| Age | Commit message (Collapse) | Author | Files | Lines |
|
Clean up: The return code is used only for dprintk's that are
already redundant.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Steve Wise <swise@opengridcomputing.com>
Tested-by: Shirley Ma <shirley.ma@oracle.com>
Tested-by: Devesh Sharma <devesh.sharma@emulex.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
|
|
Minor optimization: grab rpcrdma_tk_lock_g and disable hard IRQs
just once after clearing the receive completion queue.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Steve Wise <swise@opengridcomputing.com>
Tested-by: Shirley Ma <shirley.ma@oracle.com>
Tested-by: Devesh Sharma <devesh.sharma@emulex.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
|
|
Currently rpcrdma_buffer_create() allocates struct rpcrdma_mw's as
a single contiguous area of memory. It amounts to quite a bit of
memory, and there's no requirement for these to be carved from a
single piece of contiguous memory.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Steve Wise <swise@opengridcomputing.com>
Tested-by: Shirley Ma <shirley.ma@oracle.com>
Tested-by: Devesh Sharma <devesh.sharma@emulex.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
|
|
Clean up: Name frmr_wr after the opcode of the Work Request,
consistent with the send and local invalidation paths.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Steve Wise <swise@opengridcomputing.com>
Tested-by: Shirley Ma <shirley.ma@oracle.com>
Tested-by: Devesh Sharma <devesh.sharma@emulex.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
|
|
Instead of relying on a completion to change the state of an FRMR
to FRMR_IS_INVALID, set it in advance. If an error occurs, a completion
will fire anyway and mark the FRMR FRMR_IS_STALE.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Steve Wise <swise@opengridcomputing.com>
Tested-by: Shirley Ma <shirley.ma@oracle.com>
Tested-by: Devesh Sharma <devesh.sharma@emulex.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
|
|
Instead of relying on a completion to change the state of an FRMR
to FRMR_IS_VALID, set it in advance. If an error occurs, a completion
will fire anyway and mark the FRMR FRMR_IS_STALE.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Steve Wise <swise@opengridcomputing.com>
Tested-by: Shirley Ma <shirley.ma@oracle.com>
Tested-by: Devesh Sharma <devesh.sharma@emulex.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
|
|
Any FRMR arriving in rpcrdma_register_frmr_external() is now
guaranteed to be either invalid, or to be targeted by a queued
LOCAL_INV that will invalidate it before the adapter processes
the FAST_REG_MR being built here.
The problem with current arrangement of chaining a LOCAL_INV to the
FAST_REG_MR is that if the transport is not connected, the LOCAL_INV
is flushed and the FAST_REG_MR is flushed. This leaves the FRMR
valid with the old rkey. But rpcrdma_register_frmr_external() has
already bumped the in-memory rkey.
Next time through rpcrdma_register_frmr_external(), a LOCAL_INV and
FAST_REG_MR is attempted again because the FRMR is still valid. But
the rkey no longer matches the hardware's rkey, and a memory
management operation error occurs.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Steve Wise <swise@opengridcomputing.com>
Tested-by: Shirley Ma <shirley.ma@oracle.com>
Tested-by: Devesh Sharma <devesh.sharma@emulex.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
|
|
When a LOCAL_INV Work Request is flushed, it leaves an FRMR in the
VALID state. This FRMR can be returned by rpcrdma_buffer_get(), and
must be knocked down in rpcrdma_register_frmr_external() before it
can be re-used.
Instead, capture these in rpcrdma_buffer_get(), and reset them.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Steve Wise <swise@opengridcomputing.com>
Tested-by: Shirley Ma <shirley.ma@oracle.com>
Tested-by: Devesh Sharma <devesh.sharma@emulex.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
|
|
FAST_REG_MR Work Requests update a Memory Region's rkey. Rkey's are
used to block unwanted access to the memory controlled by an MR. The
rkey is passed to the receiver (the NFS server, in our case), and is
also used by xprtrdma to invalidate the MR when the RPC is complete.
When a FAST_REG_MR Work Request is flushed after a transport
disconnect, xprtrdma cannot tell whether the WR actually hit the
adapter or not. So it is indeterminant at that point whether the
existing rkey is still valid.
After the transport connection is re-established, the next
FAST_REG_MR or LOCAL_INV Work Request against that MR can sometimes
fail because the rkey value does not match what xprtrdma expects.
