aboutsummaryrefslogtreecommitdiffstats
path: root/tools/perf/scripts/python/export-to-postgresql.py (unfollow)
AgeCommit message (Collapse)AuthorFilesLines
2020-01-28sched/uclamp: Reject negative values in cpu_uclamp_write()Qais Yousef1-1/+1
The check to ensure that the new written value into cpu.uclamp.{min,max} is within range, [0:100], wasn't working because of the signed comparison 7301 if (req.percent > UCLAMP_PERCENT_SCALE) { 7302 req.ret = -ERANGE; 7303 return req; 7304 } # echo -1 > cpu.uclamp.min # cat cpu.uclamp.min 42949671.96 Cast req.percent into u64 to force the comparison to be unsigned and work as intended in capacity_from_percent(). # echo -1 > cpu.uclamp.min sh: write error: Numerical result out of range Fixes: 2480c093130f ("sched/uclamp: Extend CPU's cgroup controller") Signed-off-by: Qais Yousef <qais.yousef@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lkml.kernel.org/r/20200114210947.14083-1-qais.yousef@arm.com
2020-01-28sched/fair: Allow a small load imbalance between low utilisation SD_NUMA domainsMel Gorman1-12/+29
The CPU load balancer balances between different domains to spread load and strives to have equal balance everywhere. Communicating tasks can migrate so they are topologically close to each other but these decisions are independent. On a lightly loaded NUMA machine, two communicating tasks pulled together at wakeup time can be pushed apart by the load balancer. In isolation, the load balancer decision is fine but it ignores the tasks data locality and the wakeup/LB paths continually conflict. NUMA balancing is also a factor but it also simply conflicts with the load balancer. This patch allows a fixed degree of imbalance of two tasks to exist between NUMA domains regardless of utilisation levels. In many cases, this prevents communicating tasks being pulled apart. It was evaluated whether the imbalance should be scaled to the domain size. However, no additional benefit was measured across a range of workloads and machines and scaling adds the risk that lower domains have to be rebalanced. While this could change again in the future, such a change should specify the use case and benefit. The most obvious impact is on netperf TCP_STREAM -- two simple communicating tasks with some softirq offload depending on the transmission rate. 2-socket Haswell machine 48 core, HT enabled netperf-tcp -- mmtests config config-network-netperf-unbound baseline lbnuma-v3 Hmean 64 568.73 ( 0.00%) 577.56 * 1.55%* Hmean 128 1089.98 ( 0.00%) 1128.06 * 3.49%* Hmean 256 2061.72 ( 0.00%) 2104.39 * 2.07%* Hmean 1024 7254.27 ( 0.00%) 7557.52 * 4.18%* Hmean 2048 11729.20 ( 0.00%) 13350.67 * 13.82%* Hmean 3312 15309.08 ( 0.00%) 18058.95 * 17.96%* Hmean 4096 17338.75 ( 0.00%) 20483.66 * 18.14%* Hmean 8192 25047.12 ( 0.00%) 27806.84 * 11.02%* Hmean 16384 27359.55 ( 0.00%) 33071.88 * 20.88%* Stddev 64 2.16 ( 0.00%) 2.02 ( 6.53%) Stddev 128 2.31 ( 0.00%) 2.19 ( 5.05%) Stddev 256 11.88 ( 0.00%) 3.22 ( 72.88%) Stddev 1024 23.68 ( 0.00%) 7.24 ( 69.43%) Stddev 2048 79.46 ( 0.00%) 71.49 ( 10.03%) Stddev 3312 26.71 ( 0.00%) 57.80 (-116.41%) Stddev 4096 185.57 ( 0.00%) 96.15 ( 48.19%) Stddev 8192 245.80 ( 0.00%) 100.73 ( 59.02%) Stddev 16384 207.31 ( 0.00%) 141.65 ( 31.67%) In this case, there was a sizable improvement to performance and a general reduction in variance. However, this is not univeral. For most machines, the impact was roughly a 3% performance gain. Ops NUMA base-page range updates 19796.00 292.00 Ops NUMA PTE updates 19796.00 292.00 Ops NUMA PMD updates 0.00 0.00 Ops NUMA hint faults 16113.00 143.00 Ops NUMA hint local faults % 8407.00 142.00 Ops NUMA hint local percent 52.18 99.30 Ops NUMA pages migrated 4244.00 1.00 Without the patch, only 52.18% of sampled accesses are local. In an earlier changelog, 100% of sampled accesses are local and indeed on most machines, this was still the case. In this specific case, the local sampled rates was 99.3% but note the "base-page range updates" and "PTE updates". The activity with the patch is negligible as were the number of faults. The small number of pages migrated were related to shared libraries. A 2-socket Broadwell showed better results on average but are not presented for brevity as the performance was similar except it showed 100% of the sampled NUMA hints were local. The patch holds up for a 4-socket Haswell, an AMD EPYC and AMD Epyc 2 machine. For dbench, the impact depends on the filesystem used and the number of clients. On XFS, there is little difference as the clients typically communicate with workqueues which have a separate class of scheduler problem at the moment. For ext4, performance is generally better, particularly for small numbers of clients as NUMA balancing activity is negligible with the patch applied. A more interesting example is the Facebook schbench which uses a number of messaging threads to communicate with worker threads. In this configuration, one messaging thread is used per NUMA node and the number of worker threads is varied. The 50, 75, 90, 95, 99, 99.5 and 99.9 percentiles for response latency is then reported. Lat 50.00th-qrtle-1 44.00 ( 0.00%) 37.00 ( 15.91%) Lat 75.00th-qrtle-1 53.00 ( 0.00%) 41.00 ( 22.64%) Lat 90.00th-qrtle-1 57.00 ( 0.00%) 42.00 ( 26.32%) Lat 95.00th-qrtle-1 63.00 ( 0.00%) 43.00 ( 31.75%) Lat 99.00th-qrtle-1 76.00 ( 0.00%) 51.00 ( 32.89%) Lat 99.50th-qrtle-1 89.00 ( 0.00%) 52.00 ( 41.57%) Lat 99.90th-qrtle-1 98.00 ( 0.00%) 55.00 ( 43.88%) Lat 50.00th-qrtle-2 42.00 ( 0.00%) 42.00 ( 0.00%) Lat 75.00th-qrtle-2 48.00 ( 0.00%) 47.00 ( 2.08%) Lat 90.00th-qrtle-2 53.00 ( 0.00%) 52.00 ( 1.89%) Lat 95.00th-qrtle-2 55.00 ( 0.00%) 53.00 ( 3.64%) Lat 99.00th-qrtle-2 62.00 ( 0.00%) 60.00 ( 3.23%) Lat 99.50th-qrtle-2 63.00 ( 0.00%) 63.00 ( 0.00%) Lat 99.90th-qrtle-2 68.00 ( 0.00%) 66.00 ( 2.94% For higher worker threads, the differences become negligible but it's interesting to note the difference in wakeup latency at low utilisation and mpstat confirms that activity was almost all on one node until the number of worker threads increase. Hackbench generally showed neutral results across a range of machines. This is different to earlier versions of the patch which allowed imbalances for higher degrees of utilisation. perf bench pipe showed negligible differences in overall performance as the differences are very close to the noise. An earlier prototype of the patch showed major regressions for NAS C-class when running with only half of the available CPUs -- 20-30% performance hits were measured at the time. With this version of the patch, the impact is negligible with small gains/losses within the noise measured. This is because the number of threads far exceeds the small imbalance the aptch cares about. Similarly, there were report of regressions for the autonuma benchmark against earlier versions but again, normal load balancing now applies for that workload. In general, the patch simply seeks to avoid unnecessary cross-node migrations in the basic case where imbalances are very small. For low utilisation communicating workloads, this patch generally behaves better with less NUMA balancing activity. For high utilisation, there is no change in behaviour. