Age | Commit message (Collapse) | Author | Files | Lines |
|
From the department of "generic/482 keeps on giving", we bring you
another tail update race condition:
iclog:
S1 C1
+-----------------------+-----------------------+
S2 EOIC
Two checkpoints in a single iclog. One is complete, the other just
contains the start record and overruns into a new iclog.
Timeline:
Before S1: Cache flush, log tail = X
At S1: Metadata stable, write start record and checkpoint
At C1: Write commit record, set NEED_FUA
Single iclog checkpoint, so no need for NEED_FLUSH
Log tail still = X, so no need for NEED_FLUSH
After C1,
Before S2: Cache flush, log tail = X
At S2: Metadata stable, write start record and checkpoint
After S2: Log tail moves to X+1
At EOIC: End of iclog, more journal data to write
Releases iclog
Not a commit iclog, so no need for NEED_FLUSH
Writes log tail X+1 into iclog.
At this point, the iclog has tail X+1 and NEED_FUA set. There has
been no cache flush for the metadata between X and X+1, and the
iclog writes the new tail permanently to the log. THis is sufficient
to violate on disk metadata/journal ordering.
We have two options here. The first is to detect this case in some
manner and ensure that the partial checkpoint write sets NEED_FLUSH
when the iclog is already marked NEED_FUA and the log tail changes.
This seems somewhat fragile and quite complex to get right, and it
doesn't actually make it obvious what underlying problem it is
actually addressing from reading the code.
The second option seems much cleaner to me, because it is derived
directly from the requirements of the C1 commit record in the iclog.
That is, when we write this commit record to the iclog, we've
guaranteed that the metadata/data ordering is correct for tail
update purposes. Hence if we only write the log tail into the iclog
for the *first* commit record rather than the log tail at the last
release, we guarantee that the log tail does not move past where the
the first commit record in the log expects it to be.
IOWs, taking the first option means that replay of C1 becomes
dependent on future operations doing the right thing, not just the
C1 checkpoint itself doing the right thing. This makes log recovery
almost impossible to reason about because now we have to take into
account what might or might not have happened in the future when
looking at checkpoints in the log rather than just having to
reconstruct the past...
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
|
|
Because I cannot tell if the NEED_FLUSH flag is being set correctly
by the log force and CIL push machinery without it.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
|
|
From the department of "WTAF? How did we miss that!?"...
When we are recovering a buffer, the first thing we do is check the
buffer magic number and extract the LSN from the buffer. If the LSN
is older than the current LSN, we replay the modification to it. If
the metadata on disk is newer than the transaction in the log, we
skip it. This is a fundamental v5 filesystem metadata recovery
behaviour.
generic/482 failed with an attribute writeback failure during log
recovery. The write verifier caught the corruption before it got
written to disk, and the attr buffer dump looked like:
XFS (dm-3): Metadata corruption detected at xfs_attr3_leaf_verify+0x275/0x2e0, xfs_attr3_leaf block 0x19be8
XFS (dm-3): Unmount and run xfs_repair
XFS (dm-3): First 128 bytes of corrupted metadata buffer:
00000000: 00 00 00 00 00 00 00 00 3b ee 00 00 4d 2a 01 e1 ........;...M*..
00000010: 00 00 00 00 00 01 9b e8 00 00 00 01 00 00 05 38 ...............8
^^^^^^^^^^^^^^^^^^^^^^^
00000020: df 39 5e 51 58 ac 44 b6 8d c5 e7 10 44 09 bc 17 .9^QX.D.....D...
00000030: 00 00 00 00 00 02 00 83 00 03 00 cc 0f 24 01 00 .............$..
00000040: 00 68 0e bc 0f c8 00 10 00 00 00 00 00 00 00 00 .h..............
00000050: 00 00 3c 31 0f 24 01 00 00 00 3c 32 0f 88 01 00 ..<1.$....<2....
00000060: 00 00 3c 33 0f d8 01 00 00 00 00 00 00 00 00 00 ..<3............
00000070: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
.....
The highlighted bytes are the LSN that was replayed into the
buffer: 0x100000538. This is cycle 1, block 0x538. Prior to replay,
that block on disk looks like this:
$ sudo xfs_db -c "fsb 0x417d" -c "type attr3" -c p /dev/mapper/thin-vol
hdr.info.hdr.forw = 0
hdr.info.hdr.back = 0
hdr.info.hdr.magic = 0x3bee
hdr.info.crc = 0xb5af0bc6 (correct)
hdr.info.bno = 105448
hdr.info.lsn = 0x100000900
^^^^^^^^^^^
hdr.info.uuid = df395e51-58ac-44b6-8dc5-e7104409bc17
hdr.info.owner = 131203
hdr.count = 2
hdr.usedbytes = 120
hdr.firstused = 3796
hdr.holes = 1
hdr.freemap[0-2] = [base,size]
Note the LSN stamped into the buffer on disk: 1/0x900. The version
on disk is much newer than the log transaction that was being
replayed. That's a bug, and should -never- happen.
So I immediately went to look at xlog_recover_get_buf_lsn() to check
that we handled the LSN correctly. I was wondering if there was a
similar "two commits with the same start LSN skips the second
replay" problem with buffers. I didn't get that far, because I found
a much more basic, rudimentary bug: xlog_recover_get_buf_lsn()
doesn't recognise buffers with XFS_ATTR3_LEAF_MAGIC set in them!!!