The only reliable way to recover in this case is to deregister and
register the MR before it is used again. These operations can be
done only in a process context, so handle it in the transport
connect worker.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Steve Wise <swise@opengridcomputing.com>
Tested-by: Shirley Ma <shirley.ma@oracle.com>
Tested-by: Devesh Sharma <devesh.sharma@emulex.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
|
|
If the rb_mws list is exhausted, clean up and return NULL so that
call_allocate() will delay and try again.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Steve Wise <swise@opengridcomputing.com>
Tested-by: Shirley Ma <shirley.ma@oracle.com>
Tested-by: Devesh Sharma <devesh.sharma@emulex.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
|
|
During connection loss recovery, need to visit every MW in a
buffer pool. Any MW that is in use by an RPC will not be on the
rb_mws list.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Steve Wise <swise@opengridcomputing.com>
Tested-by: Shirley Ma <shirley.ma@oracle.com>
Tested-by: Devesh Sharma <devesh.sharma@emulex.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
|
|
If posting a FAST_REG_MR Work Reqeust fails, revert the rkey update
to avoid subsequent IB_WC_MW_BIND_ERR completions.
Suggested-by: Steve Wise <swise@opengridcomputing.com>
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
|
|
Clean ups:
- make it obvious that the rl_mw field is a pointer -- allocated
separately, not as part of struct rpcrdma_mr_seg
- promote "struct {} frmr;" to a named type
- promote the state enum to a named type
- name the MW state field the same way other fields in
rpcrdma_mw are named
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Steve Wise <swise@opengridcomputing.com>
Tested-by: Shirley Ma <shirley.ma@oracle.com>
Tested-by: Devesh Sharma <devesh.sharma@emulex.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
|
|
If FRMR registration fails, it's likely to transition the QP to the
error state. Or, registration may have failed because the QP is
_already_ in ERROR.
Thus calling rpcrdma_deregister_external() in
rpcrdma_create_chunks() is useless in FRMR mode: the LOCAL_INVs just
get flushed.
It is safe to leave existing registrations: when FRMR registration
is tried again, rpcrdma_register_frmr_external() checks if each FRMR
is already/still VALID, and knocks it down first if it is.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Steve Wise <swise@opengridcomputing.com>
Tested-by: Shirley Ma <shirley.ma@oracle.com>
Tested-by: Devesh Sharma <devesh.sharma@emulex.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
|
|
xprtrdma is currently throwing away queued completions during
a reconnect. RPC replies posted just before connection loss, or
successful completions that change the state of an FRMR, can be
missed.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Steve Wise <swise@opengridcomputing.com>
Tested-by: Shirley Ma <shirley.ma@oracle.com>
Tested-by: Devesh Sharma <devesh.sharma@emulex.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
|
|
Various reports of:
rpcrdma_qp_async_error_upcall: QP error 3 on device mlx4_0
ep ffff8800bfd3e848
Ensure that rkeys in already-marshalled RPC/RDMA headers are
refreshed after the QP has been replaced by a reconnect.
BugLink: https://bugzilla.linux-nfs.org/show_bug.cgi?id=249
Suggested-by: Selvin Xavier <Selvin.Xavier@Emulex.Com>
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Steve Wise <swise@opengridcomputing.com>
Tested-by: Shirley Ma <shirley.ma@oracle.com>
Tested-by: Devesh Sharma <devesh.sharma@emulex.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
|
|
When the client uses physical memory registration, each page in the
payload gets its own array entry in the RPC/RDMA header's chunk list.
Therefore, don't advertise a maximum payload size that would require
more array entries than can fit in the RPC buffer where RPC/RDMA
headers are built.
BugLink: https://bugzilla.linux-nfs.org/show_bug.cgi?id=248
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Steve Wise <swise@opengridcomputing.com>
Tested-by: Shirley Ma <shirley.ma@oracle.com>
Tested-by: Devesh Sharma <devesh.sharma@emulex.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
|
|
Ensure ia->ri_id remains valid while invoking dma_unmap_page() or
posting LOCAL_INV during a transport reconnect. Otherwise,
ia->ri_id->device or ia->ri_id->qp is NULL, which triggers a panic.