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Valentin Schneider <valentin.schneider@arm.com> Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org> Reviewed-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Acked-by: Phil Auld <pauld@redhat.com> Tested-by: Phil Auld <pauld@redhat.com> Link: https://lkml.kernel.org/r/20200114101319.GO3466@techsingularity.net
2020-01-28timers/nohz: Update NOHZ load in remote tickPeter Zijlstra (Intel)3-11/+28
The way loadavg is tracked during nohz only pays attention to the load upon entering nohz. This can be particularly noticeable if full nohz is entered while non-idle, and then the cpu goes idle and stays that way for a long time. Use the remote tick to ensure that full nohz cpus report their deltas within a reasonable time. [ swood: Added changelog and removed recheck of stopped tick. ] Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Scott Wood <swood@redhat.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lkml.kernel.org/r/1578736419-14628-3-git-send-email-swood@redhat.com
2020-01-28sched/core: Don't skip remote tick for idle CPUsScott Wood1-8/+10
This will be used in the next patch to get a loadavg update from nohz cpus. The delta check is skipped because idle_sched_class doesn't update se.exec_start. Signed-off-by: Scott Wood <swood@redhat.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lkml.kernel.org/r/1578736419-14628-2-git-send-email-swood@redhat.com
2020-01-20sched/fair: Define sched_idle_cpu() only for SMP configurationsViresh Kumar1-0/+2
sched_idle_cpu() isn't used for non SMP configuration and with a recent change, we have started getting following warning: kernel/sched/fair.c:5221:12: warning: ‘sched_idle_cpu’ defined but not used [-Wunused-function] Fix that by defining sched_idle_cpu() only for SMP configurations. Fixes: 323af6deaf70 ("sched/fair: Load balance aggressively for SCHED_IDLE CPUs") Reported-by: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Vincent Guittot <vincent.guittot@linaro.org> Cc: Dietmar Eggemann <dietmar.eggemann@arm.com> Link: https://lore.kernel.org/r/f0554f590687478b33914a4aff9f0e6a62886d44.1579499907.git.viresh.kumar@linaro.org
2020-01-17sched/topology: Assert non-NUMA topology masks don't (partially) overlapValentin Schneider1-0/+39
topology.c::get_group() relies on the assumption that non-NUMA domains do not partially overlap. Zeng Tao pointed out in [1] that such topology descriptions, while completely bogus, can end up being exposed to the scheduler. In his example (8 CPUs, 2-node system), we end up with: MC span for CPU3 == 3-7 MC span for CPU4 == 4-7 The first pass through get_group(3, sdd@MC) will result in the following sched_group list: 3 -> 4 -> 5 -> 6 -> 7 ^ / `----------------' And a later pass through get_group(4, sdd@MC) will "corrupt" that to: 3 -> 4 -> 5 -> 6 -> 7 ^ / `-----------' which will completely break things like 'while (sg != sd->groups)' when using CPU3's base sched_domain. There already are some architecture-specific checks in place such as x86/kernel/smpboot.c::topology.sane(), but this is something we can detect in the core scheduler, so it seems worthwhile to do so. Warn and abort the construction of the sched domains if such a broken topology description is detected. Note that this is somewhat expensive (O(t.c²), 't' non-NUMA topology levels and 'c' CPUs) and could be gated under SCHED_DEBUG if deemed necessary. Testing ======= Dietmar managed to reproduce this using the following qemu incantation: $ qemu-system-aarch64 -kernel ./Image -hda ./qemu-image-aarch64.img \ -append 'root=/dev/vda console=ttyAMA0 loglevel=8 sched_debug' -smp \ cores=8 --nographic -m 512 -cpu cortex-a53 -machine virt -numa \ node,cpus=0-2,nodeid=0 -numa node,cpus=3-7,nodeid=1 alongside the following drivers/base/arch_topology.c hack (AIUI wouldn't be needed if '-smp cores=X, sockets=Y' would work with qemu): 8<--- @@ -465,6 +465,9 @@ void update_siblings_masks(unsigned int cpuid) if (cpuid_topo->package_id != cpu_topo->package_id) continue; + if ((cpu < 4 && cpuid > 3) || (cpu > 3 && cpuid < 4)) + continue; + cpumask_set_cpu(cpuid, &cpu_topo->core_sibling); cpumask_set_cpu(cpu, &cpuid_topo->core_sibling); 8<--- [1]: https://lkml.kernel.org/r/1577088979-8545-1-git-send-email-prime.zeng@hisilicon.com Reported-by: Zeng Tao <prime.zeng@hisilicon.com> Signed-off-by: Valentin Schneider <valentin.schneider@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20200115160915.22575-1-valentin.schneider@arm.com
2020-01-17idle: fix spelling mistake "iterrupts" -> "interrupts"Hewenliang1-1/+1
There is a spelling misake in comments of cpuidle_idle_call. Fix it. Signed-off-by: Hewenliang <hewenliang4@huawei.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Steven Rostedt (VMware) <rostedt@goodmis.org> Link: https://lkml.kernel.org/r/20200110025604.34373-1-hewenliang4@huawei.com
2020-01-17sched/fair: Remove redundant call to cpufreq_update_util()Vincent Guittot2-8/+7
