Age | Commit message (Collapse) | Author | Files | Lines |
|
|
|
Don't ignore return values in rsm_load_state_64/32 to avoid
loading invalid state from SMM state area if it was tampered with
by the guest.
This is primarly intended to avoid letting guest set bits in EFER
(like EFER.SVME when nesting is disabled) by manipulating SMM save area.
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20200827171145.374620-8-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
* check that guest is 64 bit guest, otherwise the SVM related fields
in the smm state area are not defined
* If the SMM area indicates that SMM interrupted a running guest,
check that EFER.SVME which is also saved in this area is set, otherwise
the guest might have tampered with SMM save area, and so indicate
emulation failure which should triple fault the guest.
* Check that that guest CPUID supports SVM (due to the same issue as above)
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20200827162720.278690-4-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
This code was missing and was forcing the L2 run with L1's msr
permission bitmap
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20200827162720.278690-3-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Currently code in svm_set_nested_state copies the current vmcb control
area to L1 control area (hsave->control), under assumption that
it mostly reflects the defaults that kvm choose, and later qemu
overrides these defaults with L2 state using standard KVM interfaces,
like KVM_SET_REGS.
However nested GIF (which is AMD specific thing) is by default is true,
and it is copied to hsave area as such.
This alone is not a big deal since on VMexit, GIF is always set to false,
regardless of what it was on VM entry. However in nested_svm_vmexit we
were first were setting GIF to false, but then we overwrite the control
fields with value from the hsave area. (including the nested GIF field
itself if GIF virtualization is enabled).
Now on normal vm entry this is not a problem, since GIF is usually false
prior to normal vm entry, and this is the value that copied to hsave,
and then restored, but this is not always the case when the nested state
is loaded as explained above.
To fix this issue, move svm_set_gif after we restore the L1 control
state in nested_svm_vmexit, so that even with wrong GIF in the
saved L1 control area, we still clear GIF as the spec says.
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20200827162720.278690-2-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
A build failure was raised by kbuild with the following error.
drivers/android/binder.c: Assembler messages:
drivers/android/binder.c:3861: Error: unrecognized keyword/register name `l.lwz ?ap,4(r24)'
drivers/android/binder.c:3866: Error: unrecognized keyword/register name `l.addi ?ap,r0,0'
The issue is with 64-bit get_user() calls on openrisc. I traced this to
a problem where in the internally in the get_user macros there is a cast
to long __gu_val this causes GCC to think the get_user call is 32-bit.
This binder code is really long and GCC allocates register r30, which
triggers the issue. The 64-bit get_user asm tries to get the 64-bit pair
register, which for r30 overflows the general register names and returns
the dummy register ?ap.
The fix here is to move the temporary variables into the asm macros. We
use a 32-bit __gu_tmp for 32-bit and smaller macro and a 64-bit tmp in
the 64-bit macro. The cast in the 64-bit macro has a trick of casting
through __typeof__((x)-(x)) which avoids the below warning. This was
barrowed from riscv.
arch/openrisc/include/asm/uaccess.h:240:8: warning: cast to pointer from integer of different size
I tested this in a small unit test to check reading between 64-bit and
32-bit pointers to 64-bit and 32-bit values in all combinations. Also I
ran make C=1 to confirm no new sparse warnings came up. It all looks
clean to me.
Link: https://lore.kernel.org/lkml/202008200453.ohnhqkjQ%25lkp@intel.com/
Signed-off-by: Stafford Horne <shorne@gmail.com>
Reviewed-by: Luc Van Oostenryck <luc.vanoostenryck@gmail.com>
|
|
Merge commit 26d05b368a5c0 ("Merge branch 'kvm-async-pf-int' into HEAD")
tried to adapt the new interrupt based async PF mechanism to the newly
introduced IDTENTRY magic but unfortunately it missed the fact that
DEFINE_IDTENTRY_SYSVEC() doesn't call ack_APIC_irq() on its own and
all DEFINE_IDTENTRY_SYSVEC() users have to call it manually.
As the result all multi-CPU KVM guest hang on boot when
KVM_FEATURE_ASYNC_PF_INT is present. The breakage went unnoticed because no
KVM userspace (e.g. QEMU) currently set it (and thus async PF mechanism
is currently disabled) but we're about to change that.
Fixes: 26d05b368a5c0 ("Merge branch 'kvm-async-pf-int' into HEAD")
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20200908135350.355053-3-vkuznets@redhat.com>
Tested-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
DEFINE_IDTENTRY_SYSVEC() already contains irqentry_enter()/
irqentry_exit().
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20200908135350.355053-2-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
According to SDM 27.2.4, Event delivery causes an APIC-access VM exit.
Don't report internal error and freeze guest when event delivery causes
an APIC-access exit, it is handleable and the event will be re-injected
during the next vmentry.
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Message-Id: <1597827327-25055-2-git-send-email-wanpengli@tencent.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
svm->next_rip is reset in svm_vcpu_run() only after calling
svm_exit_handlers_fastpath(), which will cause SVM's
skip_emulated_instruction() to write a stale RIP.