IOWs, attr3 leaf buffers fall through the magic number checks
unrecognised, so trigger the "recover immediately" behaviour instead
of undergoing an LSN check. IOWs, we incorrectly replay ATTR3 leaf
buffers and that causes silent on disk corruption of inode attribute
forks and potentially other things....
Git history shows this is *another* zero day bug, this time
introduced in commit 50d5c8d8e938 ("xfs: check LSN ordering for v5
superblocks during recovery") which failed to handle the attr3 leaf
buffers in recovery. And we've failed to handle them ever since...
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
|
|
When we log an inode, we format the "log inode" core and set an LSN
in that inode core. We do that via xfs_inode_item_format_core(),
which calls:
xfs_inode_to_log_dinode(ip, dic, ip->i_itemp->ili_item.li_lsn);
to format the log inode. It writes the LSN from the inode item into
the log inode, and if recovery decides the inode item needs to be
replayed, it recovers the log inode LSN field and writes it into the
on disk inode LSN field.
Now this might seem like a reasonable thing to do, but it is wrong
on multiple levels. Firstly, if the item is not yet in the AIL,
item->li_lsn is zero. i.e. the first time the inode it is logged and
formatted, the LSN we write into the log inode will be zero. If we
only log it once, recovery will run and can write this zero LSN into
the inode.
This means that the next time the inode is logged and log recovery
runs, it will *always* replay changes to the inode regardless of
whether the inode is newer on disk than the version in the log and
that violates the entire purpose of recording the LSN in the inode
at writeback time (i.e. to stop it going backwards in time on disk
during recovery).
Secondly, if we commit the CIL to the journal so the inode item
moves to the AIL, and then relog the inode, the LSN that gets
stamped into the log inode will be the LSN of the inode's current
location in the AIL, not it's age on disk. And it's not the LSN that
will be associated with the current change. That means when log
recovery replays this inode item, the LSN that ends up on disk is
the LSN for the previous changes in the log, not the current
changes being replayed. IOWs, after recovery the LSN on disk is not
in sync with the LSN of the modifications that were replayed into
the inode. This, again, violates the recovery ordering semantics
that on-disk writeback LSNs provide.
Hence the inode LSN in the log dinode is -always- invalid.
Thirdly, recovery actually has the LSN of the log transaction it is
replaying right at hand - it uses it to determine if it should
replay the inode by comparing it to the on-disk inode's LSN. But it
doesn't use that LSN to stamp the LSN into the inode which will be
written back when the transaction is fully replayed. It uses the one
in the log dinode, which we know is always going to be incorrect.
Looking back at the change history, the inode logging was broken by
commit 93f958f9c41f ("xfs: cull unnecessary icdinode fields") way
back in 2016 by a stupid idiot who thought he knew how this code
worked. i.e. me. That commit replaced an in memory di_lsn field that
was updated only at inode writeback time from the inode item.li_lsn
value - and hence always contained the same LSN that appeared in the
on-disk inode - with a read of the inode item LSN at inode format
time. CLearly these are not the same thing.
Before 93f958f9c41f, the log recovery behaviour was irrelevant,
because the LSN in the log inode always matched the on-disk LSN at
the time the inode was logged, hence recovery of the transaction
would never make the on-disk LSN in the inode go backwards or get
out of sync.
A symptom of the problem is this, caught from a failure of
generic/482. Before log recovery, the inode has been allocated but
never used:
xfs_db> inode 393388
xfs_db> p
core.magic = 0x494e
core.mode = 0
....
v3.crc = 0x99126961 (correct)
v3.change_count = 0
v3.lsn = 0
v3.flags2 = 0
v3.cowextsize = 0
v3.crtime.sec = Thu Jan 1 10:00:00 1970
v3.crtime.nsec = 0
After log recovery:
xfs_db> p
core.magic = 0x494e
core.mode = 020444
....
v3.crc = 0x23e68f23 (correct)
v3.change_count = 2
v3.lsn = 0
v3.flags2 = 0
v3.cowextsize = 0
v3.crtime.sec = Thu Jul 22 17:03:03 2021
v3.crtime.nsec = 751000000
...
You can see that the LSN of the on-disk inode is 0, even though it
clearly has been written to disk. I point out this inode, because
the generic/482 failure occurred because several adjacent inodes in
this specific inode cluster were not replayed correctly and still
appeared to be zero on disk when all the other metadata (inobt,
finobt, directories, etc) indicated they should be allocated and
written back.
The fix for this is two-fold. The first is that we need to either
revert the LSN changes in 93f958f9c41f or stop logging the inode LSN
altogether. If we do the former, log recovery does not need to
change but we add 8 bytes of memory per inode to store what is
largely a write-only inode field. If we do the latter, log recovery
needs to stamp the on-disk inode in the same manner that inode
writeback does.
I prefer the latter, because we shouldn't really be trying to log
and replay changes to the on disk LSN as the on-disk value is the
canonical source of the on-disk version of the inode. It also
matches the way we recover buffer items - we create a buf_log_item
that carries the current recovery transaction LSN that gets stamped
into the buffer by the write verifier when it gets written back
when the transaction is fully recovered.
However, this might break log recovery on older kernels even more,
so I'm going to simply ignore the logged value in recovery and stamp
the on-disk inode with the LSN of the transaction being recovered
that will trigger writeback on transaction recovery completion. This
will ensure that the on-disk inode LSN always reflects the LSN of
the last change that was written to disk, regardless of whether it
comes from log recovery or runtime writeback.