With commit bef69dd87828 ("sched/cpufreq: Move the cfs_rq_util_change() call to cpufreq_update_util()") update_load_avg() has become the central point for calling cpufreq (not including the update of blocked load). This change helps to simplify further the number of calls to cpufreq_update_util() and to remove last redundant ones. With update_load_avg(), we are now sure that cpufreq_update_util() will be called after every task attachment to a cfs_rq and especially after propagating this event down to the util_avg of the root cfs_rq, which is the level that is used by cpufreq governors like schedutil to set the frequency of a CPU. The SCHED_CPUFREQ_MIGRATION flag forces an early call to cpufreq when the migration happens in a cgroup whereas util_avg of root cfs_rq is not yet updated and this call is duplicated with the one that happens immediately after when the migration event reaches the root cfs_rq. The dedicated flag SCHED_CPUFREQ_MIGRATION is now useless and can be removed. The interface of attach_entity_load_avg() can also be simplified accordingly. Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Link: https://lkml.kernel.org/r/1579083620-24943-1-git-send-email-vincent.guittot@linaro.org
2020-01-17sched/psi: create /proc/pressure and /proc/pressure/{io|memory|cpu} only when psi enabledWang Long1-4/+6
when CONFIG_PSI_DEFAULT_DISABLED set to N or the command line set psi=0, I think we should not create /proc/pressure and /proc/pressure/{io|memory|cpu}. In the future, user maybe determine whether the psi feature is enabled by checking the existence of the /proc/pressure dir or /proc/pressure/{io|memory|cpu} files. Signed-off-by: Wang Long <w@laoqinren.net> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Link: https://lkml.kernel.org/r/1576672698-32504-1-git-send-email-w@laoqinren.net
2020-01-17sched/fair: Fix sgc->{min,max}_capacity calculation for SD_OVERLAPPeng Liu1-22/+4
commit bf475ce0a3dd ("sched/fair: Add per-CPU min capacity to sched_group_capacity") introduced per-cpu min_capacity. commit e3d6d0cb66f2 ("sched/fair: Add sched_group per-CPU max capacity") introduced per-cpu max_capacity. In the SD_OVERLAP case, the local variable 'capacity' represents the sum of CPU capacity of all CPUs in the first sched group (sg) of the sched domain (sd). It is erroneously used to calculate sg's min and max CPU capacity. To fix this use capacity_of(cpu) instead of 'capacity'. The code which achieves this via cpu_rq(cpu)->sd->groups->sgc->capacity (for rq->sd != NULL) can be removed since it delivers the same value as capacity_of(cpu) which is currently only used for the (!rq->sd) case (see update_cpu_capacity()). An sg of the lowest sd (rq->sd or sd->child == NULL) represents a single CPU (and hence sg->sgc->capacity == capacity_of(cpu)). Signed-off-by: Peng Liu <iwtbavbm@gmail.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Valentin Schneider <valentin.schneider@arm.com> Link: https://lkml.kernel.org/r/20200104130828.GA7718@iZj6chx1xj0e0buvshuecpZ
2020-01-17sched/fair: calculate delta runnable load only when it's neededPeng Wang1-5/+6
Move the code of calculation for delta_sum/delta_avg to where it is really needed to be done. Signed-off-by: Peng Wang <rocking@linux.alibaba.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org> Link: https://lkml.kernel.org/r/20200103114400.17668-1-rocking@linux.alibaba.com
2020-01-17sched/cputime: move rq parameter in irqtime_account_process_tickAlex Shi1-9/+6
Every time we call irqtime_account_process_tick() is in a interrupt, Every caller will get and assign a parameter rq = this_rq(), This is unnecessary and increase the code size a little bit. Move the rq getting action to irqtime_account_process_tick internally is better. base with this patch cputime.o 578792 bytes 577888 bytes Signed-off-by: Alex Shi <alex.shi@linux.alibaba.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/1577959674-255537-1-git-send-email-alex.shi@linux.alibaba.com
2020-01-17stop_machine: Make stop_cpus() staticYangtao Li2-10/+1
The function stop_cpus() is only used internally by the stop_machine for stop multiple cpus. Make it static. Signed-off-by: Yangtao Li <tiny.windzz@gmail.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20191228161912.24082-1-tiny.windzz@gmail.com
2020-01-17sched/debug: Reset watchdog on all CPUs while processing sysrq-tWei Li1-2/+9
Lengthy output of sysrq-t may take a lot of time on slow serial console with lots of processes and CPUs. So we need to reset NMI-watchdog to avoid spurious lockup messages, and we also reset softlockup watchdogs on all other CPUs since another CPU might be blocked waiting for us to process an IPI or stop_machine. Add to sysrq_sched_debug_show() as what we did in show_state_filter(). Signed-off-by: Wei Li <liwei391@huawei.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Steven Rostedt (VMware) <rostedt@goodmis.org> Link: https://lkml.kernel.org/r/20191226085224.48942-1-liwei391@huawei.com
2020-01-17sched/core: Fix size of rq::uclamp initializationLi Guanglei1-1/+2
rq::uclamp is an array of struct uclamp_rq, make sure we clear the whole thing. Fixes: 69842cba9ace ("sched/uclamp: Add CPU's clamp buckets refcountinga") Signed-off-by: Li Guanglei <guanglei.li@unisoc.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Qais Yousef <qais.yousef@arm.com> Link: https://lkml.kernel.org/r/1577259844-12677-1-git-send-email-guangleix.li@gmail.com
2020-01-17sched/uclamp: Fix a bug in propagating uclamp value in new cgroupsQais Yousef1-0/+6
When a new cgroup is created, the effective uclamp value wasn't updated with a call to cpu_util_update_eff() that looks at the hierarchy and update to the most restrictive values. Fix it by ensuring to call cpu_util_update_eff() when a new cgroup becomes online. Without this change, the newly created cgroup uses the default root_task_group uclamp values, which is 1024 for both uclamp_{min, max}, which will cause the rq to to be clamped to max, hence cause the system to run at max frequency. The problem was observed on Ubuntu server and was reproduced on Debian and Buildroot rootfs. By default, Ubuntu and Debian create a cpu controller cgroup hierarchy and add all tasks to it - which creates enough noise to keep the rq uclamp value at max most of the time. Imitating this behavior makes the problem visible in Buildroot too which otherwise looks fine since it's a minimal userspace. Fixes: 0b60ba2dd342 ("sched/uclamp: Propagate parent clamps") Reported-by: Doug Smythies <dsmythies@telus.net> Signed-off-by: Qais Yousef <qais.yousef@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: Doug Smythies <dsmythies@telus.net> Link: https://lore.kernel.org/lkml/000701d5b965$361b6c60$a2524520$@net/
2020-01-17sched/fair: Load balance aggressively for SCHED_IDLE CPUsViresh Kumar1-11/+21