We can move svm_exit_handlers_fastpath towards the end of
svm_vcpu_run(). To align VMX with SVM, keep svm_complete_interrupts()
close as well.
Suggested-by: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: Paul K. <kronenpj@kronenpj.dyndns.org>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
[Also move vmcb_mark_all_clean before any possible write to the VMCB.
- Paolo]
|
|
Even without in-kernel LAPIC we should allow writing '0' to
MSR_KVM_ASYNC_PF_EN as we're not enabling the mechanism. In
particular, QEMU with 'kernel-irqchip=off' fails to start
a guest with
qemu-system-x86_64: error: failed to set MSR 0x4b564d02 to 0x0
Fixes: 9d3c447c72fb2 ("KVM: X86: Fix async pf caused null-ptr-deref")
Reported-by: Dr. David Alan Gilbert <dgilbert@redhat.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20200911093147.484565-1-vkuznets@redhat.com>
[Actually commit the version proposed by Sean Christopherson. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
There may be many encrypted regions that need to be unregistered when a
SEV VM is destroyed. This can lead to soft lockups. For example, on a
host running 4.15:
watchdog: BUG: soft lockup - CPU#206 stuck for 11s! [t_virtual_machi:194348]
CPU: 206 PID: 194348 Comm: t_virtual_machi
RIP: 0010:free_unref_page_list+0x105/0x170
...
Call Trace:
[<0>] release_pages+0x159/0x3d0
[<0>] sev_unpin_memory+0x2c/0x50 [kvm_amd]
[<0>] __unregister_enc_region_locked+0x2f/0x70 [kvm_amd]
[<0>] svm_vm_destroy+0xa9/0x200 [kvm_amd]
[<0>] kvm_arch_destroy_vm+0x47/0x200
[<0>] kvm_put_kvm+0x1a8/0x2f0
[<0>] kvm_vm_release+0x25/0x30
[<0>] do_exit+0x335/0xc10
[<0>] do_group_exit+0x3f/0xa0
[<0>] get_signal+0x1bc/0x670
[<0>] do_signal+0x31/0x130
Although the CLFLUSH is no longer issued on every encrypted region to be
unregistered, there are no other changes that can prevent soft lockups for
very large SEV VMs in the latest kernel.
Periodically schedule if necessary. This still holds kvm->lock across the
resched, but since this only happens when the VM is destroyed this is
assumed to be acceptable.
Signed-off-by: David Rientjes <rientjes@google.com>
Message-Id: <alpine.DEB.2.23.453.2008251255240.2987727@chino.kir.corp.google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
MIPS defines two kvm types:
#define KVM_VM_MIPS_TE 0
#define KVM_VM_MIPS_VZ 1
In Documentation/virt/kvm/api.rst it is said that "You probably want to
use 0 as machine type", which implies that type 0 be the "automatic" or
"default" type. And, in user-space libvirt use the null-machine (with
type 0) to detect the kvm capability, which returns "KVM not supported"
on a VZ platform.
I try to fix it in QEMU but it is ugly:
https://lists.nongnu.org/archive/html/qemu-devel/2020-08/msg05629.html
And Thomas Huth suggests me to change the definition of kvm type:
https://lists.nongnu.org/archive/html/qemu-devel/2020-09/msg03281.html
So I define like this:
#define KVM_VM_MIPS_AUTO 0
#define KVM_VM_MIPS_VZ 1
#define KVM_VM_MIPS_TE 2
Since VZ and TE cannot co-exists, using type 0 on a TE platform will
still return success (so old user-space tools have no problems on new
kernels); the advantage is that using type 0 on a VZ platform will not
return failure. So, the only problem is "new user-space tools use type
2 on old kernels", but if we treat this as a kernel bug, we can backport
this patch to old stable kernels.
Signed-off-by: Huacai Chen <chenhc@lemote.com>
Message-Id: <1599734031-28746-1-git-send-email-chenhc@lemote.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
When kvm_mmu_get_page() gets a page with unsynced children, the spt
pagetable is unsynchronized with the guest pagetable. But the
guest might not issue a "flush" operation on it when the pagetable
entry is changed from zero or other cases. The hypervisor has the
responsibility to synchronize the pagetables.
KVM behaved as above for many years, But commit 8c8560b83390
("KVM: x86/mmu: Use KVM_REQ_TLB_FLUSH_CURRENT for MMU specific flushes")
inadvertently included a line of code to change it without giving any
reason in the changelog. It is clear that the commit's intention was to
change KVM_REQ_TLB_FLUSH -> KVM_REQ_TLB_FLUSH_CURRENT, so we don't
needlessly flush other contexts; however, one of the hunks changed
a nearby KVM_REQ_MMU_SYNC instead. This patch changes it back.
