aboutsummaryrefslogtreecommitdiffstats
path: root/tools/perf/scripts/python/export-to-sqlite.py (unfollow)
AgeCommit message (Collapse)AuthorFilesLines
2020-04-21mm/shmem: fix build without THPHugh Dickins1-1/+1
Some optimizers don't notice that shmem_punch_compound() is always true (PageTransCompound() being false) without CONFIG_TRANSPARENT_HUGEPAGE==y. Use IS_ENABLED to help them to avoid the BUILD_BUG inside HPAGE_PMD_NR. Fixes: 71725ed10c40 ("mm: huge tmpfs: try to split_huge_page() when punching hole") Reported-by: Randy Dunlap <rdunlap@infradead.org> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Tested-by: Randy Dunlap <rdunlap@infradead.org> Acked-by: Randy Dunlap <rdunlap@infradead.org> Link: http://lkml.kernel.org/r/alpine.LSU.2.11.2004142339170.10035@eggly.anvils Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-21mm/ksm: fix NULL pointer dereference when KSM zero page is enabledMuchun Song1-2/+10
find_mergeable_vma() can return NULL. In this case, it leads to a crash when we access vm_mm(its offset is 0x40) later in write_protect_page. And this case did happen on our server. The following call trace is captured in kernel 4.19 with the following patch applied and KSM zero page enabled on our server. commit e86c59b1b12d ("mm/ksm: improve deduplication of zero pages with colouring") So add a vma check to fix it. BUG: unable to handle kernel NULL pointer dereference at 0000000000000040 Oops: 0000 [#1] SMP NOPTI CPU: 9 PID: 510 Comm: ksmd Kdump: loaded Tainted: G OE 4.19.36.bsk.9-amd64 #4.19.36.bsk.9 RIP: try_to_merge_one_page+0xc7/0x760 Code: 24 58 65 48 33 34 25 28 00 00 00 89 e8 0f 85 a3 06 00 00 48 83 c4 60 5b 5d 41 5c 41 5d 41 5e 41 5f c3 48 8b 46 08 a8 01 75 b8 <49> 8b 44 24 40 4c 8d 7c 24 20 b9 07 00 00 00 4c 89 e6 4c 89 ff 48 RSP: 0018:ffffadbdd9fffdb0 EFLAGS: 00010246 RAX: ffffda83ffd4be08 RBX: ffffda83ffd4be40 RCX: 0000002c6e800000 RDX: 0000000000000000 RSI: ffffda83ffd4be40 RDI: 0000000000000000 RBP: ffffa11939f02ec0 R08: 0000000094e1a447 R09: 00000000abe76577 R10: 0000000000000962 R11: 0000000000004e6a R12: 0000000000000000 R13: ffffda83b1e06380 R14: ffffa18f31f072c0 R15: ffffda83ffd4be40 FS: 0000000000000000(0000) GS:ffffa0da43b80000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000040 CR3: 0000002c77c0a003 CR4: 00000000007626e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 PKRU: 55555554 Call Trace: ksm_scan_thread+0x115e/0x1960 kthread+0xf5/0x130 ret_from_fork+0x1f/0x30 [songmuchun@bytedance.com: if the vma is out of date, just exit] Link: http://lkml.kernel.org/r/20200416025034.29780-1-songmuchun@bytedance.com [akpm@linux-foundation.org: add the conventional braces, replace /** with /*] Fixes: e86c59b1b12d ("mm/ksm: improve deduplication of zero pages with colouring") Co-developed-by: Xiongchun Duan <duanxiongchun@bytedance.com> Signed-off-by: Muchun Song <songmuchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: David Hildenbrand <david@redhat.com> Reviewed-by: Kirill Tkhai <ktkhai@virtuozzo.com> Cc: Hugh Dickins <hughd@google.com> Cc: Yang Shi <yang.shi@linux.alibaba.com> Cc: Claudio Imbrenda <imbrenda@linux.vnet.ibm.com> Cc: Markus Elfring <Markus.Elfring@web.de> Cc: <stable@vger.kernel.org> Link: http://lkml.kernel.org/r/20200416025034.29780-1-songmuchun@bytedance.com Link: http://lkml.kernel.org/r/20200414132905.83819-1-songmuchun@bytedance.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-21tools/build: tweak unused value workaroundGeorge Burgess IV1-1/+1
Clang has -Wself-assign enabled by default under -Wall, which always gets -Werror'ed on this file, causing sync-compare-and-swap to be disabled by default. The generally-accepted way to spell "this value is intentionally unused," is casting it to `void`. This is accepted by both GCC and Clang with -Wall enabled: https://godbolt.org/z/qqZ9r3 Signed-off-by: George Burgess IV <gbiv@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Nick Desaulniers <ndesaulniers@google.com> Link: http://lkml.kernel.org/r/20200414195638.156123-1-gbiv@google.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-21checkpatch: fix a typo in the regex for $allocFunctionsChristophe JAILLET1-1/+1