BugLink: https://bugzilla.linux-nfs.org/show_bug.cgi?id=259
Fixes: ec62f40 'xprtrdma: Ensure ia->ri_id->qp is not NULL when reconnecting'
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Steve Wise <swise@opengridcomputing.com>
Tested-by: Shirley Ma <shirley.ma@oracle.com>
Tested-by: Devesh Sharma <devesh.sharma@emulex.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
|
|
seg1->mr_nsegs is not yet initialized when it is used to unmap
segments during an error exit. Use the same unmapping logic for
all error exits.
"if (frmr_wr.wr.fast_reg.length < len) {" used to be a BUG_ON check.
The broken code will never be executed under normal operation.
Fixes: c977dea (xprtrdma: Remove BUG_ON() call sites)
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Tested-by: Steve Wise <swise@opengridcomputing.com>
Tested-by: Shirley Ma <shirley.ma@oracle.com>
Tested-by: Devesh Sharma <devesh.sharma@emulex.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
|
|
Fix the following warning when DMA-API debug is enabled by checking ib_dma_map_single result:
[ 1455.345548] ------------[ cut here ]------------
[ 1455.346863] WARNING: CPU: 3 PID: 3929 at /home/yanb/kernel/net-next/lib/dma-debug.c:1140 check_unmap+0x4e5/0x990()
[ 1455.349350] mlx4_core 0000:00:07.0: DMA-API: device driver failed to check map error[device address=0x000000007c9f2090] [size=2656 bytes] [mapped as single]
[ 1455.349350] Modules linked in: xprtrdma netconsole configfs nfsv3 nfs_acl ib_ipoib rdma_ucm ib_ucm ib_uverbs ib_umad rdma_cm ib_cm iw_cm autofs4 auth_rpcgss oid_registry nfsv4 nfs fscache lockd sunrpc dm_mirror dm_region_hash dm_log microcode pcspkr mlx4_ib ib_sa ib_mad ib_core ib_addr mlx4_en ipv6 ptp pps_core vxlan mlx4_core virtio_balloon cirrus ttm drm_kms_helper drm sysimgblt sysfillrect syscopyarea i2c_piix4 i2c_core button ext3 jbd virtio_blk virtio_net virtio_pci virtio_ring virtio uhci_hcd ata_generic ata_piix libata
[ 1455.349350] CPU: 3 PID: 3929 Comm: mount.nfs Not tainted 3.15.0-rc1-dbg+ #13
[ 1455.349350] Hardware name: Red Hat KVM, BIOS 0.5.1 01/01/2007
[ 1455.349350] 0000000000000474 ffff880069dcf628 ffffffff8151c341 ffffffff817b69d8
[ 1455.349350] ffff880069dcf678 ffff880069dcf668 ffffffff8105b5fc 0000000069dcf658
[ 1455.349350] ffff880069dcf778 ffff88007b0c9f00 ffffffff8255ec40 0000000000000a60
[ 1455.349350] Call Trace:
[ 1455.349350] [<ffffffff8151c341>] dump_stack+0x52/0x81
[ 1455.349350] [<ffffffff8105b5fc>] warn_slowpath_common+0x8c/0xc0
[ 1455.349350] [<ffffffff8105b6e6>] warn_slowpath_fmt+0x46/0x50
[ 1455.349350] [<ffffffff812e6305>] check_unmap+0x4e5/0x990
[ 1455.349350] [<ffffffff81521fb0>] ? _raw_spin_unlock_irq+0x30/0x60
[ 1455.349350] [<ffffffff812e6a0a>] debug_dma_unmap_page+0x5a/0x60
[ 1455.349350] [<ffffffffa0389583>] rpcrdma_deregister_internal+0xb3/0xd0 [xprtrdma]
[ 1455.349350] [<ffffffffa038a639>] rpcrdma_buffer_destroy+0x69/0x170 [xprtrdma]
[ 1455.349350] [<ffffffffa03872ff>] xprt_rdma_destroy+0x3f/0xb0 [xprtrdma]
[ 1455.349350] [<ffffffffa04a95ff>] xprt_destroy+0x6f/0x80 [sunrpc]
[ 1455.349350] [<ffffffffa04a9625>] xprt_put+0x15/0x20 [sunrpc]
[ 1455.349350] [<ffffffffa04a899a>] rpc_free_client+0x8a/0xe0 [sunrpc]
[ 1455.349350] [<ffffffffa04a8a58>] rpc_release_client+0x68/0xa0 [sunrpc]
[ 1455.349350] [<ffffffffa04a9060>] rpc_shutdown_client+0xb0/0xc0 [sunrpc]