Link: https://lore.kernel.org/lkml/20200320212833.3507-26-sean.j.christopherson@intel.com/
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Message-Id: <20200902135421.31158-1-jiangshanlai@gmail.com>
fixes: 8c8560b83390 ("KVM: x86/mmu: Use KVM_REQ_TLB_FLUSH_CURRENT for MMU specific flushes")
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
A minor fix for the update of VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL field
in exit_ctls_high.
Fixes: 03a8871add95 ("KVM: nVMX: Expose load IA32_PERF_GLOBAL_CTRL
VM-{Entry,Exit} control")
Signed-off-by: Chenyi Qiang <chenyi.qiang@intel.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Message-Id: <20200828085622.8365-5-chenyi.qiang@intel.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
when kmalloc() fails in kvm_io_bus_unregister_dev(), before removing
the bus, we should iterate over all other devices linked to it and call
kvm_iodevice_destructor() for them
Fixes: 90db10434b16 ("KVM: kvm_io_bus_unregister_dev() should never fail")
Cc: stable@vger.kernel.org
Reported-and-tested-by: syzbot+f196caa45793d6374707@syzkaller.appspotmail.com
Link: https://syzkaller.appspot.com/bug?extid=f196caa45793d6374707
Signed-off-by: Rustam Kovhaev <rkovhaev@gmail.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20200907185535.233114-1-rkovhaev@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
check the allocation of per-cpu __pv_cpu_mask. Initialize ops only when
successful.
Signed-off-by: Haiwei Li <lihaiwei@tencent.com>
Message-Id: <d59f05df-e6d3-3d31-a036-cc25a2b2f33f@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
When L2 uses PAE, L0 intercepts of L2 writes to CR0/CR3/CR4 call
load_pdptrs to read the possibly updated PDPTEs from the guest
physical address referenced by CR3. It loads them into
vcpu->arch.walk_mmu->pdptrs and sets VCPU_EXREG_PDPTR in
vcpu->arch.regs_dirty.
At the subsequent assumed reentry into L2, the mmu will call
vmx_load_mmu_pgd which calls ept_load_pdptrs. ept_load_pdptrs sees
VCPU_EXREG_PDPTR set in vcpu->arch.regs_dirty and loads
VMCS02.GUEST_PDPTRn from vcpu->arch.walk_mmu->pdptrs[]. This all works
if the L2 CRn write intercept always resumes L2.
The resume path calls vmx_check_nested_events which checks for
exceptions, MTF, and expired VMX preemption timers. If
vmx_check_nested_events finds any of these conditions pending it will
reflect the corresponding exit into L1. Live migration at this point
would also cause a missed immediate reentry into L2.
After L1 exits, vmx_vcpu_run calls vmx_register_cache_reset which
clears VCPU_EXREG_PDPTR in vcpu->arch.regs_dirty. When L2 next
resumes, ept_load_pdptrs finds VCPU_EXREG_PDPTR clear in
vcpu->arch.regs_dirty and does not load VMCS02.GUEST_PDPTRn from
vcpu->arch.walk_mmu->pdptrs[]. prepare_vmcs02 will then load
VMCS02.GUEST_PDPTRn from vmcs12->pdptr0/1/2/3 which contain the stale
values stored at last L2 exit. A repro of this bug showed L2 entering
triple fault immediately due to the bad VMCS02.GUEST_PDPTRn values.
When L2 is in PAE paging mode add a call to ept_load_pdptrs before
leaving L2. This will update VMCS02.GUEST_PDPTRn if they are dirty in
vcpu->arch.walk_mmu->pdptrs[].
Tested:
kvm-unit-tests with new directed test: vmx_mtf_pdpte_test.
Verified that test fails without the fix.
Also ran Google internal VMM with an Ubuntu 16.04 4.4.0-83 guest running a
custom hypervisor with a 32-bit Windows XP L2 guest using PAE. Prior to fix
would repro readily. Ran 14 simultaneous L2s for 140 iterations with no
failures.
Signed-off-by: Peter Shier <pshier@google.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Message-Id: <20200820230545.2411347-1-pshier@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Using gcov to collect coverage data for kernels compiled with GCC 10.1
causes random malfunctions and kernel crashes. This is the result of a
changed GCOV_COUNTERS value in GCC 10.1 that causes a mismatch between
the layout of the gcov_info structure created by GCC profiling code and
the related structure used by the kernel.
Fix this by updating the in-kernel GCOV_COUNTERS value. Also re-enable
config GCOV_KERNEL for use with GCC 10.
Reported-by: Colin Ian King <colin.king@canonical.com>
Reported-by: Leon Romanovsky <leonro@nvidia.com>
Signed-off-by: Peter Oberparleiter <oberpar@linux.ibm.com>
Tested-by: Leon Romanovsky <leonro@nvidia.com>
Tested-and-Acked-by: Colin Ian King <colin.king@canonical.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Fix up the documentation of the struct powercap_control_type members
to match the code.
Also fixup stray whitespace.