Here, we look for function such as 'netdev_alloc_skb_ip_align', so a '_' is missing in the regex. To make sure: grep -r --include=*.c skbip_a * | wc ==> 0 results grep -r --include=*.c skb_ip_a * | wc ==> 112 results Signed-off-by: Christophe JAILLET <christophe.jaillet@wanadoo.fr> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Joe Perches <joe@perches.com> Link: http://lkml.kernel.org/r/20200407190029.892-1-christophe.jaillet@wanadoo.fr Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-21mm, gup: return EINTR when gup is interrupted by fatal signalsMichal Hocko1-1/+1
EINTR is the usual error code which other killable interfaces return. This is the case for the other fatal_signal_pending break out from the same function. Make the code consistent. ERESTARTSYS is also quite confusing because the signal is fatal and so no restart will happen before returning to the userspace. Signed-off-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Xu <peterx@redhat.com> Cc: Hillf Danton <hdanton@sina.com> Link: http://lkml.kernel.org/r/20200409071133.31734-1-mhocko@kernel.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-21mm/hugetlb: fix a addressing exception caused by huge_pte_offsetLongpeng1-6/+8
Our machine encountered a panic(addressing exception) after run for a long time and the calltrace is: RIP: hugetlb_fault+0x307/0xbe0 RSP: 0018:ffff9567fc27f808 EFLAGS: 00010286 RAX: e800c03ff1258d48 RBX: ffffd3bb003b69c0 RCX: e800c03ff1258d48 RDX: 17ff3fc00eda72b7 RSI: 00003ffffffff000 RDI: e800c03ff1258d48 RBP: ffff9567fc27f8c8 R08: e800c03ff1258d48 R09: 0000000000000080 R10: ffffaba0704c22a8 R11: 0000000000000001 R12: ffff95c87b4b60d8 R13: 00005fff00000000 R14: 0000000000000000 R15: ffff9567face8074 FS: 00007fe2d9ffb700(0000) GS:ffff956900e40000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: ffffd3bb003b69c0 CR3: 000000be67374000 CR4: 00000000003627e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: follow_hugetlb_page+0x175/0x540 __get_user_pages+0x2a0/0x7e0 __get_user_pages_unlocked+0x15d/0x210 __gfn_to_pfn_memslot+0x3c5/0x460 [kvm] try_async_pf+0x6e/0x2a0 [kvm] tdp_page_fault+0x151/0x2d0 [kvm] ... kvm_arch_vcpu_ioctl_run+0x330/0x490 [kvm] kvm_vcpu_ioctl+0x309/0x6d0 [kvm] do_vfs_ioctl+0x3f0/0x540 SyS_ioctl+0xa1/0xc0 system_call_fastpath+0x22/0x27 For 1G hugepages, huge_pte_offset() wants to return NULL or pudp, but it may return a wrong 'pmdp' if there is a race. Please look at the following code snippet: ... pud = pud_offset(p4d, addr); if (sz != PUD_SIZE && pud_none(*pud)) return NULL; /* hugepage or swap? */ if (pud_huge(*pud) || !pud_present(*pud)) return (pte_t *)pud; pmd = pmd_offset(pud, addr); if (sz != PMD_SIZE && pmd_none(*pmd)) return NULL; /* hugepage or swap? */ if (pmd_huge(*pmd) || !pmd_present(*pmd)) return (pte_t *)pmd; ... The following sequence would trigger this bug: - CPU0: sz = PUD_SIZE and *pud = 0 , continue - CPU0: "pud_huge(*pud)" is false - CPU1: calling hugetlb_no_page and set *pud to xxxx8e7(PRESENT) - CPU0: "!pud_present(*pud)" is false, continue - CPU0: pmd = pmd_offset(pud, addr) and maybe return a wrong pmdp However, we want CPU0 to return NULL or pudp in this case. We must make sure there is exactly one dereference of pud and pmd. Signed-off-by: Longpeng <longpeng2@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Reviewed-by: Jason Gunthorpe <jgg@mellanox.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Sean Christopherson <sean.j.christopherson@intel.com> Cc: <stable@vger.kernel.org> Link: http://lkml.kernel.org/r/20200413010342.771-1-longpeng2@huawei.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-21MAINTAINERS: add an entry for kfifoBartosz Golaszewski1-0/+7
Kfifo has been written by Stefani Seibold and she's implicitly expected to Ack any changes to it. She's not however officially listed as kfifo maintainer which leads to delays in patch review. This patch proposes to add an explitic entry for kfifo to MAINTAINERS file. [akpm@linux-foundation.org: alphasort F: entries, per Joe] [akpm@linux-foundation.org: remove colon, per Bartosz] Link: http://lkml.kernel.org/r/20200124174533.21815-1-brgl@bgdev.pl Link: http://lkml.kernel.org/r/20200413104250.26683-1-brgl@bgdev.pl Signed-off-by: Bartosz Golaszewski <bgolaszewski@baylibre.com> Acked-by: Stefani Seibold <stefani@seibold.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Linus Walleij <linus.walleij@linaro.org> Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Cc: Joe Perches <joe@perches.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-21mm/userfaultfd: disable userfaultfd-wp on x86_32Peter Xu1-1/+1