[ 1455.349350] [<ffffffffa04a8f5d>] ? rpc_ping+0x5d/0x70 [sunrpc]
[ 1455.349350] [<ffffffffa04a91ab>] rpc_create_xprt+0xbb/0xd0 [sunrpc]
[ 1455.349350] [<ffffffffa04a9273>] rpc_create+0xb3/0x160 [sunrpc]
[ 1455.349350] [<ffffffff81129749>] ? __probe_kernel_read+0x69/0xb0
[ 1455.349350] [<ffffffffa053851c>] nfs_create_rpc_client+0xdc/0x100 [nfs]
[ 1455.349350] [<ffffffffa0538cfa>] nfs_init_client+0x3a/0x90 [nfs]
[ 1455.349350] [<ffffffffa05391c8>] nfs_get_client+0x478/0x5b0 [nfs]
[ 1455.349350] [<ffffffffa0538e50>] ? nfs_get_client+0x100/0x5b0 [nfs]
[ 1455.349350] [<ffffffff81172c6d>] ? kmem_cache_alloc_trace+0x24d/0x260
[ 1455.349350] [<ffffffffa05393f3>] nfs_create_server+0xf3/0x4c0 [nfs]
[ 1455.349350] [<ffffffffa0545ff0>] ? nfs_request_mount+0xf0/0x1a0 [nfs]
[ 1455.349350] [<ffffffffa031c0c3>] nfs3_create_server+0x13/0x30 [nfsv3]
[ 1455.349350] [<ffffffffa0546293>] nfs_try_mount+0x1f3/0x230 [nfs]
[ 1455.349350] [<ffffffff8108ea21>] ? get_parent_ip+0x11/0x50
[ 1455.349350] [<ffffffff812d6343>] ? __this_cpu_preempt_check+0x13/0x20
[ 1455.349350] [<ffffffff810d632b>] ? try_module_get+0x6b/0x190
[ 1455.349350] [<ffffffffa05449f7>] nfs_fs_mount+0x187/0x9d0 [nfs]
[ 1455.349350] [<ffffffffa0545940>] ? nfs_clone_super+0x140/0x140 [nfs]
[ 1455.349350] [<ffffffffa0543b20>] ? nfs_auth_info_match+0x40/0x40 [nfs]
[ 1455.349350] [<ffffffff8117e360>] mount_fs+0x20/0xe0
[ 1455.349350] [<ffffffff811a1c16>] vfs_kern_mount+0x76/0x160
[ 1455.349350] [<ffffffff811a29a8>] do_mount+0x428/0xae0
[ 1455.349350] [<ffffffff811a30f0>] SyS_mount+0x90/0xe0
[ 1455.349350] [<ffffffff8152af52>] system_call_fastpath+0x16/0x1b
[ 1455.349350] ---[ end trace f1f31572972e211d ]---
Signed-off-by: Yan Burman <yanb@mellanox.com>
Reviewed-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
|
|
|
|
...otherwise me lose user mode regs and the resulting
stack trace is useless.
Signed-off-by: Richard Weinberger <richard@nod.at>
|
|
If do_ops() fails we have to release current->mm->mmap_sem
otherwise the failing task will never terminate.
Reported-by: Toralf Förster <toralf.foerster@gmx.de>
Signed-off-by: Richard Weinberger <richard@nod.at>
|
|
Trinity discovered an execution path such that a task
can unmap his stub page.
Reported-by: Toralf Förster <toralf.foerster@gmx.de>
Signed-off-by: Richard Weinberger <richard@nod.at>
|
|
This reverts commit 0974a9cadc7886f7baaa458bb0c89f5c5f9d458e.
The real for for that issue is to release current->mm->mmap_sem in
fix_range_common().
Signed-off-by: Richard Weinberger <richard@nod.at>
|
|
commit 99994cd btrfs: dev delete should remove sysfs entry
added a btrfs_kobj_rm_device, which dereferences device->bdev...
right after we check whether device->bdev might be NULL.
I don't honestly know if it's possible to have a NULL device->bdev
here, but assuming that it is (given the test), we need to move
the kobject removal to be under that test.
(Coverity spotted this)
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Chris Mason <clm@fb.com>
|
|
xfstests generic/127 detected this problem.
With commit 7fc34a62ca4434a79c68e23e70ed26111b7a4cf8, now fsync will only flush
data within the passed range. This is the cause of the above problem,
-- btrfs's fsync has a stage called 'sync log' which will wait for all the
ordered extents it've recorded to finish.