Signed-off-by: Amit Kucheria <amitk@kernel.org>
[ rjw: Changelog edits ]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
Fix kernel-doc warning in <linux/device.h>:
../include/linux/device.h:613: warning: Function parameter or member 'em_pd' not described in 'device'
Fixes: 1bc138c62295 ("PM / EM: add support for other devices than CPUs in Energy Model")
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Reviewed-by: Lukasz Luba <lukasz.luba@arm.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
Add intel_rapl support for the AlderLake platform.
Signed-off-by: Zhang Rui <rui.zhang@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
Add intel_rapl support for the RocketLake platform.
Signed-off-by: Zhang Rui <rui.zhang@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
Add intel_rapl support for the TigerLake desktop platform.
Signed-off-by: Zhang Rui <rui.zhang@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
This reverts commit 14775b04964264189caa4a0862eac05dab8c0502 as there
were still some parsing problems with it, and the follow-on patch for
it.
Let's revisit it later, just drop it for now.
Cc: <jbaron@akamai.com>
Cc: Jim Cromie <jim.cromie@gmail.com>
Reported-by: Naresh Kamboju <naresh.kamboju@linaro.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Fixes: 14775b049642 ("dyndbg: accept query terms like file=bar and module=foo")
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
This reverts commit 42f07816ac0cc797928119cc039c414ae2b95d34 as it
still causes problems. It will be resolved later, let's revert it so we
can also revert the original patch this was supposed to be helping with.
Reported-by: Naresh Kamboju <naresh.kamboju@linaro.org>
Fixes: 42f07816ac0c ("dyndbg: fix problem parsing format="foo bar"")
Cc: Jim Cromie <jim.cromie@gmail.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
On non-EFI systems, it wasn't possible to test the platform firmware
loader because it will have never set "checked_fw" during __init.
Instead, allow the test code to override this check. Additionally split
the declarations into a private symbol namespace so there is greater
enforcement of the symbol visibility.
Fixes: 548193cba2a7 ("test_firmware: add support for firmware_request_platform")
Cc: stable@vger.kernel.org
Signed-off-by: Kees Cook <keescook@chromium.org>
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20200909225354.3118328-1-keescook@chromium.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
This function should be an int, not a bool.
Presumably because we had the same 2 reverts in a slightly different
way, git got confused.
Thanks to Dan for reporting. :)
The conflict is between the 3 reverts in drm-fixes:
4993a8a37808 ("Revert "drm/i915: Remove i915_gem_object_get_dirty_page()"")
ad5d95e4d538 ("Revert "drm/i915/gem: Async GPU relocations only"")
20561da3a2e1 ("Revert "drm/i915/gem: Delete unused code"")
And the slightly different combined revert in drm-intel-gt-next, but
with the same goal:
102a0a9051f4 ("Revert "drm/i915/gem: Async GPU relocations only"")
In the merge commit 1f4b2aca794f ("Merge tag
'drm-intel-gt-next-2020-09-07' of git://anongit.freedesktop.org/drm/drm-intel into drm-next") things
went wrong, but the merge commit view now doesn't show any conflict
anymore (as git tends to do when the resolution picks one or the other
branch).
The need to handle other than just true/false error codes in
__reloc_entry_gpu was added in the dma_resv locking changes in
c43ce12328df ("drm/i915: Use per object locking in execbuf, v12.")
Signed-off-by: Maarten Lankhorst <maarten.lankhorst@linux.intel.com>
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Cc: Dave Airlie <airlied@redhat.com>
[danvet: Explain this entire saga a lot better, adding tons of commit
references. Also note that this was merged before full intel-gfx-CI
results, only after BAT, since the breakage at the BAT run is already
severe enough to block all pre-merge testing.]
Fixes: 1f4b2aca794f ("Merge tag 'drm-intel-gt-next-2020-09-07' of git://anongit.freedesktop.org/drm/drm-intel into drm-next")
Acked-by: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
Link: https://patchwork.freedesktop.org/patch/msgid/20200910111225.2184193-1-maarten.lankhorst@linux.intel.com
|
|
The Documentation/DMA-API-HOWTO.txt states that the dma_map_sg() function
returns the number of the created entries in the DMA address space.
However the subsequent calls to the dma_sync_sg_for_{device,cpu}() and
dma_unmap_sg must be called with the original number of the entries
passed to the dma_map_sg().
struct sg_table is a common structure used for describing a non-contiguous
memory buffer, used commonly in the DRM and graphics subsystems. It
consists of a scatterlist with memory pages and DMA addresses (sgl entry),
as well as the number of scatterlist entries: CPU pages (orig_nents entry)
and DMA mapped pages (nents entry).
It turned out that it was a common mistake to misuse nents and orig_nents
entries, calling DMA-mapping functions with a wrong number of entries or
ignoring the number of mapped entries returned by the dma_map_sg()
function.
To avoid such issues, lets use a common dma-mapping wrappers operating
directly on the struct sg_table objects and use scatterlist page
iterators where possible. This, almost always, hides references to the
nents and orig_nents entries, making the code robust, easier to follow
and copy/paste safe.
