_high_level() failed to kfree the newly created property when the property named 'name' is skipped. Fixes: 39a751a4cb7e ("of: change overlay apply input data from unflattened to FDT") Reported-by: Erhard F. <erhard_f@mailbox.org> Signed-off-by: Frank Rowand <frank.rowand@sony.com> Signed-off-by: Rob Herring <robh@kernel.org>
2020-04-17of: unittest: kmemleak in of_unittest_platform_populate()Frank Rowand1-2/+5
kmemleak reports several memory leaks from devicetree unittest. This is the fix for problem 2 of 5. of_unittest_platform_populate() left an elevated reference count for grandchild nodes (which are platform devices). Fix the platform device reference counts so that the memory will be freed. Fixes: fb2caa50fbac ("of/selftest: add testcase for nodes with same name and address") Reported-by: Erhard F. <erhard_f@mailbox.org> Signed-off-by: Frank Rowand <frank.rowand@sony.com> Signed-off-by: Rob Herring <robh@kernel.org>
2020-04-17of: unittest: kmemleak on changeset destroyFrank Rowand1-0/+4
kmemleak reports several memory leaks from devicetree unittest. This is the fix for problem 1 of 5. of_unittest_changeset() reaches deeply into the dynamic devicetree functions. Several nodes were left with an elevated reference count and thus were not properly cleaned up. Fix the reference counts so that the memory will be freed. Fixes: 201c910bd689 ("of: Transactional DT support.") Reported-by: Erhard F. <erhard_f@mailbox.org> Signed-off-by: Frank Rowand <frank.rowand@sony.com> Signed-off-by: Rob Herring <robh@kernel.org>
2020-04-17MAINTAINERS: dt: fix pointers for ARM Integrator, Versatile and RealViewMauro Carvalho Chehab1-1/+4
There's a conversion from a plain text binding file into 4 yaml ones. The old file got removed, causing this new warning: Warning: MAINTAINERS references a file that doesn't exist: Documentation/devicetree/bindings/arm/arm-boards Address it by replacing the old reference by the new ones Fixes: 4b900070d50d ("dt-bindings: arm: Add Versatile YAML schema") Fixes: 2d483550b6d2 ("dt-bindings: arm: Drop the non-YAML bindings") Fixes: 7db625b9fa75 ("dt-bindings: arm: Add RealView YAML schema") Fixes: 4fb00d9066c1 ("dt-bindings: arm: Add Versatile Express and Juno YAML schema") Fixes: 33fbfb3eaf4e ("dt-bindings: arm: Add Integrator YAML schema") Signed-off-by: Mauro Carvalho Chehab <mchehab+huawei@kernel.org> Acked-by: Linus Walleij <linus.walleij@linaro.org> Signed-off-by: Rob Herring <robh@kernel.org>
2020-04-17MAINTAINERS: dt: update display/allwinner file entryMauro Carvalho Chehab1-1/+1
Changeset f5a98bfe7b37 ("dt-bindings: display: Convert Allwinner display pipeline to schemas") split Documentation/devicetree/bindings/display/sunxi/sun4i-drm.txt into several files. Yet, it kept the old place at MAINTAINERS. Update it to point to the new place. Fixes: f5a98bfe7b37 ("dt-bindings: display: Convert Allwinner display pipeline to schemas") Signed-off-by: Mauro Carvalho Chehab <mchehab+huawei@kernel.org> Signed-off-by: Rob Herring <robh@kernel.org>