In xfstests/generic/127, with mixed operations such as truncate, fallocate,
punch hole, and mapwrite, we get some pre-allocated extents, and mapwrite will
mmap, and then msync. And I find that msync will wait for quite a long time
(about 20s in my case), thanks to ftrace, it turns out that the previous
fallocate calls 'btrfs_wait_ordered_range()' to flush dirty pages, but as the
range of dirty pages may be larger than 'btrfs_wait_ordered_range()' wants,
there can be some ordered extents created but not getting corresponding pages
flushed, then they're left in memory until we fsync which runs into the
stage 'sync log', and fsync will just wait for the system writeback thread
to flush those pages and get ordered extents finished, so the latency is
inevitable.
This adds a flush similar to btrfs_start_ordered_extent() in
btrfs_wait_logged_extents() to fix that.
Reviewed-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Chris Mason <clm@fb.com>
|
|
The expression entropy_count -= ibytes << (ENTROPY_SHIFT + 3) could
actually increase entropy_count if during assignment of the unsigned
expression on the RHS (mind the -=) we reduce the value modulo
2^width(int) and assign it to entropy_count. Trinity found this.
[ Commit modified by tytso to add an additional safety check for a
negative entropy_count -- which should never happen, and to also add
an additional paranoia check to prevent overly large count values to
be passed into urandom_read(). ]
Reported-by: Dave Jones <davej@redhat.com>
Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Cc: stable@vger.kernel.org
|
|
When CPU topology is specified in device tree, cpu_logical_map() does
not return core ID anymore, but rather full MPIDR value. This breaks
existing calculation of PMU register offsets on Exynos SoCs.
This patch fixes the problem by adjusting the code to use only core ID
bits of the value returned by cpu_logical_map() to allow CPU topology to
be specified in device tree on Exynos SoCs.
Signed-off-by: Tomasz Figa <t.figa@samsung.com>
Signed-off-by: Kukjin Kim <kgene.kim@samsung.com>
Signed-off-by: Olof Johansson <olof@lixom.net>
|
|
The pwm driver requires a clocks property referencing the pwm peripheral
clk.
Signed-off-by: Boris BREZILLON <boris.brezillon@free-electrons.com>
Signed-off-by: Nicolas Ferre <nicolas.ferre@atmel.com>
|
|
udphs_clk (USB Device Controller clock) is referenced instead of
uhphs_clk (USB Host Controller clock).
Signed-off-by: Boris BREZILLON <boris.brezillon@free-electrons.com>
Acked-by: Alexandre Belloni <alexandre.belloni@free-electrons.com>
Signed-off-by: Nicolas Ferre <nicolas.ferre@atmel.com>
|
|
Correct the typo error for the second "uhphs_clk".
Signed-off-by: Bo Shen <voice.shen@atmel.com>
Acked-by: Boris Brezillon <boris.brezillon@free-electrons.com>
Signed-off-by: Nicolas Ferre <nicolas.ferre@atmel.com>
|
|
Certain GIC implementation, namely those found on earlier, single
cluster, Exynos SoCs, have registers mapped without per-CPU banking,
which means that the driver needs to use different offset for each CPU.
Currently the driver calculates the offset by multiplying value returned
by cpu_logical_map() by CPU offset parsed from DT. This is correct when
CPU topology is not specified in DT and aforementioned function returns
core ID alone. However when DT contains CPU topology, the function
changes to return cluster ID as well, which is non-zero on mentioned
SoCs and so breaks the calculation in GIC driver.
This patch fixes this by masking out cluster ID in CPU offset
calculation so that only core ID is considered. Multi-cluster Exynos
SoCs already have banked GIC implementations, so this simple fix should
be enough.
Reported-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Reported-by: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com>
Signed-off-by: Tomasz Figa <t.figa@samsung.com>
Fixes: db0d4db22a78d ("ARM: gic: allow GIC to support non-banked setups")
Cc: <stable@vger.kernel.org> # v3.3+
Link: https://lkml.kernel.org/r/1405610624-18722-1-git-send-email-t.figa@samsung.com
Signed-off-by: Jason Cooper <jason@lakedaemon.net>
|
|
Cc: cluster-devel@redhat.com
Signed-off-by: Fabian Frederick <fabf@skynet.be>
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
|
|
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: cluster-devel@redhat.com
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
|
|
This patch removes the GLF_NOCACHE flag from the glocks associated with
flocks. There should be no good reason not to cache glocks for flocks:
they only force the glock to be demoted before they can be reacquired,
which can slow down performance and even cause glock hangs, especially
in cases where the flocks are held in Shared (SH) mode.