Fixes: 93f958f9c41f ("xfs: cull unnecessary icdinode fields")
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
|
|
Before waiting on a iclog in xfs_log_force_lsn(), we don't check to
see if the iclog has already been completed and the contents on
stable storage. We check for completed iclogs in xfs_log_force(), so
we should do the same thing for xfs_log_force_lsn().
This fixed some random up-to-30s pauses seen in unmounting
filesystems in some tests. A log force ends up waiting on completed
iclog, and that doesn't then get flushed (and hence the log force
get completed) until the background log worker issues a log force
that flushes the iclog in question. Then the unmount unblocks and
continues.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
|
|
After fixing the tail_lsn vs cache flush race, generic/482 continued
to fail in a similar way where cache flushes were missing before
iclog FUA writes. Tracing of iclog state changes during the fsstress
workload portion of the test (via xlog_iclog* events) indicated that
iclog writes were coming from two sources - CIL pushes and log
forces (due to fsync/O_SYNC operations). All of the cases where a
recovery problem was triggered indicated that the log force was the
source of the iclog write that was not preceeded by a cache flush.
This was an oversight in the modifications made in commit
eef983ffeae7 ("xfs: journal IO cache flush reductions"). Log forces
for fsync imply a data device cache flush has been issued if an
iclog was flushed to disk and is indicated to the caller via the
log_flushed parameter so they can elide the device cache flush if
the journal issued one.
The change in eef983ffeae7 results in iclogs only issuing a cache
flush if XLOG_ICL_NEED_FLUSH is set on the iclog, but this was not
added to the iclogs that the log force code flushes to disk. Hence
log forces are no longer guaranteeing that a cache flush is issued,
hence opening up a potential on-disk ordering failure.
Log forces should also set XLOG_ICL_NEED_FUA as well to ensure that
the actual iclogs it forces to the journal are also on stable
storage before it returns to the caller.
This patch introduces the xlog_force_iclog() helper function to
encapsulate the process of taking a reference to an iclog, switching
its state if WANT_SYNC and flushing it to stable storage correctly.
Both xfs_log_force() and xfs_log_force_lsn() are converted to use
it, as is xlog_unmount_write() which has an elaborate method of
doing exactly the same "write this iclog to stable storage"
operation.
Further, if the log force code needs to wait on a iclog in the
WANT_SYNC state, it needs to ensure that iclog also results in a
cache flush being issued. This covers the case where the iclog
contains the commit record of the CIL flush that the log force
triggered, but it hasn't been written yet because there is still an
active reference to the iclog.
Note: this whole cache flush whack-a-mole patch is a result of log
forces still being iclog state centric rather than being CIL
sequence centric. Most of this nasty code will go away in future
when log forces are converted to wait on CIL sequence push
completion rather than iclog completion. With the CIL push algorithm
guaranteeing that the CIL checkpoint is fully on stable storage when
it completes, we no longer need to iterate iclogs and push them to
ensure a CIL sequence push has completed and so all this nasty iclog
iteration and flushing code will go away.
Fixes: eef983ffeae7 ("xfs: journal IO cache flush reductions")
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
|
|
We force iclogs in several places - we need them all to have the
same cache flush semantics, so start by factoring out the iclog
force into a common helper.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
|
|
There is a race between the new CIL async data device metadata IO
completion cache flush and the log tail in the iclog the flush
covers being updated. This can be seen by repeating generic/482 in a
loop and eventually log recovery fails with a failures such as this:
XFS (dm-3): Starting recovery (logdev: internal)
XFS (dm-3): bad inode magic/vsn daddr 228352 #0 (magic=0)
XFS (dm-3): Metadata corruption detected at xfs_inode_buf_verify+0x180/0x190, xfs_inode block 0x37c00 xfs_inode_buf_verify
XFS (dm-3): Unmount and run xfs_repair
XFS (dm-3): First 128 bytes of corrupted metadata buffer:
00000000: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00000010: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00000020: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00000030: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00000040: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00000050: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00000060: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00000070: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
XFS (dm-3): metadata I/O error in "xlog_recover_items_pass2+0x55/0xc0" at daddr 0x37c00 len 32 error 117
Analysis of the logwrite replay shows that there were no writes to
the data device between the FUA @ write 124 and the FUA at write @
125, but log recovery @ 125 failed. The difference was the one log
write @ 125 moved the tail of the log forwards from (1,8) to (1,32)
and so the inode create intent in (1,8) was not replayed and so the
inode cluster was zero on disk when replay of the first inode item
in (1,32) was attempted.
What this meant was that the journal write that occurred at @ 125
did not ensure that metadata completed before the iclog was written
was correctly on stable storage. The tail of the log moved forward,
so IO must have been completed between the two iclog writes. This
means that there is a race condition between the unconditional async
cache flush in the CIL push work and the tail LSN that is written to
the iclog. This happens like so:
CIL push work AIL push work
------------- -------------
Add to committing list
start async data dev cache flush
.....