While touching this code, also add missing call to dma_unmap_sgtable.
Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com>
Reviewed-by: Robin Murphy <robin.murphy@arm.com>
|
|
The Documentation/DMA-API-HOWTO.txt states that the dma_map_sg() function
returns the number of the created entries in the DMA address space.
However the subsequent calls to the dma_sync_sg_for_{device,cpu}() and
dma_unmap_sg must be called with the original number of the entries
passed to the dma_map_sg().
struct sg_table is a common structure used for describing a non-contiguous
memory buffer, used commonly in the DRM and graphics subsystems. It
consists of a scatterlist with memory pages and DMA addresses (sgl entry),
as well as the number of scatterlist entries: CPU pages (orig_nents entry)
and DMA mapped pages (nents entry).
It turned out that it was a common mistake to misuse nents and orig_nents
entries, calling DMA-mapping functions with a wrong number of entries or
ignoring the number of mapped entries returned by the dma_map_sg()
function.
To avoid such issues, lets use a common dma-mapping wrappers operating
directly on the struct sg_table objects and use scatterlist page
iterators where possible. This, almost always, hides references to the
nents and orig_nents entries, making the code robust, easier to follow
and copy/paste safe.
Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com>
Acked-by: Gerd Hoffmann <kraxel@redhat.com>
|
|
The Documentation/DMA-API-HOWTO.txt states that the dma_map_sg() function
returns the number of the created entries in the DMA address space.
However the subsequent calls to the dma_sync_sg_for_{device,cpu}() and
dma_unmap_sg must be called with the original number of the entries
passed to the dma_map_sg().
struct sg_table is a common structure used for describing a non-contiguous
memory buffer, used commonly in the DRM and graphics subsystems. It
consists of a scatterlist with memory pages and DMA addresses (sgl entry),
as well as the number of scatterlist entries: CPU pages (orig_nents entry)
and DMA mapped pages (nents entry).
It turned out that it was a common mistake to misuse nents and orig_nents
entries, calling DMA-mapping functions with a wrong number of entries or
ignoring the number of mapped entries returned by the dma_map_sg()
function.
To avoid such issues, lets use a common dma-mapping wrappers operating
directly on the struct sg_table objects and use scatterlist page
iterators where possible. This, almost always, hides references to the
nents and orig_nents entries, making the code robust, easier to follow
and copy/paste safe.
dma_map_sgtable() function returns zero or an error code, so adjust the
return value check for the vsp1_du_map_sg() function.
Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com>
Reviewed-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
|
|
The Documentation/DMA-API-HOWTO.txt states that the dma_map_sg() function
returns the number of the created entries in the DMA address space.
However the subsequent calls to the dma_sync_sg_for_{device,cpu}() and
dma_unmap_sg must be called with the original number of the entries
passed to the dma_map_sg().
struct sg_table is a common structure used for describing a non-contiguous
memory buffer, used commonly in the DRM and graphics subsystems. It
consists of a scatterlist with memory pages and DMA addresses (sgl entry),
as well as the number of scatterlist entries: CPU pages (orig_nents entry)
and DMA mapped pages (nents entry).
It turned out that it was a common mistake to misuse nents and orig_nents
entries, calling DMA-mapping functions with a wrong number of entries or
ignoring the number of mapped entries returned by the dma_map_sg()
function.
To avoid such issues, lets use a common dma-mapping wrappers operating
directly on the struct sg_table objects and use scatterlist page
iterators where possible. This, almost always, hides references to the
nents and orig_nents entries, making the code robust, easier to follow
and copy/paste safe.
Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com>
Reviewed-by: Robin Murphy <robin.murphy@arm.com>
|
|
The Documentation/DMA-API-HOWTO.txt states that the dma_map_sg() function
returns the number of the created entries in the DMA address space.
However the subsequent calls to the dma_sync_sg_for_{device,cpu}() and
dma_unmap_sg must be called with the original number of the entries
passed to the dma_map_sg().
struct sg_table is a common structure used for describing a non-contiguous
memory buffer, used commonly in the DRM and graphics subsystems. It
consists of a scatterlist with memory pages and DMA addresses (sgl entry),
as well as the number of scatterlist entries: CPU pages (orig_nents entry)
and DMA mapped pages (nents entry).
It turned out that it was a common mistake to misuse nents and orig_nents
entries, calling DMA-mapping functions with a wrong number of entries or
ignoring the number of mapped entries returned by the dma_map_sg()
function.
To avoid such issues, lets use a common dma-mapping wrappers operating
directly on the struct sg_table objects and use scatterlist page
iterators where possible. This, almost always, hides references to the
nents and orig_nents entries, making the code robust, easier to follow
and copy/paste safe.
Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com>
Acked-by: Juergen Gross <jgross@suse.com>
|
|
The Documentation/DMA-API-HOWTO.txt states that the dma_map_sg() function
returns the number of the created entries in the DMA address space.