The fair scheduler performs periodic load balance on every CPU to check if it can pull some tasks from other busy CPUs. The duration of this periodic load balance is set to sd->balance_interval for the idle CPUs and is calculated by multiplying the sd->balance_interval with the sd->busy_factor (set to 32 by default) for the busy CPUs. The multiplication is done for busy CPUs to avoid doing load balance too often and rather spend more time executing actual task. While that is the right thing to do for the CPUs busy with SCHED_OTHER or SCHED_BATCH tasks, it may not be the optimal thing for CPUs running only SCHED_IDLE tasks. With the recent enhancements in the fair scheduler around SCHED_IDLE CPUs, we now prefer to enqueue a newly-woken task to a SCHED_IDLE CPU instead of other busy or idle CPUs. The same reasoning should be applied to the load balancer as well to make it migrate tasks more aggressively to a SCHED_IDLE CPU, as that will reduce the scheduling latency of the migrated (SCHED_OTHER) tasks. This patch makes minimal changes to the fair scheduler to do the next load balance soon after the last non SCHED_IDLE task is dequeued from a runqueue, i.e. making the CPU SCHED_IDLE. Also the sd->busy_factor is ignored while calculating the balance_interval for such CPUs. This is done to avoid delaying the periodic load balance by few hundred milliseconds for SCHED_IDLE CPUs. This is tested on ARM64 Hikey620 platform (octa-core) with the help of rt-app and it is verified, using kernel traces, that the newly SCHED_IDLE CPU does load balancing shortly after it becomes SCHED_IDLE and pulls tasks from other busy CPUs. Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org> Link: https://lkml.kernel.org/r/e485827eb8fe7db0943d6f3f6e0f5a4a70272781.1578471925.git.viresh.kumar@linaro.org
2020-01-17sched/fair : Improve update_sd_pick_busiest for spare capacity caseVincent Guittot1-5/+9
Similarly to calculate_imbalance() and find_busiest_group(), using the number of idle CPUs when there is only 1 CPU in the group is not efficient because we can't make a difference between a CPU running 1 task and a CPU running dozens of small tasks competing for the same CPU but not enough to overload it. More generally speaking, we should use the number of running tasks when there is the same number of idle CPUs in a group instead of blindly select the 1st one. When the groups have spare capacity and the same number of idle CPUs, we compare the number of running tasks to select the busiest group. Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/1576839893-26930-1-git-send-email-vincent.guittot@linaro.org
2020-01-17watchdog: Remove soft_lockup_hrtimer_cnt and related codeJisheng Zhang1-3/+0
After commit 9cf57731b63e ("watchdog/softlockup: Replace "watchdog/%u" threads with cpu_stop_work"), the percpu soft_lockup_hrtimer_cnt is not used any more, so remove it and related code. Signed-off-by: Jisheng Zhang <Jisheng.Zhang@synaptics.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20191218131720.4146aea2@xhacker.debian
2019-12-25sched/rt: Make RT capacity-awareQais Yousef3-18/+94
Capacity Awareness refers to the fact that on heterogeneous systems (like Arm big.LITTLE), the capacity of the CPUs is not uniform, hence when placing tasks we need to be aware of this difference of CPU capacities. In such scenarios we want to ensure that the selected CPU has enough capacity to meet the requirement of the running task. Enough capacity means here that capacity_orig_of(cpu) >= task.requirement. The definition of task.requirement is dependent on the scheduling class. For CFS, utilization is used to select a CPU that has >= capacity value than the cfs_task.util. capacity_orig_of(cpu) >= cfs_task.util DL isn't capacity aware at the moment but can make use of the bandwidth reservation to implement that in a similar manner CFS uses utilization. The following patchset implements that: https://lore.kernel.org/lkml/20190506044836.2914-1-luca.abeni@santannapisa.it/ capacity_orig_of(cpu)/SCHED_CAPACITY >= dl_deadline/dl_runtime For RT we don't have a per task utilization signal and we lack any information in general about what performance requirement the RT task needs. But with the introduction of uclamp, RT tasks can now control that by setting uclamp_min to guarantee a minimum performance point. ATM the uclamp value are only used for frequency selection; but on heterogeneous systems this is not enough and we need to ensure that the capacity of the CPU is >= uclamp_min. Which is what implemented here. capacity_orig_of(cpu) >= rt_task.uclamp_min Note that by default uclamp.min is 1024, which means that RT tasks will always be biased towards the big CPUs, which make for a better more predictable behavior for the default case. Must stress that the bias acts as a hint rather than a definite placement strategy. For example, if all big cores are busy executing other RT tasks we can't guarantee that a new RT task will be placed there. On non-heterogeneous systems the original behavior of RT should be retained. Similarly if uclamp is not selected in the config. [ mingo: Minor edits to comments. ] Signed-off-by: Qais Yousef <qais.yousef@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Reviewed-by: Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/20191009104611.15363-1-qais.yousef@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-12-25sched/fair: Make EAS wakeup placement consider uclamp restrictionsValentin Schneider1-2/+10
task_fits_capacity() has just been made uclamp-aware, and find_energy_efficient_cpu() needs to go through the same treatment. Things are somewhat different here however - using the task max clamp isn't sufficient. Consider the following setup: The target runqueue, rq: rq.cpu_capacity_orig = 512 rq.cfs.avg.util_avg = 200 rq.uclamp.max = 768 // the max p.uclamp.max of all enqueued p's is 768 The waking task, p (not yet enqueued on rq): p.util_est = 600 p.uclamp.max = 100 Now, consider the following code which doesn't use the rq clamps: util = uclamp_task_util(p); // Does the task fit in the spare CPU capacity? cpu = cpu_of(rq); fits_capacity(util, cpu_capacity(cpu) - cpu_util(cpu)) This would lead to: util = 100; fits_capacity(100, 512 - 200) fits_capacity() would return true. However, enqueuing p on that CPU *will* cause it to become overutilized since rq clamp values are max-aggregated, so we'd remain with rq.uclamp.max = 768 which comes from the other tasks already enqueued on rq. Thus, we could select a high enough frequency to reach beyond 0.8 * 512 utilization (== overutilized) after enqueuing p on rq. What find_energy_efficient_cpu() needs here is uclamp_rq_util_with() which lets us peek at the future utilization landscape, including rq-wide uclamp values. Make find_energy_efficient_cpu() use uclamp_rq_util_with() for its fits_capacity() check. This is in line with what compute_energy() ends up using for estimating utilization. Tested-By: Dietmar Eggemann <dietmar.eggemann@arm.com> Suggested-by: Quentin Perret <qperret@google.com> Signed-off-by: Valentin Schneider <valentin.schneider@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org> Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/20191211113851.24241-6-valentin.schneider@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-12-25sched/fair: Make task_fits_capacity() consider uclamp restrictionsValentin Schneider1-1/+15