<flush completes>
<all writes to old tail lsn are stable>
xlog_write
.... push inode create buffer
<start IO>
.....
xlog_write(commit record)
.... <IO completes>
log tail moves
xlog_assign_tail_lsn()
start_lsn == commit_lsn
<no iclog preflush!>
xlog_state_release_iclog
__xlog_state_release_iclog()
<writes *new* tail_lsn into iclog>
xlog_sync()
....
submit_bio()
<tail in log moves forward without flushing written metadata>
Essentially, this can only occur if the commit iclog is issued
without a cache flush. If the iclog bio is submitted with
REQ_PREFLUSH, then it will guarantee that all the completed IO is
one stable storage before the iclog bio with the new tail LSN in it
is written to the log.
IOWs, the tail lsn that is written to the iclog needs to be sampled
*before* we issue the cache flush that guarantees all IO up to that
LSN has been completed.
To fix this without giving up the performance advantage of the
flush/FUA optimisations (e.g. g/482 runtime halves with 5.14-rc1
compared to 5.13), we need to ensure that we always issue a cache
flush if the tail LSN changes between the initial async flush and
the commit record being written. THis requires sampling the tail_lsn
before we start the flush, and then passing the sampled tail LSN to
xlog_state_release_iclog() so it can determine if the the tail LSN
has changed while writing the checkpoint. If the tail LSN has
changed, then it needs to set the NEED_FLUSH flag on the iclog and
we'll issue another cache flush before writing the iclog.
Fixes: eef983ffeae7 ("xfs: journal IO cache flush reductions")
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
|
|
Fold __xlog_state_release_iclog into its only caller to prepare
make an upcoming fix easier.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
[hch: split from a larger patch]
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
|
|
The recent journal flush/FUA changes replaced the flushing of the
data device on every iclog write with an up-front async data device
cache flush. Unfortunately, the assumption of which this was based
on has been proven incorrect by the flush vs log tail update
ordering issue. As the fix for that issue uses the
XLOG_ICL_NEED_FLUSH flag to indicate that data device needs a cache
flush, we now need to (once again) ensure that an iclog write to
external logs that need a cache flush to be issued actually issue a
cache flush to the data device as well as the log device.
Fixes: eef983ffeae7 ("xfs: journal IO cache flush reductions")
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
|
|
We incorrectly flush the log device instead of the data device when
trying to ensure metadata is correctly on disk before writing the
unmount record.
Fixes: eef983ffeae7 ("xfs: journal IO cache flush reductions")
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
|
|
If we encounter a directory that has been configured to pass on an
extent size hint to a new realtime file and the hint isn't an integer
multiple of the rt extent size, we should flag the hint for
administrative review because that is a misconfiguration (that other
parts of the kernel will fix automatically).
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
|
|
During a realtime grow operation, we run a single transaction for each
rt bitmap block added to the filesystem. This means that each step has
to be careful to increase sb_rblocks appropriately.
Fix the integer overflow error in this calculation that can happen when
the extent size is very large. Found by running growfs to add a rt
volume to a filesystem formatted with a 1g rt extent size.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
|
|
Improve the checking at the start of a realtime grow operation so that
we avoid accidentally set a new extent size that is too large and avoid
adding an rt volume to a filesystem with rmap or reflink because we
don't support rt rmap or reflink yet.
While we're at it, separate the checks so that we're only testing one
aspect at a time.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
|
|
Commit 603f000b15f2 changed xfs_ioctl_setattr_check_extsize to reject an
attempt to set an EXTSZINHERIT extent size hint on a directory with
RTINHERIT set if the hint isn't a multiple of the realtime extent size.
However, I have recently discovered that it is possible to change the
realtime extent size when adding a rt device to a filesystem, which
means that the existence of directories with misaligned inherited hints
is not an accident.
As a result, it's possible that someone could have set a valid hint and
added an rt volume with a different rt extent size, which invalidates
the ondisk hints. After such a sequence, FSGETXATTR will report a
misaligned hint, which FSSETXATTR will trip over, causing confusion if
the user was doing the usual GET/SET sequence to change some other
attribute. Change xfs_fill_fsxattr to omit the hint if it isn't aligned
properly.
Fixes: 603f000b15f2 ("xfs: validate extsz hints against rt extent size when rtinherit is set")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
|
|
While auditing the realtime growfs code, I realized that the GROWFSRT
ioctl (and by extension xfs_growfs) has always allowed sysadmins to
change the realtime extent size when adding a realtime section to the
filesystem. Since we also have always allowed sysadmins to set
RTINHERIT and EXTSZINHERIT on directories even if there is no realtime
device, this invalidates the premise laid out in the comments added in
commit 603f000b15f2.
In other words, this is not a case of inadequate metadata validation.
This is a case of nearly forgotten (and apparently untested) but
supported functionality. Update the comments to reflect what we've
learned, and remove the log message about correcting the misalignment.
Fixes: 603f000b15f2 ("xfs: validate extsz hints against rt extent size when rtinherit is set")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
|
|
While running xfs/168, I noticed a second source of post-shrink
corruption errors causing shutdowns.
Let's say that directory B has a low inode number and is a child of
directory A, which has a high number. If B is empty but open, and
unlinked from A, B's dotdot link continues to point to A. If A is then
unlinked and the filesystem shrunk so that A is no longer a valid inode,
a subsequent AIL push of B will trip the inode verifiers because the
dotdot entry points outside of the filesystem.
To avoid this problem, reset B's dotdot entry to the root directory when
unlinking directories, since the root directory cannot be removed.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Gao Xiang <hsiangkao@linux.alibaba.com>
|
|
While running xfs/168, I noticed occasional write verifier shutdowns
involving inodes at the very end of the filesystem. Existing inode
btree validation code checks that all inode clusters are fully contained
within the filesystem.