Userfaultfd-wp is not yet working on 32bit hosts, but it's accidentally enabled previously. Disable it. Fixes: 5a281062af1d ("userfaultfd: wp: add WP pagetable tracking to x86") Reported-by: Naresh Kamboju <naresh.kamboju@linaro.org> Reported-by: kernel test robot <lkp@intel.com> Signed-off-by: Peter Xu <peterx@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Tested-by: Naresh Kamboju <naresh.kamboju@linaro.org> Reviewed-by: Andrea Arcangeli <aarcange@redhat.com> Cc: Hillf Danton <hdanton@sina.com> Link: http://lkml.kernel.org/r/20200413141608.109211-1-peterx@redhat.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-21slub: avoid redzone when choosing freepointer locationKees Cook1-2/+10
Marco Elver reported system crashes when booting with "slub_debug=Z". The freepointer location (s->offset) was not taking into account that the "inuse" size that includes the redzone area should not be used by the freelist pointer. Change the calculation to save the area of the object that an inline freepointer may be written into. Fixes: 3202fa62fb43 ("slub: relocate freelist pointer to middle of object") Reported-by: Marco Elver <elver@google.com> Signed-off-by: Kees Cook <keescook@chromium.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Tested-by: Marco Elver <elver@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Link: http://lkml.kernel.org/r/202004151054.BD695840@keescook Link: https://lore.kernel.org/linux-mm/20200415164726.GA234932@google.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-21sh: fix build error in mm/init.cMasahiro Yamada1-1/+1
The closing parenthesis is missing. Fixes: bfeb022f8fe4 ("mm/memory_hotplug: add pgprot_t to mhp_params") Signed-off-by: Masahiro Yamada <masahiroy@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Geert Uytterhoeven <geert+renesas@glider.be> Reviewed-by: Logan Gunthorpe <logang@deltatee.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Guenter Roeck <linux@roeck-us.net> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Cc: Rich Felker <dalias@libc.org> Link: http://lkml.kernel.org/r/20200413014743.16353-1-masahiroy@kernel.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-19Linux 5.7-rc2Linus Torvalds1-1/+1
2020-04-19mm: Fix MREMAP_DONTUNMAP accounting on VMA mergeBrian Geffon1-1/+12
When remapping a mapping where a portion of a VMA is remapped into another portion of the VMA it can cause the VMA to become split. During the copy_vma operation the VMA can actually be remerged if it's an anonymous VMA whose pages have not yet been faulted. This isn't normally a problem because at the end of the remap the original portion is unmapped causing it to become split again. However, MREMAP_DONTUNMAP leaves that original portion in place which means that the VMA which was split and then remerged is not actually split at the end of the mremap. This patch fixes a bug where we don't detect that the VMAs got remerged and we end up putting back VM_ACCOUNT on the next mapping which is completely unreleated. When that next mapping is unmapped it results in incorrectly unaccounting for the memory which was never accounted, and eventually we will underflow on the memory comittment. There is also another issue which is similar, we're currently accouting for the number of pages in the new_vma but that's wrong. We need to account for the length of the remap operation as that's all that is being added. If there was a mapping already at that location its comittment would have been adjusted as part of the munmap at the start of the mremap. A really simple repro can be seen in: https://gist.github.com/bgaff/e101ce99da7d9a8c60acc641d07f312c Fixes: e346b3813067 ("mm/mremap: add MREMAP_DONTUNMAP to mremap()") Reported-by: syzbot <syzkaller@googlegroups.com> Signed-off-by: Brian Geffon <bgeffon@google.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-18xattr.h: Replace zero-length array with flexible-array memberGustavo A. R. Silva1-1/+1