task_fits_capacity() drives CPU selection at wakeup time, and is also used to detect misfit tasks. Right now it does so by comparing task_util_est() with a CPU's capacity, but doesn't take into account uclamp restrictions. There's a few interesting uses that can come out of doing this. For instance, a low uclamp.max value could prevent certain tasks from being flagged as misfit tasks, so they could merrily remain on low-capacity CPUs. Similarly, a high uclamp.min value would steer tasks towards high capacity CPUs at wakeup (and, should that fail, later steered via misfit balancing), so such "boosted" tasks would favor CPUs of higher capacity. Introduce uclamp_task_util() and make task_fits_capacity() use it. Tested-By: Dietmar Eggemann <dietmar.eggemann@arm.com> Signed-off-by: Valentin Schneider <valentin.schneider@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Quentin Perret <qperret@google.com> Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org> Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/20191211113851.24241-5-valentin.schneider@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-12-25sched/uclamp: Rename uclamp_util_with() into uclamp_rq_util_with()Valentin Schneider2-5/+6
The current helper returns (CPU) rq utilization with uclamp restrictions taken into account. A uclamp task utilization helper would be quite helpful, but this requires some renaming. Prepare the code for the introduction of a uclamp_task_util() by renaming the existing uclamp_util_with() to uclamp_rq_util_with(). Tested-By: Dietmar Eggemann <dietmar.eggemann@arm.com> Signed-off-by: Valentin Schneider <valentin.schneider@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Quentin Perret <qperret@google.com> Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org> Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/20191211113851.24241-4-valentin.schneider@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-12-25sched/uclamp: Make uclamp util helpers use and return UL valuesValentin Schneider2-10/+10
Vincent pointed out recently that the canonical type for utilization values is 'unsigned long'. Internally uclamp uses 'unsigned int' values for cache optimization, but this doesn't have to be exported to its users. Make the uclamp helpers that deal with utilization use and return unsigned long values. Tested-By: Dietmar Eggemann <dietmar.eggemann@arm.com> Signed-off-by: Valentin Schneider <valentin.schneider@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Quentin Perret <qperret@google.com> Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org> Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/20191211113851.24241-3-valentin.schneider@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-12-25sched/uclamp: Remove uclamp_util()Valentin Schneider1-9/+0
The sole user of uclamp_util(), schedutil_cpu_util(), was made to use uclamp_util_with() instead in commit: af24bde8df20 ("sched/uclamp: Add uclamp support to energy_compute()") From then on, uclamp_util() has remained unused. Being a simple wrapper around uclamp_util_with(), we can get rid of it and win back a few lines. Tested-By: Dietmar Eggemann <dietmar.eggemann@arm.com> Suggested-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Signed-off-by: Valentin Schneider <valentin.schneider@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/20191211113851.24241-2-valentin.schneider@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-12-25sched/fair: Make sched-idle CPU selection consistent throughoutViresh Kumar1-22/+12
There are instances where we keep searching for an idle CPU despite already having a sched-idle CPU (in find_idlest_group_cpu(), select_idle_smt() and select_idle_cpu() and then there are places where we don't necessarily do that and return a sched-idle CPU as soon as we find one (in select_idle_sibling()). This looks a bit inconsistent and it may be worth having the same policy everywhere. On the other hand, choosing a sched-idle CPU over a idle one shall be beneficial from performance and power point of view as well, as we don't need to get the CPU online from a deep idle state which wastes quite a lot of time and energy and delays the scheduling of the newly woken up task. This patch tries to simplify code around sched-idle CPU selection and make it consistent throughout. Testing is done with the help of rt-app on hikey board (ARM64 octa-core, 2 clusters, 0-3 and 4-7). The cpufreq governor was set to performance to avoid any side affects from CPU frequency. Following are the tests performed: Test 1: 1-cfs-task: A single SCHED_NORMAL task is pinned to CPU5 which runs for 2333 us out of 7777 us (so gives time for the cluster to go in deep idle state). Test 2: 1-cfs-1-idle-task: A single SCHED_NORMAL task is pinned on CPU5 and single SCHED_IDLE task is pinned on CPU6 (to make sure cluster 1 doesn't go in deep idle state). Test 3: 1-cfs-8-idle-task: A single SCHED_NORMAL task is pinned on CPU5 and eight SCHED_IDLE tasks are created which run forever (not pinned anywhere, so they run on all CPUs). Checked with kernelshark that as soon as NORMAL task sleeps, the SCHED_IDLE task starts running on CPU5. And here are the results on mean latency (in us), using the "st" tool. $ st 1-cfs-task/rt-app-cfs_thread-0.log N min max sum mean stddev 642 90 592 197180 307.134 109.906 $ st 1-cfs-1-idle-task/rt-app-cfs_thread-0.log N min max sum mean stddev 642 67 311 113850 177.336 41.4251 $ st 1-cfs-8-idle-task/rt-app-cfs_thread-0.log N min max sum mean stddev 643 29 173 41364 64.3297 13.2344 The mean latency when we need to: - wakeup from deep idle state is 307 us. - wakeup from shallow idle state is 177 us. - preempt a SCHED_IDLE task is 64 us. Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/b90cbcce608cef4e02a7bbfe178335f76d201bab.1573728344.git.viresh.kumar@linaro.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-12-25sched/core: Remove unused variable from set_user_nice()Qian Cai1-2/+1