However the subsequent calls to the dma_sync_sg_for_{device,cpu}() and
dma_unmap_sg must be called with the original number of the entries
passed to the dma_map_sg().
struct sg_table is a common structure used for describing a non-contiguous
memory buffer, used commonly in the DRM and graphics subsystems. It
consists of a scatterlist with memory pages and DMA addresses (sgl entry),
as well as the number of scatterlist entries: CPU pages (orig_nents entry)
and DMA mapped pages (nents entry).
It turned out that it was a common mistake to misuse nents and orig_nents
entries, calling DMA-mapping functions with a wrong number of entries or
ignoring the number of mapped entries returned by the dma_map_sg()
function.
Fix the code to refer to proper nents or orig_nents entries. This driver
reports the number of the pages in the imported scatterlist, so it should
refer to sg_table->orig_nents entry.
Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com>
Acked-by: Oleksandr Andrushchenko <oleksandr_andrushchenko@epam.com>
|
|
The Documentation/DMA-API-HOWTO.txt states that the dma_map_sg() function
returns the number of the created entries in the DMA address space.
However the subsequent calls to the dma_sync_sg_for_{device,cpu}() and
dma_unmap_sg must be called with the original number of the entries
passed to the dma_map_sg().
struct sg_table is a common structure used for describing a non-contiguous
memory buffer, used commonly in the DRM and graphics subsystems. It
consists of a scatterlist with memory pages and DMA addresses (sgl entry),
as well as the number of scatterlist entries: CPU pages (orig_nents entry)
and DMA mapped pages (nents entry).
It turned out that it was a common mistake to misuse nents and orig_nents
entries, calling DMA-mapping functions with a wrong number of entries or
ignoring the number of mapped entries returned by the dma_map_sg()
function.
To avoid such issues, lets use a common dma-mapping wrappers operating
directly on the struct sg_table objects and use scatterlist page
iterators where possible. This, almost always, hides references to the
nents and orig_nents entries, making the code robust, easier to follow
and copy/paste safe.
Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com>
Acked-by: Roland Scheidegger <sroland@vmware.com>
|
|
The Documentation/DMA-API-HOWTO.txt states that the dma_map_sg() function
returns the number of the created entries in the DMA address space.
However the subsequent calls to the dma_sync_sg_for_{device,cpu}() and
dma_unmap_sg must be called with the original number of the entries
passed to the dma_map_sg().
struct sg_table is a common structure used for describing a non-contiguous
memory buffer, used commonly in the DRM and graphics subsystems. It
consists of a scatterlist with memory pages and DMA addresses (sgl entry),
as well as the number of scatterlist entries: CPU pages (orig_nents entry)
and DMA mapped pages (nents entry).
It turned out that it was a common mistake to misuse nents and orig_nents
entries, calling DMA-mapping functions with a wrong number of entries or
ignoring the number of mapped entries returned by the dma_map_sg()
function.
To avoid such issues, lets use a common dma-mapping wrappers operating
directly on the struct sg_table objects and use scatterlist page
iterators where possible. This, almost always, hides references to the
nents and orig_nents entries, making the code robust, easier to follow
and copy/paste safe.
Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com>
Acked-by: Gerd Hoffmann <kraxel@redhat.com>
|
|
The Documentation/DMA-API-HOWTO.txt states that the dma_map_sg() function
returns the number of the created entries in the DMA address space.
However the subsequent calls to the dma_sync_sg_for_{device,cpu}() and
dma_unmap_sg must be called with the original number of the entries
passed to the dma_map_sg().
struct sg_table is a common structure used for describing a non-contiguous
memory buffer, used commonly in the DRM and graphics subsystems. It
consists of a scatterlist with memory pages and DMA addresses (sgl entry),
as well as the number of scatterlist entries: CPU pages (orig_nents entry)
and DMA mapped pages (nents entry).
It turned out that it was a common mistake to misuse nents and orig_nents
entries, calling DMA-mapping functions with a wrong number of entries or
ignoring the number of mapped entries returned by the dma_map_sg()
function.
To avoid such issues, lets use a common dma-mapping wrappers operating
directly on the struct sg_table objects and use scatterlist page
iterators where possible. This, almost always, hides references to the
nents and orig_nents entries, making the code robust, easier to follow
and copy/paste safe.
Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com>
Reviewed-by: Eric Anholt <eric@anholt.net>
|
|
The Documentation/DMA-API-HOWTO.txt states that the dma_map_sg() function
returns the number of the created entries in the DMA address space.
However the subsequent calls to the dma_sync_sg_for_{device,cpu}() and
dma_unmap_sg must be called with the original number of the entries
passed to the dma_map_sg().
struct sg_table is a common structure used for describing a non-contiguous
memory buffer, used commonly in the DRM and graphics subsystems. It
consists of a scatterlist with memory pages and DMA addresses (sgl entry),
as well as the number of scatterlist entries: CPU pages (orig_nents entry)
and DMA mapped pages (nents entry).