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
2020-04-18uapi: linux: fiemap.h: Replace zero-length array with flexible-array memberGustavo A. R. Silva1-1/+1
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
2020-04-18uapi: linux: dlm_device.h: Replace zero-length array with flexible-array memberGustavo A. R. Silva1-2/+2
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
2020-04-18tpm_eventlog.h: Replace zero-length array with flexible-array memberGustavo A. R. Silva1-3/+3
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
2020-04-18ti_wilink_st.h: Replace zero-length array with flexible-array memberGustavo A. R. Silva1-3/+3
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
2020-04-18swap.h: Replace zero-length array with flexible-array memberGustavo A. R. Silva1-1/+1
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
2020-04-18skbuff.h: Replace zero-length array with flexible-array memberGustavo A. R. Silva1-1/+1
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
2020-04-18sched: topology.h: Replace zero-length array with flexible-array memberGustavo A. R. Silva1-1/+1
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
2020-04-18rslib.h: Replace zero-length array with flexible-array memberGustavo A. R. Silva1-1/+1
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
2020-04-18rio.h: Replace zero-length array with flexible-array memberGustavo A. R. Silva1-2/+2
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
2020-04-18posix_acl.h: Replace zero-length array with flexible-array memberGustavo A. R. Silva1-1/+1
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
2020-04-18platform_data: wilco-ec.h: Replace zero-length array with flexible-array memberGustavo A. R. Silva1-1/+1
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
2020-04-18memcontrol.h: Replace zero-length array with flexible-array memberGustavo A. R. Silva1-2/+2
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
2020-04-18list_lru.h: Replace zero-length array with flexible-array memberGustavo A. R. Silva1-1/+1
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
2020-04-18lib: cpu_rmap: Replace zero-length array with flexible-array memberGustavo A. R. Silva1-1/+1
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
2020-04-18irq.h: Replace zero-length array with flexible-array memberGustavo A. R. Silva1-2/+2
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
2020-04-18ihex.h: Replace zero-length array with flexible-array memberGustavo A. R. Silva1-1/+1
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
2020-04-18igmp.h: Replace zero-length array with flexible-array memberGustavo A. R. Silva1-1/+1
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
2020-04-18genalloc.h: Replace zero-length array with flexible-array memberGustavo A. R. Silva1-1/+1
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
2020-04-18ethtool.h: Replace zero-length array with flexible-array memberGustavo A. R. Silva1-2/+2
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
2020-04-18energy_model.h: Replace zero-length array with flexible-array memberGustavo A. R. Silva1-1/+1
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
2020-04-18enclosure.h: Replace zero-length array with flexible-array memberGustavo A. R. Silva1-1/+1
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
2020-04-18dirent.h: Replace zero-length array with flexible-array memberGustavo A. R. Silva1-1/+1
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
2020-04-18digsig.h: Replace zero-length array with flexible-array memberGustavo A. R. Silva1-2/+2
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
2020-04-18can: dev: peak_canfd.h: Replace zero-length array with flexible-array memberGustavo A. R. Silva1-2/+2
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
2020-04-18blk_types: Replace zero-length array with flexible-array memberGustavo A. R. Silva1-1/+1
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