This commit left behind an unused variable: 5443a0be6121 ("sched: Use fair:prio_changed() instead of ad-hoc implementation") left behind an unused variable. kernel/sched/core.c: In function 'set_user_nice': kernel/sched/core.c:4507:16: warning: variable 'delta' set but not used int old_prio, delta; ^~~~~ Signed-off-by: Qian Cai <cai@lca.pw> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Fixes: 5443a0be6121 ("sched: Use fair:prio_changed() instead of ad-hoc implementation") Link: https://lkml.kernel.org/r/20191219140314.1252-1-cai@lca.pw Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-12-22Linux 5.5-rc3Linus Torvalds1-1/+1
2019-12-22pipe: fix empty pipe check in pipe_write()Jan Stancek1-1/+1
LTP pipeio_1 test is hanging with v5.5-rc2-385-gb8e382a185eb, with read side observing empty pipe and sleeping and write side running out of space and then sleeping as well. In this scenario there are 5 writers and 1 reader. Problem is that after pipe_write() reacquires pipe lock, it re-checks for empty pipe with potentially stale 'head' and doesn't wake up read side anymore. pipe->tail can advance beyond 'head', because there are multiple writers. Use pipe->head for empty pipe check after reacquiring lock to observe current state. Testing: With patch, LTP pipeio_1 ran successfully in loop for 1 hour. Without patch it hanged within a minute. Fixes: 1b6b26ae7053 ("pipe: fix and clarify pipe write wakeup logic") Reported-by: Rachel Sibley <rasibley@redhat.com> Signed-off-by: Jan Stancek <jstancek@redhat.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-12-22MAINTAINERS: remove Radim from KVM maintainersPaolo Bonzini1-2/+0
Radim's kernel.org email is bouncing, which I take as a signal that he is not really able to deal with KVM at this time. Make MAINTAINERS match the effective value of KVM's bus factor. Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-12-22MAINTAINERS: Orphan KVM for MIPSJames Hogan1-2/+2
I haven't been active for 18 months, and don't have the hardware set up to test KVM for MIPS, so mark it as orphaned and remove myself as maintainer. Hopefully somebody from MIPS can pick this up. Signed-off-by: James Hogan <jhogan@kernel.org> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: "Radim Krčmář" <rkrcmar@redhat.com> Cc: Paul Burton <paulburton@kernel.org> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: kvm@vger.kernel.org Cc: linux-mips@vger.kernel.org Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-12-21ext4: clarify impact of 'commit' mount optionJan Kara1-8/+11
The description of 'commit' mount option dates back to ext3 times. Update the description to match current meaning for ext4. Reported-by: Paul Richards <paul.richards@gmail.com> Signed-off-by: Jan Kara <jack@suse.cz> Link: https://lore.kernel.org/r/20191218111210.14161-1-jack@suse.cz Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2019-12-21ext4: fix unused-but-set-variable warning in ext4_add_entry()Yunfeng Ye1-1/+3
Warning is found when compile with "-Wunused-but-set-variable": fs/ext4/namei.c: In function ‘ext4_add_entry’: fs/ext4/namei.c:2167:23: warning: variable ‘sbi’ set but not used [-Wunused-but-set-variable] struct ext4_sb_info *sbi; ^~~ Fix this by moving the variable @sbi under CONFIG_UNICODE. Signed-off-by: Yunfeng Ye <yeyunfeng@huawei.com> Reviewed-by: Ritesh Harjani <riteshh@linux.ibm.com> Link: https://lore.kernel.org/r/cb5eb904-224a-9701-c38f-cb23514b1fff@huawei.com Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2019-12-21tracing: Fix endianness bug in histogram triggerSven Schnelle1-1/+20
At least on PA-RISC and s390 synthetic histogram triggers are failing selftests because trace_event_raw_event_synth() always writes a 64 bit values, but the reader expects a field->size sized value. On little endian machines this doesn't hurt, but on big endian this makes the reader always read zero values. Link: http://lore.kernel.org/linux-trace-devel/20191218074427.96184-4-svens@linux.ibm.com Cc: stable@vger.kernel.org Fixes: 4b147936fa509 ("tracing: Add support for 'synthetic' events") Acked-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Sven Schnelle <svens@linux.ibm.com> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2019-12-21samples/trace_printk: Wait for IRQ work to finishSven Schnelle1-0/+1
trace_printk schedules work via irq_work_queue(), but doesn't wait until it was processed. The kprobe_module.tc testcase does: :;: "Load module again, which means the event1 should be recorded";: modprobe trace-printk grep "event1:" trace so the grep which checks the trace file might run before the irq work was processed. Fix this by adding a irq_work_sync(). Link: http://lore.kernel.org/linux-trace-devel/20191218074427.96184-3-svens@linux.ibm.com Cc: stable@vger.kernel.org Fixes: af2a0750f3749 ("selftests/ftrace: Improve kprobe on module testcase to load/unload module") Signed-off-by: Sven Schnelle <svens@linux.ibm.com> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2019-12-21tracing: Fix lock inversion in trace_event_enable_tgid_record()Prateek Sood2-4/+12
Task T2 Task T3 trace_options_core_write() subsystem_open() mutex_lock(trace_types_lock) mutex_lock(event_mutex) set_tracer_flag() trace_event_enable_tgid_record() mutex_lock(trace_types_lock) mutex_lock(event_mutex) This gives a circular dependency deadlock between trace_types_lock and event_mutex. To fix this invert the usage of trace_types_lock and event_mutex in trace_options_core_write(). This keeps the sequence of lock usage consistent. Link: http://lkml.kernel.org/r/0101016eef175e38-8ca71caf-a4eb-480d-a1e6-6f0bbc015495-000000@us-west-2.amazonses.com Cc: stable@vger.kernel.org Fixes: d914ba37d7145 ("tracing: Add support for recording tgid of tasks") Signed-off-by: Prateek Sood <prsood@codeaurora.org> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2019-12-22kbuild: clarify the difference between obj-y and obj-m w.r.t. descendingMasahiro Yamada1-3/+13