It turned out that it was a common mistake to misuse nents and orig_nents
entries, calling DMA-mapping functions with a wrong number of entries or
ignoring the number of mapped entries returned by the dma_map_sg()
function.
To avoid such issues, lets use a common dma-mapping wrappers operating
directly on the struct sg_table objects and use scatterlist page
iterators where possible. This, almost always, hides references to the
nents and orig_nents entries, making the code robust, easier to follow
and copy/paste safe.
Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com>
Reviewed-by: Robin Murphy <robin.murphy@arm.com>
|
|
The Documentation/DMA-API-HOWTO.txt states that the dma_map_sg() function
returns the number of the created entries in the DMA address space.
However the subsequent calls to the dma_sync_sg_for_{device,cpu}() and
dma_unmap_sg must be called with the original number of the entries
passed to the dma_map_sg().
struct sg_table is a common structure used for describing a non-contiguous
memory buffer, used commonly in the DRM and graphics subsystems. It
consists of a scatterlist with memory pages and DMA addresses (sgl entry),
as well as the number of scatterlist entries: CPU pages (orig_nents entry)
and DMA mapped pages (nents entry).
It turned out that it was a common mistake to misuse nents and orig_nents
entries, calling DMA-mapping functions with a wrong number of entries or
ignoring the number of mapped entries returned by the dma_map_sg()
function.
To avoid such issues, lets use a common dma-mapping wrappers operating
directly on the struct sg_table objects and use scatterlist page
iterators where possible. This, almost always, hides references to the
nents and orig_nents entries, making the code robust, easier to follow
and copy/paste safe.
Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com>
Reviewed-by: Robin Murphy <robin.murphy@arm.com>
|
|
Use common helper for checking the contiguity of the imported dma-buf.
Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com>
Reviewed-by: Robin Murphy <robin.murphy@arm.com>
|
|
The Documentation/DMA-API-HOWTO.txt states that the dma_map_sg() function
returns the number of the created entries in the DMA address space.
However the subsequent calls to the dma_sync_sg_for_{device,cpu}() and
dma_unmap_sg must be called with the original number of the entries
passed to the dma_map_sg().
struct sg_table is a common structure used for describing a non-contiguous
memory buffer, used commonly in the DRM and graphics subsystems. It
consists of a scatterlist with memory pages and DMA addresses (sgl entry),
as well as the number of scatterlist entries: CPU pages (orig_nents entry)
and DMA mapped pages (nents entry).
It turned out that it was a common mistake to misuse nents and orig_nents
entries, calling DMA-mapping functions with a wrong number of entries or
ignoring the number of mapped entries returned by the dma_map_sg()
function.
To avoid such issues, lets use a common dma-mapping wrappers operating
directly on the struct sg_table objects and use scatterlist page
iterators where possible. This, almost always, hides references to the
nents and orig_nents entries, making the code robust, easier to follow
and copy/paste safe.
Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com>
Reviewed-by: Steven Price <steven.price@arm.com>
Reviewed-by: Rob Herring <robh@kernel.org>
|
|
Use common helper for converting a sg_table object into struct
page pointer array.
Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com>
Reviewed-by: Robin Murphy <robin.murphy@arm.com>
|
|
The Documentation/DMA-API-HOWTO.txt states that the dma_map_sg() function
returns the number of the created entries in the DMA address space.
However the subsequent calls to the dma_sync_sg_for_{device,cpu}() and
dma_unmap_sg must be called with the original number of the entries
passed to the dma_map_sg().
struct sg_table is a common structure used for describing a non-contiguous
memory buffer, used commonly in the DRM and graphics subsystems. It
consists of a scatterlist with memory pages and DMA addresses (sgl entry),
as well as the number of scatterlist entries: CPU pages (orig_nents entry)
and DMA mapped pages (nents entry).
It turned out that it was a common mistake to misuse nents and orig_nents
entries, calling DMA-mapping functions with a wrong number of entries or
ignoring the number of mapped entries returned by the dma_map_sg()
function.
To avoid such issues, lets use a common dma-mapping wrappers operating
directly on the struct sg_table objects and use scatterlist page
iterators where possible. This, almost always, hides references to the
nents and orig_nents entries, making the code robust, easier to follow
and copy/paste safe.
Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com>
Acked-by: Rob Clark <robdclark@gmail.com>
|
|
Use common helper for converting a sg_table object into struct
page pointer array.
Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com>
Reviewed-by: Robin Murphy <robin.murphy@arm.com>
Acked-by: Chun-Kuang Hu <chunkuang.hu@kernel.org>
|
|
Use common helper for checking the contiguity of the imported dma-buf and
do this check before allocating resources, so the error path is simpler.
Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com>
Reviewed-by: Robin Murphy <robin.murphy@arm.com>
Acked-by: Chun-Kuang Hu <chunkuang.hu@kernel.org>
|
|
The Documentation/DMA-API-HOWTO.txt states that the dma_map_sg() function
returns the number of the created entries in the DMA address space.