2020-04-18blk-mq: Replace zero-length array with flexible-array memberGustavo A. R. Silva1-1/+1
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
2020-04-18bio: Replace zero-length array with flexible-array memberGustavo A. R. Silva1-1/+1
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
2020-04-18hwmon: (jc42) Fix name to have no illegal charactersSascha Hauer1-1/+1
The jc42 driver passes I2C client's name as hwmon device name. In case of device tree probed devices this ends up being part of the compatible string, "jc-42.4-temp". This name contains hyphens and the hwmon core doesn't like this: jc42 2-0018: hwmon: 'jc-42.4-temp' is not a valid name attribute, please fix This changes the name to "jc42" which doesn't have any illegal characters. Signed-off-by: Sascha Hauer <s.hauer@pengutronix.de> Link: https://lore.kernel.org/r/20200417092853.31206-1-s.hauer@pengutronix.de Signed-off-by: Guenter Roeck <linux@roeck-us.net>
2020-04-18x86/split_lock: Add Tremont family CPU modelsTony Luck1-0/+3
Tremont CPUs support IA32_CORE_CAPABILITIES bits to indicate whether specific SKUs have support for split lock detection. Signed-off-by: Tony Luck <tony.luck@intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/20200416205754.21177-4-tony.luck@intel.com
2020-04-18x86/split_lock: Bits in IA32_CORE_CAPABILITIES are not architecturalTony Luck1-14/+31
The Intel Software Developers' Manual erroneously listed bit 5 of the IA32_CORE_CAPABILITIES register as an architectural feature. It is not. Features enumerated by IA32_CORE_CAPABILITIES are model specific and implementation details may vary in different cpu models. Thus it is only safe to trust features after checking the CPU model. Icelake client and server models are known to implement the split lock detect feature even though they don't enumerate IA32_CORE_CAPABILITIES [ tglx: Use switch() for readability and massage comments ] Fixes: 6650cdd9a8cc ("x86/split_lock: Enable split lock detection by kernel") Signed-off-by: Tony Luck <tony.luck@intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/20200416205754.21177-3-tony.luck@intel.com
2020-04-17x86/resctrl: Preserve CDP enable over CPU hotplugJames Morse3-0/+16
Resctrl assumes that all CPUs are online when the filesystem is mounted, and that CPUs remember their CDP-enabled state over CPU hotplug. This goes wrong when resctrl's CDP-enabled state changes while all the CPUs in a domain are offline. When a domain comes online, enable (or disable!) CDP to match resctrl's current setting. Fixes: 5ff193fbde20 ("x86/intel_rdt: Add basic resctrl filesystem support") Suggested-by: Reinette Chatre <reinette.chatre@intel.com> Signed-off-by: James Morse <james.morse@arm.com> Signed-off-by: Borislav Petkov <bp@suse.de> Cc: <stable@vger.kernel.org> Link: https://lkml.kernel.org/r/20200221162105.154163-1-james.morse@arm.com
2020-04-17kbuild: check libyaml installation for 'make dt_binding_check'Masahiro Yamada1-1/+1
If you run 'make dtbs_check' without installing the libyaml package, the error message "dtc needs libyaml ..." is shown. This should be checked also for 'make dt_binding_check' because dtc needs to validate *.example.dts extracted from *.yaml files. It is missing since commit 4f0e3a57d6eb ("kbuild: Add support for DT binding schema checks"), but this fix-up is applicable only after commit e10c4321dc1e ("kbuild: allow to run dt_binding_check and dtbs_check in a single command"). I gave the Fixes tag to the latter in case somebody is interested in back-porting this. Fixes: e10c4321dc1e ("kbuild: allow to run dt_binding_check and dtbs_check in a single command") Signed-off-by: Masahiro Yamada <masahiroy@kernel.org> Signed-off-by: Rob Herring <robh@kernel.org>
2020-04-17x86/resctrl: Fix invalid attempt at removing the default resource groupReinette Chatre1-1/+2