However, due to inadequate checking in the fs shrink code, it's possible
that there could be a sparse inode cluster at the end of the filesystem
where the upper inodes of the cluster are marked as holes and the
corresponding blocks are free. In this case, the last blocks in the AG
are listed in the bnobt. This enables the shrink to proceed but results
in a filesystem that trips the inode verifiers. Fix this by disallowing
the shrink.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Gao Xiang <hsiangkao@linux.alibaba.com>
|
|
|
|
I know nothing about zone_device pages and !device_private pages; but if
try_to_migrate_one() will do nothing for them, then it's better that
try_to_migrate() filter them first, than trawl through all their vmas.
Signed-off-by: Hugh Dickins <hughd@google.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Alistair Popple <apopple@nvidia.com>
Link: https://lore.kernel.org/lkml/1241d356-8ec9-f47b-a5ec-9b2bf66d242@google.com/
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
In the unlikely race case that page_mlock_one() finds VM_LOCKED has been
cleared by the time it got page table lock, page_vma_mapped_walk_done()
must be called before returning, either explicitly, or by a final call
to page_vma_mapped_walk() - otherwise the page table remains locked.
Fixes: cd62734ca60d ("mm/rmap: split try_to_munlock from try_to_unmap")
Signed-off-by: Hugh Dickins <hughd@google.com>
Reviewed-by: Alistair Popple <apopple@nvidia.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Reported-by: kernel test robot <oliver.sang@intel.com>
Link: https://lore.kernel.org/lkml/20210711151446.GB4070@xsang-OptiPlex-9020/
Link: https://lore.kernel.org/lkml/f71f8523-cba7-3342-40a7-114abc5d1f51@google.com/
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The kernel recovers in due course from missing Mlocked pages: but there
was no point in calling page_mlock() (formerly known as
try_to_munlock()) on a THP, because nothing got done even when it was
found to be mapped in another VM_LOCKED vma.
It's true that we need to be careful: Mlocked accounting of pte-mapped
THPs is too difficult (so consistently avoided); but Mlocked accounting
of only-pmd-mapped THPs is supposed to work, even when multiple mappings
are mlocked and munlocked or munmapped. Refine the tests.
There is already a VM_BUG_ON_PAGE(PageDoubleMap) in page_mlock(), so
page_mlock_one() does not even have to worry about that complication.
(I said the kernel recovers: but would page reclaim be likely to split
THP before rediscovering that it's VM_LOCKED? I've not followed that up)
Fixes: 9a73f61bdb8a ("thp, mlock: do not mlock PTE-mapped file huge pages")
Signed-off-by: Hugh Dickins <hughd@google.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Link: https://lore.kernel.org/lkml/cfa154c-d595-406-eb7d-eb9df730f944@google.com/
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Parallel developments in mm/rmap.c have left behind some out-of-date
comments: try_to_migrate_one() also accepts TTU_SYNC (already commented
in try_to_migrate() itself), and try_to_migrate() returns nothing at
all.
TTU_SPLIT_FREEZE has just been deleted, so reword the comment about it
in mm/huge_memory.c; and TTU_IGNORE_ACCESS was removed in 5.11, so
delete the "recently referenced" comment from try_to_unmap_one() (once
upon a time the comment was near the removed codeblock, but they drifted
apart).
Signed-off-by: Hugh Dickins <hughd@google.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Alistair Popple <apopple@nvidia.com>
Link: https://lore.kernel.org/lkml/563ce5b2-7a44-5b4d-1dfd-59a0e65932a9@google.com/
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Commit dbbee9d5cd83 ("mm/page_alloc: convert per-cpu list protection to
local_lock") folded in a workaround patch for pahole that was unable to
deal with zero-sized percpu structures.
A superior workaround is achieved with commit a0b8200d06ad ("kbuild:
skip per-CPU BTF generation for pahole v1.18-v1.21").
This patch reverts the dummy field and the pahole version check.
Fixes: dbbee9d5cd83 ("mm/page_alloc: convert per-cpu list protection to local_lock")
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
arch/arm/mach-ixp4xx/include/mach/platform.h now gets included indirectly
and defines REG_OFFSET. Rename the register and bit definition to something
specific to the driver.
Fixes: 7fd70c65faac ("ARM: irqstat: Get rid of duplicated declaration")
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Alexandre Belloni <alexandre.belloni@bootlin.com>
Link: https://lore.kernel.org/r/20210710211431.1393589-1-alexandre.belloni@bootlin.com
|
|
commit 03623b4b041c ("rtc: pcf2127: add tamper detection support")
added support for timestamp interrupts. However they are not being
handled in the irq handler. If a timestamp interrupt occurs it
results in kernel disabling the interrupt and displaying the call
trace:
[ 121.145580] irq 78: nobody cared (try booting with the "irqpoll" option)
...
[ 121.238087] [<00000000c4d69393>] irq_default_primary_handler threaded [<000000000a90d25b>] pcf2127_rtc_irq [rtc_pcf2127]
[ 121.248971] Disabling IRQ #78
Handle timestamp interrupts in pcf2127_rtc_irq(). Save time stamp
before clearing TSF1 and TSF2 flags so that it can't be overwritten.
Set a flag to mark if the timestamp is valid and only report to sysfs
if the flag is set. To mimic the hardware behavior, don’t save
another timestamp until the first one has been read by the userspace.