However the subsequent calls to the dma_sync_sg_for_{device,cpu}() and
dma_unmap_sg must be called with the original number of the entries
passed to the dma_map_sg().
struct sg_table is a common structure used for describing a non-contiguous
memory buffer, used commonly in the DRM and graphics subsystems. It
consists of a scatterlist with memory pages and DMA addresses (sgl entry),
as well as the number of scatterlist entries: CPU pages (orig_nents entry)
and DMA mapped pages (nents entry).
It turned out that it was a common mistake to misuse nents and orig_nents
entries, calling DMA-mapping functions with a wrong number of entries or
ignoring the number of mapped entries returned by the dma_map_sg()
function.
To avoid such issues, lets use a common dma-mapping wrappers operating
directly on the struct sg_table objects and use scatterlist page
iterators where possible. This, almost always, hides references to the
nents and orig_nents entries, making the code robust, easier to follow
and copy/paste safe.
Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com>
Reviewed-by: Qiang Yu <yuq825@gmail.com>
|
|
The Documentation/DMA-API-HOWTO.txt states that the dma_map_sg() function
returns the number of the created entries in the DMA address space.
However the subsequent calls to the dma_sync_sg_for_{device,cpu}() and
dma_unmap_sg must be called with the original number of the entries
passed to the dma_map_sg().
struct sg_table is a common structure used for describing a non-contiguous
memory buffer, used commonly in the DRM and graphics subsystems. It
consists of a scatterlist with memory pages and DMA addresses (sgl entry),
as well as the number of scatterlist entries: CPU pages (orig_nents entry)
and DMA mapped pages (nents entry).
It turned out that it was a common mistake to misuse nents and orig_nents
entries, calling DMA-mapping functions with a wrong number of entries or
ignoring the number of mapped entries returned by the dma_map_sg()
function.
This driver creatively uses sg_table->orig_nents to store the size of the
allocated scatterlist and ignores the number of the entries returned by
dma_map_sg function. The sg_table->orig_nents is (mis)used to properly
free the (over)allocated scatterlist.
This patch only introduces the common DMA-mapping wrappers operating
directly on the struct sg_table objects to the dmabuf related functions,
so the other drivers, which might share buffers with i915 could rely on
the properly set nents and orig_nents values.
Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com>
Reviewed-by: Robin Murphy <robin.murphy@arm.com>
Reviewed-by: Michael J. Ruhl <michael.j.ruhl@intel.com>
|
|
The Documentation/DMA-API-HOWTO.txt states that the dma_map_sg() function
returns the number of the created entries in the DMA address space.
However the subsequent calls to the dma_sync_sg_for_{device,cpu}() and
dma_unmap_sg must be called with the original number of the entries
passed to the dma_map_sg().
struct sg_table is a common structure used for describing a non-contiguous
memory buffer, used commonly in the DRM and graphics subsystems. It
consists of a scatterlist with memory pages and DMA addresses (sgl entry),
as well as the number of scatterlist entries: CPU pages (orig_nents entry)
and DMA mapped pages (nents entry).
It turned out that it was a common mistake to misuse nents and orig_nents
entries, calling DMA-mapping functions with a wrong number of entries or
ignoring the number of mapped entries returned by the dma_map_sg()
function.
To avoid such issues, lets use a common dma-mapping wrappers operating
directly on the struct sg_table objects and use scatterlist page
iterators where possible. This, almost always, hides references to the
nents and orig_nents entries, making the code robust, easier to follow
and copy/paste safe.
Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com>
Reviewed-by: Andrzej Hajda <a.hajda@samsung.com>
Acked-by : Inki Dae <inki.dae@samsung.com>
|
|
Use common helper for checking the contiguity of the imported dma-buf.
Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com>
Reviewed-by: Andrzej Hajda <a.hajda@samsung.com>
Acked-by : Inki Dae <inki.dae@samsung.com>
|
|
The Documentation/DMA-API-HOWTO.txt states that the dma_map_sg() function
returns the number of the created entries in the DMA address space.
However the subsequent calls to the dma_sync_sg_for_{device,cpu}() and
dma_unmap_sg must be called with the original number of the entries
passed to the dma_map_sg().
struct sg_table is a common structure used for describing a non-contiguous
memory buffer, used commonly in the DRM and graphics subsystems. It
consists of a scatterlist with memory pages and DMA addresses (sgl entry),
as well as the number of scatterlist entries: CPU pages (orig_nents entry)
and DMA mapped pages (nents entry).
It turned out that it was a common mistake to misuse nents and orig_nents
entries, calling DMA-mapping functions with a wrong number of entries or
ignoring the number of mapped entries returned by the dma_map_sg()
function.
To avoid such issues, lets use a common dma-mapping wrappers operating
directly on the struct sg_table objects and use scatterlist page
iterators where possible. This, almost always, hides references to the
nents and orig_nents entries, making the code robust, easier to follow
and copy/paste safe.
Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com>
Reviewed-by: Robin Murphy <robin.murphy@arm.com>
Acked-by: Lucas Stach <l.stach@pengutronix.de>
|