Kbuild descends into a directory by either 'y' or 'm', but there is an important difference. Kbuild combines the built-in objects into built-in.a in each directory. The built-in.a in the directory visited by obj-y is merged into the built-in.a in the parent directory. This merge happens recursively when Kbuild is ascending back towards the top directory, then built-in objects are linked into vmlinux eventually. This works properly only when the Makefile specifying obj-y is reachable by the chain of obj-y. On the other hand, Kbuild does not take built-in.a from the directory visited by obj-m. This it, all the objects in that directory are supposed to be modular. If Kbuild descends into a directory by obj-m, but the Makefile in the sub-directory specifies obj-y, those objects are just left orphan. The current statement "Kbuild only uses this information to decide that it needs to visit the directory" is misleading. Clarify the difference. Reported-by: Johan Hovold <johan@kernel.org> Signed-off-by: Masahiro Yamada <masahiroy@kernel.org> Reviewed-by: Johan Hovold <johan@kernel.org>
2019-12-20sfc: Include XDP packet headroom in buffer step size.Charles McLachlan1-7/+7
Correct a mismatch between rx_page_buf_step and the actual step size used when filling buffer pages. This patch fixes the page overrun that occured when the MTU was set to anything bigger than 1692. Fixes: 3990a8fffbda ("sfc: allocate channels for XDP tx queues") Signed-off-by: Charles McLachlan <cmclachlan@solarflare.com> Signed-off-by: Edward Cree <ecree@solarflare.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-12-20sfc: fix channel allocation with brute forceEdward Cree2-22/+19
It was possible for channel allocation logic to get confused between what it had and what it wanted, and end up trying to use the same channel for both PTP and regular TX. This led to a kernel panic: BUG: unable to handle page fault for address: 0000000000047635 #PF: supervisor write access in kernel mode #PF: error_code(0x0002) - not-present page PGD 0 P4D 0 Oops: 0002 [#1] SMP PTI CPU: 0 PID: 0 Comm: swapper/0 Tainted: G W 5.4.0-rc3-ehc14+ #900 Hardware name: Dell Inc. PowerEdge R710/0M233H, BIOS 6.4.0 07/23/2013 RIP: 0010:native_queued_spin_lock_slowpath+0x188/0x1e0 Code: f3 90 48 8b 32 48 85 f6 74 f6 eb e8 c1 ee 12 83 e0 03 83 ee 01 48 c1 e0 05 48 63 f6 48 05 c0 98 02 00 48 03 04 f5 a0 c6 ed 81 <48> 89 10 8b 42 08 85 c0 75 09 f3 90 8b 42 08 85 c0 74 f7 48 8b 32 RSP: 0018:ffffc90000003d28 EFLAGS: 00010006 RAX: 0000000000047635 RBX: 0000000000000246 RCX: 0000000000040000 RDX: ffff888627a298c0 RSI: 0000000000003ffe RDI: ffff88861f6b8dd4 RBP: ffff8886225c6e00 R08: 0000000000040000 R09: 0000000000000000 R10: 0000000616f080c6 R11: 00000000000000c0 R12: ffff88861f6b8dd4 R13: ffffc90000003dc8 R14: ffff88861942bf00 R15: ffff8886150f2000 FS: 0000000000000000(0000) GS:ffff888627a00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000047635 CR3: 000000000200a000 CR4: 00000000000006f0 Call Trace: <IRQ> _raw_spin_lock_irqsave+0x22/0x30 skb_queue_tail+0x1b/0x50 sock_queue_err_skb+0x9d/0xf0 __skb_complete_tx_timestamp+0x9d/0xc0 efx_dequeue_buffer+0x126/0x180 [sfc] efx_xmit_done+0x73/0x1c0 [sfc] efx_ef10_ev_process+0x56a/0xfe0 [sfc] ? tick_sched_do_timer+0x60/0x60 ? timerqueue_add+0x5d/0x70 ? enqueue_hrtimer+0x39/0x90 efx_poll+0x111/0x380 [sfc] ? rcu_accelerate_cbs+0x50/0x160 net_rx_action+0x14a/0x400 __do_softirq+0xdd/0x2d0 irq_exit+0xa0/0xb0 do_IRQ+0x53/0xe0 common_interrupt+0xf/0xf </IRQ> In the long run we intend to rewrite the channel allocation code, but for 'net' fix this by allocating extra_channels, and giving them TX queues, even if we do not in fact need them (e.g. on NICs without MAC TX timestamping), and thereby using simpler logic to assign the channels once they're allocated. Fixes: 3990a8fffbda ("sfc: allocate channels for XDP tx queues") Signed-off-by: Edward Cree <ecree@solarflare.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-12-20net: dst: Force 4-byte alignment of dst_metricsGeert Uytterhoeven1-1/+1
When storing a pointer to a dst_metrics structure in dst_entry._metrics, two flags are added in the least significant bits of the pointer value. Hence this assumes all pointers to dst_metrics structures have at least 4-byte alignment. However, on m68k, the minimum alignment of 32-bit values is 2 bytes, not 4 bytes. Hence in some kernel builds, dst_default_metrics may be only 2-byte aligned, leading to obscure boot warnings like: WARNING: CPU: 0 PID: 7 at lib/refcount.c:28 refcount_warn_saturate+0x44/0x9a refcount_t: underflow; use-after-free. Modules linked in: CPU: 0 PID: 7 Comm: ksoftirqd/0 Tainted: G W 5.5.0-rc2-atari-01448-g114a1a1038af891d-dirty #261 Stack from 10835e6c: 10835e6c 0038134f 00023fa6 00394b0f 0000001c 00000009 00321560 00023fea 00394b0f 0000001c 001a70f8 00000009 00000000 10835eb4 00000001 00000000 04208040 0000000a 00394b4a 10835ed4 00043aa8 001a70f8 00394b0f 0000001c 00000009 00394b4a 0026aba8 003215a4 00000003 00000000 0026d5a8 00000001 003215a4 003a4361 003238d6 000001f0 00000000 003215a4 10aa3b00 00025e84 003ddb00 10834000 002416a8 10aa3b00 00000000 00000080 000aa038 0004854a Call Trace: [<00023fa6>] __warn+0xb2/0xb4 [<00023fea>] warn_slowpath_fmt+0x42/0x64 [<001a70f8>] refcount_warn_saturate+0x44/0x9a [<00043aa8>] printk+0x0/0x18 [<001a70f8>] refcount_warn_saturate+0x44/0x9a [<0026aba8>] refcount_sub_and_test.constprop.73+0x38/0x3e [<0026d5a8>] ipv4_dst_destroy+0x5e/0x7e [<00025e84>] __local_bh_enable_ip+0x0/0x8e [<002416a8>] dst_destroy+0x40/0xae Fix this by forcing 4-byte alignment of all dst_metrics structures. Fixes: e5fd387ad5b30ca3 ("ipv6: do not overwrite inetpeer metrics prematurely") Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-12-20selftests: pmtu: fix init mtu value in descriptionHangbin Liu1-3/+3
There is no a_r3, a_r4 in the testing topology. It should be b_r1, b_r2. Also b_r1 mtu is 1400 and b_r2 mtu is 1500. Fixes: e44e428f59e4 ("selftests: pmtu: add basic IPv4 and IPv6 PMTU tests") Signed-off-by: Hangbin Liu <liuhangbin@gmail.com> Acked-by: Stefano Brivio <sbrivio@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-12-20hv_netvsc: Fix unwanted rx_table resetHaiyang Zhang3-6/+11