However, if the alarm irq is not configured, keep the old way of
handling timestamp interrupt in the timestamp0 sysfs calls.
Signed-off-by: Mian Yousaf Kaukab <ykaukab@suse.de>
Reviewed-by: Bruno Thomsen <bruno.thomsen@gmail.com>
Tested-by: Bruno Thomsen <bruno.thomsen@gmail.com>
Signed-off-by: Alexandre Belloni <alexandre.belloni@bootlin.com>
Link: https://lore.kernel.org/r/20210629150643.31551-1-ykaukab@suse.de
|
|
The offset variable is checked by at91_rtc_readalarm(), but this check
is unnecessary because the previous check knew that the value of this
variable was not 0.
This removes that unnecessary offset variable checks.
Cc: Nicolas Ferre <nicolas.ferre@microchip.com>
Cc: Ludovic Desroches <ludovic.desroches@microchip.com>
Signed-off-by: Nobuhiro Iwamatsu <nobuhiro1.iwamatsu@toshiba.co.jp>
Acked-by: Nicolas Ferre <nicolas.ferre@microchip.com>
Signed-off-by: Alexandre Belloni <alexandre.belloni@bootlin.com>
Link: https://lore.kernel.org/r/20210708051340.341345-1-nobuhiro1.iwamatsu@toshiba.co.jp
|
|
s5m_check_peding_alarm_interrupt() in s5m_rtc_read_alarm() gets the return
value, but doesn't use it.
This modifies using the s5m_check_peding_alarm_interrupt()"s return value
as the s5m_rtc_read_alarm()'s return value.
Cc: Krzysztof Kozlowski <krzysztof.kozlowski@canonical.com>
Cc: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com>
Cc: linux-samsung-soc@vger.kernel.org
Signed-off-by: Nobuhiro Iwamatsu <nobuhiro1.iwamatsu@toshiba.co.jp>
Reviewed-by: Krzysztof Kozlowski <krzysztof.kozlowski@canonical.com>
Signed-off-by: Alexandre Belloni <alexandre.belloni@bootlin.com>
Link: https://lore.kernel.org/r/20210708051304.341278-1-nobuhiro1.iwamatsu@toshiba.co.jp
|
|
Use SPDX-License-Identifier instead of a verbose license text.
Signed-off-by: Nobuhiro Iwamatsu <nobuhiro1.iwamatsu@toshiba.co.jp>
Signed-off-by: Alexandre Belloni <alexandre.belloni@bootlin.com>
Link: https://lore.kernel.org/r/20210707075804.337458-11-nobuhiro1.iwamatsu@toshiba.co.jp
|
|
Use SPDX-License-Identifier instead of a verbose license text.
Signed-off-by: Nobuhiro Iwamatsu <nobuhiro1.iwamatsu@toshiba.co.jp>
Signed-off-by: Alexandre Belloni <alexandre.belloni@bootlin.com>
Link: https://lore.kernel.org/r/20210707075804.337458-9-nobuhiro1.iwamatsu@toshiba.co.jp
|
|
Use SPDX-License-Identifier instead of a verbose license text.
Signed-off-by: Nobuhiro Iwamatsu <nobuhiro1.iwamatsu@toshiba.co.jp>
Signed-off-by: Alexandre Belloni <alexandre.belloni@bootlin.com>
Link: https://lore.kernel.org/r/20210707075804.337458-8-nobuhiro1.iwamatsu@toshiba.co.jp
|
|
For C files, use the C99 format (//).
Signed-off-by: Nobuhiro Iwamatsu <nobuhiro1.iwamatsu@toshiba.co.jp>
Signed-off-by: Alexandre Belloni <alexandre.belloni@bootlin.com>
Link: https://lore.kernel.org/r/20210707075804.337458-7-nobuhiro1.iwamatsu@toshiba.co.jp
|
|
For C files, use the C99 format (//).
Cc: Orson Zhai <orsonzhai@gmail.com>
Cc: Baolin Wang <baolin.wang7@gmail.com>
Cc: Chunyan Zhang <zhang.lyra@gmail.com>
Signed-off-by: Nobuhiro Iwamatsu <nobuhiro1.iwamatsu@toshiba.co.jp>
Signed-off-by: Alexandre Belloni <alexandre.belloni@bootlin.com>
Link: https://lore.kernel.org/r/20210707075804.337458-6-nobuhiro1.iwamatsu@toshiba.co.jp
|
|
Use SPDX-License-Identifier instead of a verbose license text.
Signed-off-by: Nobuhiro Iwamatsu <nobuhiro1.iwamatsu@toshiba.co.jp>
Signed-off-by: Alexandre Belloni <alexandre.belloni@bootlin.com>
Link: https://lore.kernel.org/r/20210707075804.337458-5-nobuhiro1.iwamatsu@toshiba.co.jp
|
|
Use SPDX-License-Identifier instead of a verbose license text.
Signed-off-by: Nobuhiro Iwamatsu <nobuhiro1.iwamatsu@toshiba.co.jp>
Signed-off-by: Alexandre Belloni <alexandre.belloni@bootlin.com>
Link: https://lore.kernel.org/r/20210707075804.337458-4-nobuhiro1.iwamatsu@toshiba.co.jp
|
|
Use SPDX-License-Identifier instead of a verbose license text.