The default resource group ("rdtgroup_default") is associated with the root of the resctrl filesystem and should never be removed. New resource groups can be created as subdirectories of the resctrl filesystem and they can be removed from user space. There exists a safeguard in the directory removal code (rdtgroup_rmdir()) that ensures that only subdirectories can be removed by testing that the directory to be removed has to be a child of the root directory. A possible deadlock was recently fixed with 334b0f4e9b1b ("x86/resctrl: Fix a deadlock due to inaccurate reference"). This fix involved associating the private data of the "mon_groups" and "mon_data" directories to the resource group to which they belong instead of NULL as before. A consequence of this change was that the original safeguard code preventing removal of "mon_groups" and "mon_data" found in the root directory failed resulting in attempts to remove the default resource group that ends in a BUG: kernel BUG at mm/slub.c:3969! invalid opcode: 0000 [#1] SMP PTI Call Trace: rdtgroup_rmdir+0x16b/0x2c0 kernfs_iop_rmdir+0x5c/0x90 vfs_rmdir+0x7a/0x160 do_rmdir+0x17d/0x1e0 do_syscall_64+0x55/0x1d0 entry_SYSCALL_64_after_hwframe+0x44/0xa9 Fix this by improving the directory removal safeguard to ensure that subdirectories of the resctrl root directory can only be removed if they are a child of the resctrl filesystem's root _and_ not associated with the default resource group. Fixes: 334b0f4e9b1b ("x86/resctrl: Fix a deadlock due to inaccurate reference") Reported-by: Sai Praneeth Prakhya <sai.praneeth.prakhya@intel.com> Signed-off-by: Reinette Chatre <reinette.chatre@intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Tested-by: Sai Praneeth Prakhya <sai.praneeth.prakhya@intel.com> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/884cbe1773496b5dbec1b6bd11bb50cffa83603d.1584461853.git.reinette.chatre@intel.com
2020-04-17blk-wbt: Drop needless newlines from tracepoint format stringsTommi Rantala1-4/+4
Drop needless newlines from tracepoint format strings, they only add empty lines to perf tracing output. Signed-off-by: Tommi Rantala <tommi.t.rantala@nokia.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2020-04-17blk-wbt: Use tracepoint_string() for wbt_step tracepoint string literalsTommi Rantala1-2/+2
Use tracepoint_string() for string literals that are used in the wbt_step tracepoint, so that userspace tools can display the string content. Signed-off-by: Tommi Rantala <tommi.t.rantala@nokia.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2020-04-17s390/dasd: remove IOSCHED_DEADLINE from DASD KconfigStefan Haberland1-1/+0
CONFIG_IOSCHED_DEADLINE was removed with commit f382fb0bcef4 ("block: remove legacy IO schedulers") and setting of the scheduler was removed with commit a5fd8ddce2af ("s390/dasd: remove setting of scheduler from driver"). So get rid of the select. Reported-by: Krzysztof Kozlowski <krzk@kernel.org> Signed-off-by: Stefan Haberland <sth@linux.ibm.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2020-04-17of: unittest: kmemleak in duplicate property updateFrank Rowand2-10/+25
kmemleak reports several memory leaks from devicetree unittest. This is the fix for problem 5 of 5. When overlay 'overlay_bad_add_dup_prop' is applied, the apply code properly detects that a memory leak will occur if the overlay is removed since the duplicate property is located in a base devicetree node and reports via printk(): OF: overlay: WARNING: memory leak will occur if overlay removed, property: /testcase-data-2/substation@100/motor-1/rpm_avail OF: overlay: WARNING: memory leak will occur if overlay removed, property: /testcase-data-2/substation@100/motor-1/rpm_avail The overlay is removed when the apply code detects multiple changesets modifying the same property. This is reported via printk(): OF: overlay: ERROR: multiple fragments add, update, and/or delete property /testcase-data-2/substation@100/motor-1/rpm_avail As a result of this error, the overlay is removed resulting in the expected memory leak. Add another device node level to the overlay so that the duplicate property is located in a node added by the overlay, thus no memory leak will occur when the overlay is removed. Thus users of kmemleak will not have to debug this leak in the future. Fixes: 2fe0e8769df9 ("of: overlay: check prevents multiple fragments touching same property") Reported-by: Erhard F. <erhard_f@mailbox.org> Signed-off-by: Frank Rowand <frank.rowand@sony.com> Signed-off-by: Rob Herring <robh@kernel.org>