In existing code, the receive indirection table, rx_table, is in struct rndis_device, which will be reset when changing MTU, ringparam, etc. User configured receive indirection table values will be lost. To fix this, move rx_table to struct net_device_context, and check netif_is_rxfh_configured(), so rx_table will be set to default only if no user configured value. Fixes: ff4a44199012 ("netvsc: allow get/set of RSS indirection table") Signed-off-by: Haiyang Zhang <haiyangz@microsoft.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-12-20net: phy: ensure that phy IDs are correctly typedRussell King2-5/+5
PHY IDs are 32-bit unsigned quantities. Ensure that they are always treated as such, and not passed around as "int"s. Fixes: 13d0ab6750b2 ("net: phy: check return code when requesting PHY driver module") Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-12-20mod_devicetable: fix PHY module formatRussell King1-2/+2
When a PHY is probed, if the top bit is set, we end up requesting a module with the string "mdio:-10101110000000100101000101010001" - the top bit is printed to a signed -1 value. This leads to the module not being loaded. Fix the module format string and the macro generating the values for it to ensure that we only print unsigned types and the top bit is always 0/1. We correctly end up with "mdio:10101110000000100101000101010001". Fixes: 8626d3b43280 ("phylib: Support phy module autoloading") Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-12-20qede: Disable hardware gro when xdp prog is installedManish Chopra1-2/+2
commit 18c602dee472 ("qede: Use NETIF_F_GRO_HW.") introduced a regression in driver that when xdp program is installed on qede device, device's aggregation feature (hardware GRO) is not getting disabled, which is unexpected with xdp. Fixes: 18c602dee472 ("qede: Use NETIF_F_GRO_HW.") Signed-off-by: Manish Chopra <manishc@marvell.com> Signed-off-by: Ariel Elior <aelior@marvell.com> Reviewed-by: Michael Chan <michael.chan@broadcom.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-12-20net: ena: fix issues in setting interrupt moderation params in ethtoolArthur Kiyanovski1-14/+10
Issue 1: -------- Reproduction steps: 1. sudo ethtool -C eth0 rx-usecs 128 2. sudo ethtool -C eth0 adaptive-rx on 3. sudo ethtool -C eth0 adaptive-rx off 4. ethtool -c eth0 expected output: rx-usecs 128 actual output: rx-usecs 0 Reason for issue: In stage 3, ethtool userspace calls first the ena_get_coalesce() handler to get the current value of all properties, and then the ena_set_coalesce() handler. When ena_get_coalesce() is called the adaptive interrupt moderation is still on. There is an if in the code that returns the rx_coalesce_usecs only if the adaptive interrupt moderation is off. And since it is still on, rx_coalesce_usecs is not set, meaning it stays 0. Solution to issue: Remove this if static interrupt moderation intervals have nothing to do with dynamic ones. Issue 2: -------- Reproduction steps: 1. sudo ethtool -C eth0 adaptive-rx on 2. sudo ethtool -C eth0 rx-usecs 128 3. ethtool -c eth0 expected output: rx-usecs 128 actual output: rx-usecs 0 Reason for issue: In stage 2, when ena_set_coalesce() is called, the handler tests if rx adaptive interrupt moderation is on, and if it is, it returns before getting to the part in the function that sets the rx non-adaptive interrupt moderation interval. Solution to issue: Remove the return from the function when rx adaptive interrupt moderation is on. Also cleaned up the fixed code in ena_set_coalesce by grouping together adaptive interrupt moderation toggling, and using && instead of nested ifs. Fixes: b3db86dc4b82 ("net: ena: reimplement set/get_coalesce()") Fixes: 0eda847953d8 ("net: ena: fix retrieval of nonadaptive interrupt moderation intervals") Fixes: 1738cd3ed342 ("net: ena: Add a driver for Amazon Elastic Network Adapters (ENA)") Signed-off-by: Arthur Kiyanovski <akiyano@amazon.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-12-20net: ena: fix default tx interrupt moderation intervalArthur Kiyanovski1-1/+1
Current default non-adaptive tx interrupt moderation interval is 196 us. This value is too high and might cause the tx queue to fill up. In this commit we set the default non-adaptive tx interrupt moderation interval to 64 us in order to: 1. Reduce the probability of the queue filling-up (when compared to the current default value of 196 us). 2. Reduce unnecessary tx interrupt overhead (which happens if we set the default tx interval to 0). We determined experimentally that 64 us is an optimal value that reduces interrupt rate by more than 20% without affecting performance. Fixes: 1738cd3ed342 ("net: ena: Add a driver for Amazon Elastic Network Adapters (ENA)") Signed-off-by: Arthur Kiyanovski <akiyano@amazon.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-12-20net/smc: unregister ib devices in reboot_eventKarsten Graul1-1/+1
In the reboot_event handler, unregister the ib devices and enable the IB layer to release the devices before the reboot. Fixes: a33a803cfe64 ("net/smc: guarantee removal of link groups in reboot") Signed-off-by: Karsten Graul <kgraul@linux.ibm.com> Reviewed-by: Ursula Braun <ubraun@linux.ibm.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-12-20net: stmmac: platform: Fix MDIO init for platforms without PHYPadmanabhan Rajanbabu1-1/+1
The current implementation of "stmmac_dt_phy" function initializes the MDIO platform bus data, even in the absence of PHY. This fix will skip MDIO initialization if there is no PHY present. Fixes: 7437127 ("net: stmmac: Convert to phylink and remove phylib logic") Acked-by: Jayati Sahu <jayati.sahu@samsung.com> Signed-off-by: Sriram Dash <sriram.dash@samsung.com> Signed-off-by: Padmanabhan Rajanbabu <p.rajanbabu@samsung.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-12-20llc2: Fix return statement of llc_stat_ev_rx_null_dsap_xid_c (and _test_c)Chan Shu Tak, Alex1-2/+2
When a frame with NULL DSAP is received, llc_station_rcv is called. In turn, llc_stat_ev_rx_null_dsap_xid_c is called to check if it is a NULL XID frame. The return statement of llc_stat_ev_rx_null_dsap_xid_c returns 1 when the incoming frame is not a NULL XID frame and 0 otherwise. Hence, a NULL XID response is returned unexpectedly, e.g. when the incoming frame is a NULL TEST command. To fix the error, simply remove the conditional operator. A similar error in llc_stat_ev_rx_null_dsap_test_c is also fixed. Signed-off-by: Chan Shu Tak, Alex <alexchan@task.com.hk> Signed-off-by: David S. Miller <davem@davemloft.net>