Signed-off-by: Nobuhiro Iwamatsu <nobuhiro1.iwamatsu@toshiba.co.jp>
Signed-off-by: Alexandre Belloni <alexandre.belloni@bootlin.com>
Link: https://lore.kernel.org/r/20210707075804.337458-3-nobuhiro1.iwamatsu@toshiba.co.jp
|
|
Use SPDX-License-Identifier instead of a verbose license text.
Signed-off-by: Nobuhiro Iwamatsu <nobuhiro1.iwamatsu@toshiba.co.jp>
Signed-off-by: Alexandre Belloni <alexandre.belloni@bootlin.com>
Link: https://lore.kernel.org/r/20210707075804.337458-2-nobuhiro1.iwamatsu@toshiba.co.jp
|
|
This reverts commit 65db04053efea3f3e412a7e0cc599962999c96b4.
Guenter reported that after 65db04053efe, the ppc:sam460ex qemu emulation
no longer boots from nvme:
nvme nvme0: Device not ready; aborting initialisation, CSTS=0x0
nvme nvme0: Removing after probe failure status: -19
Link: https://lore.kernel.org/r/20210709231529.GA3270116@roeck-us.net
Reported-by: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
|
|
After updating the datasheet URL, the PCF85063A datasheet revision
has changed.
Adjust it accordingly.
Reported-by: Nobuhiro Iwamatsu <iwamatsu@nigauri.org>
Signed-off-by: Fabio Estevam <festevam@gmail.com>
Signed-off-by: Alexandre Belloni <alexandre.belloni@bootlin.com>
Link: https://lore.kernel.org/r/20210624120953.2313378-1-festevam@gmail.com
|
|
Take maintainership of the binding as PAvel said he doesn't have the
hardware anymore.
Signed-off-by: Alexandre Belloni <alexandre.belloni@bootlin.com>
Acked-by: Pavel Machek <pavel@ucw.cz>
Link: https://lore.kernel.org/r/20210620224030.1115356-1-alexandre.belloni@bootlin.com
|
|
ASan reported a memory leak for items of the entlist returned from scandir().
In fact, scandir() returns a malloc'd array of malloc'd dirents.
This patch adds the missing (z)frees.
Fixes: da963834fe6975a1 ("perf test: Iterate over shell tests in alphabetical order")
Signed-off-by: Riccardo Mancini <rickyman7@gmail.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Fabian Hemmer <copy@copy.sh>
Cc: Ian Rogers <irogers@google.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Leo Yan <leo.yan@linaro.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Remi Bernon <rbernon@codeweavers.com>
Link: http://lore.kernel.org/lkml/20210709163454.672082-1-rickyman7@gmail.com
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
|
|
Add a test for the newly added perf_evlist__set_leader() function.
Committer testing:
$ cd tools/lib/perf/
$ sudo make tests
[sudo] password for acme:
running static:
- running tests/test-cpumap.c...OK
- running tests/test-threadmap.c...OK
- running tests/test-evlist.c...OK
- running tests/test-evsel.c...OK
running dynamic:
- running tests/test-cpumap.c...OK
- running tests/test-threadmap.c...OK
- running tests/test-evlist.c...OK
- running tests/test-evsel.c...OK
$
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Requested-by: Shunsuke Nakamura <nakamura.shun@fujitsu.com>
Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Ian Rogers <irogers@google.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Michael Petlan <mpetlan@redhat.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lore.kernel.org/lkml/20210706151704.73662-8-jolsa@kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
|
|
We shouldn't just panic, return a value that doesn't clash with what
perf_evsel__open() was already returning in case of error, i.e. errno
when sys_perf_event_open() fails.
Acked-by: Jiri Olsa <jolsa@kernel.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Ian Rogers <irogers@google.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Michael Petlan <mpetlan@redhat.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Shunsuke Nakamura <nakamura.shun@fujitsu.com>
Link: http://lore.kernel.org/lkml/YOiOA5zOtVH9IBbE@kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
|
|
To 2.33
Signed-off-by: Steve French <stfrench@microsoft.com>
|
|
The optional @ref parameter might contain an NULL node_name, so
prevent dereferencing it in cifs_compose_mount_options().
Addresses-Coverity: 1476408 ("Explicit null dereferenced")
Signed-off-by: Paulo Alcantara (SUSE) <pc@cjr.nz>
Signed-off-by: Steve French <stfrench@microsoft.com>
|
|
Add support to set group_fd in perf_evsel__open() and make it follow the
group setup.
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Requested-by: Shunsuke Nakamura <nakamura.shun@fujitsu.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Ian Rogers <irogers@google.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Michael Petlan <mpetlan@redhat.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lore.kernel.org/lkml/20210706151704.73662-7-jolsa@kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
|
|
Support for faster packet signing (using GMAC instead of CMAC) can
now be negotiated to some newer servers, including Windows.
See MS-SMB2 section 2.2.3.17.
This patch adds support for sending the new negotiate context
with the first of three supported signing algorithms (AES-CMAC)
and decoding the response. A followon patch will add support
for sending the other two (including AES-GMAC, which is fastest)
and changing the signing algorithm used based on what was
negotiated.
To allow the client to request GMAC signing set module parameter
"enable_negotiate_signing" to 1.
Reviewed-by: Ronnie Sahlberg <lsahlber@redhat.com>
Reviewed-by: Pavel Shilovsky <pshilovsky@samba.org>
Signed-off-by: Steve French <stfrench@microsoft.com>
|
|
Some different PMU types may have the same substring. For example, on
Icelake server we have PMU types "uncore_imc" and
"uncore_imc_free_running". Both PMU types have the substring
"uncore_imc". But the parser wrongly thinks they are the same PMU type.
We enable an imc event,
perf stat -e uncore_imc/event=0xe3/ -a -- sleep 1
Perf actually expands the event to:
uncore_imc_0/event=0xe3/
uncore_imc_1/event=0xe3/
uncore_imc_2/event=0xe3/
uncore_imc_3/event=0xe3/
uncore_imc_4/event=0xe3/
uncore_imc_5/event=0xe3/
uncore_imc_6/event=0xe3/
uncore_imc_7/event=0xe3/
uncore_imc_free_running_0/event=0xe3/
uncore_imc_free_running_1/event=0xe3/
uncore_imc_free_running_3/event=0xe3/
uncore_imc_free_running_4/event=0xe3/
That's because the "uncore_imc_free_running" matches the
pattern "uncore_imc*".
Now we check that the last characters of PMU name is '_<digit>'.
For example, for pattern "uncore_imc*", "uncore_imc_0" is parsed ok, but
"uncore_imc_free_running_0" fails.
Fixes: b2b9d3a3f0211c5d ("perf pmu: Support wildcards on pmu name in dynamic pmu events")
Signed-off-by: Jin Yao <yao.jin@linux.intel.com>
Reviewed-by: Kan Liang <kan.liang@linux.intel.com>
Acked-by: Jiri Olsa <jolsa@redhat.com>
Cc: Agustin Vega-Frias <agustinv@codeaurora.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lore.kernel.org/lkml/20210701064253.1175-1-yao.jin@linux.intel.com
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
|
|
Some symbols may not be resolved if a user only monitors one type of
PMU.
$ sudo perf record -e cpu_atom/branch-instructions/ ./big_small_workload
$ sudo perf report –stdio
# Overhead Command Shared Object Symbol
# ........ ......... ................. .....................
#
28.02% perf-exec [unknown] [.] 0x0000000000401cf6
11.32% perf-exec [unknown] [.] 0x0000000000401d04
10.90% perf-exec [unknown] [.] 0x0000000000401d11
10.61% perf-exec [unknown] [.] 0x0000000000401cfc
To parse symbols the metadata records, e.g., PERF_RECORD_COMM, which are
generated by the kernel, are required.
To decide whether to generate the metadata records, the kernel relies on
the event_filter_match() to filter the unrelated events.
On a hybrid system, event_filter_match() further checks the CPU mask of
the current enabled PMU. If an event is collected on the CPU which
doesn't have an enabled PMU, it's treated as an unrelated event.
The "big_small_workload" is created in a big core, but runs on a small
core. The metadata records are filtered, because the user only monitors
the PMU of the small core. The big core PMU is not enabled.
For a hybrid system, a dummy event is required to generate the complete
side-band events.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Acked-by: Namhyung Kim <namhyung@kernel.org>
Cc: Jin Yao <yao.jin@linux.intel.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Link: http://lore.kernel.org/lkml/1625760212-18441-1-git-send-email-kan.liang@intel.com
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
|
|
The Topdown Microarchitecture Analysis (TMA) Method is a structured
analysis methodology to identify critical performance bottlenecks in
out-of-order processors.
The Topdown metrics L1 event was added as default in 42641d6f4d15e6db
("perf stat: Add Topdown metrics events as default events")
From the Sapphire Rapids server and later platforms, the same dedicated
"metrics" register is extended to support both L1 and L2 events.
Add both L1 and L2 Topdown metrics events as default to enrich the
default measuring information if the new measurement register is
available.
On legacy systems there is no change to avoid extra multiplexing.
The topdown_level indicates the max metrics level for the top-down
statistics. Set it to 2 to display all L1 and L2 Topdown metrics events.
With the patch:
$ perf stat sleep 1
Performance counter stats for 'sleep 1':
0.59 msec task-clock # 0.001 CPUs utilized
1 context-switches # 1.687 K/sec
0 cpu-migrations # 0.000 /sec
76 page-faults # 128.198 K/sec
1,405,318 cycles # 2.371 GHz
1,471,136 instructions # 1.05 insn per cycle
310,132 branches # 523.136 M/sec
10,435 branch-misses # 3.36% of all branches
8,431,908 slots # 14.223 G/sec
1,554,116 topdown-retiring # 18.4% retiring
1,289,585 topdown-bad-spec # 15.2% bad speculation
2,810,636 topdown-fe-bound # 33.2% frontend bound
2,810,636 topdown-be-bound # 33.2% backend bound
231,464 topdown-heavy-ops # 2.7% heavy operations # 15.6% light operations
1,223,453 topdown-br-mispredict # 14.5% branch mispredict # 0.8% machine clears
1,884,779 topdown-fetch-lat # 22.3% fetch latency # 10.9% fetch bandwidth
1,454,917 topdown-mem-bound # 17.2% memory bound # 16.0% Core bound
1.001179699 seconds time elapsed
0.000000000 seconds user
0.001238000 seconds sys
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Acked-by: Namhyung Kim <namhyung@kernel.org>
Cc: Jin Yao <yao.jin@linux.intel.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Link: http://lore.kernel.org/lkml/1625760169-18396-1-git-send-email-kan.liang@intel.com
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
|