Signed-off-by: Bob Peterson <rpeterso@redhat.com>
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
|
|
This patch allows flock glocks to use a non-blocking dequeue rather
than dq_wait. It also reverts the previous patch I had posted regarding
dq_wait. The reverted patch isn't necessarily a bad idea, but I decided
this might avoid unforeseen side effects, and was therefore safer.
Signed-off-by: Bob Peterson <rpeterso@redhat.com>
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
|
|
kcalloc manages count*sizeof overflow.
Cc: cluster-devel@redhat.com
Signed-off-by: Fabian Frederick <fabf@skynet.be>
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
|
|
Normally GFP_KERNEL is ok here, but there is now a rarely used code path
relating to deallocation of unlinked inodes (in certain corner cases)
which if hit at times of memory shortage can cause recursion while
trying to free memory.
One solution would be to try and move the gfs2_glock_get() call so
that it is no longer called while another glock is held, but that
doesn't look at all easy, so GFP_NOFS is the best solution for the
time being.
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
|
|
We must not leave items on the LRU list with GLF_LOCK set, since
they can be removed if the glock is brought back into use, which
may then potentially result in a hang, waiting for GLF_LOCK to
clear.
It doesn't happen very often, since it requires a glock that has
not been used for a long time to be brought back into use at the
same moment that the shrinker is part way through disposing of
glocks.
The fix is to set GLF_LOCK at a later time, when we already know
that the other locks can be obtained. Also, we now only release
the lru_lock in case a resched is needed, rather than on every
iteration.
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
|
|
Function gfs2_glock_dq_wait is supposed to dequeue a glock and then
wait for the lock to be demoted. The problem is, if this is a shared
lock, its demote will depend on the other holders, which means you
might end up waiting forever because the other process is blocked.
This problem is especially apparent when dealing with nested flocks.
Signed-off-by: Bob Peterson <rpeterso@redhat.com>
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
|
|
The i.MX6 reference manual doesn't make a clear distinction
between the fixed clock divider and the enable gate for the
pcie and sata reference clocks. This lead to the lvds mux
inputs in the imx6q clk driver to be parented from the
ref clock (which is the divider) instead of the actual gate,
which in turn prevents the upstream clock to actually be
enabled when lvds clk out is active.
This fixes a hard machine hang regression in kernel 3.16 for
boards where only pcie is active but no sata, as with this
kernel version the imx6-pcie driver is no longer enabling
the upstream clock directly but only lvds clk out.
Reported-by: Arne Ruhnau <arne.ruhnau@target-sg.com>
Signed-off-by: Lucas Stach <l.stach@pengutronix.de>
Tested-by: Arne Ruhnau <arne.ruhnau@target-sg.com>
Signed-off-by: Shawn Guo <shawn.guo@freescale.com>
|
|
We should schedule the 5s "timer work" before starting the data transfer,
otherwise, the data transfer code may finish so fast on another
virtual cpu that when the code(fcopy_write()) trying to cancel the 5s
"timer work" can occasionally fail because the "timer work" may haven't
been scheduled yet and as a result the fcopy process will be aborted
wrongly by fcopy_work_func() in 5s.
Thank Liz Zhang <lizzha@microsoft.com> for the initial investigation
on the bug.
This addresses https://bugzilla.redhat.com/show_bug.cgi?id=1118123
Tested-by: Liz Zhang <lizzha@microsoft.com>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: stable@vger.kernel.org
Signed-off-by: Dexuan Cui <decui@microsoft.com>
Signed-off-by: K. Y. Srinivasan <kys@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Commit 5eeaf1f18973 (cpufreq: Fix build error on some platforms that
use cpufreq_for_each_*) moved function cpufreq_next_valid() to a public
header. Warnings are now generated when objects including that header
are built with -Wsign-compare (as an out-of-tree module might be):
.../include/linux/cpufreq.h: In function ‘cpufreq_next_valid’:
.../include/linux/cpufreq.h:519:27: warning: comparison between signed
and unsigned integer expressions [-Wsign-compare]
while ((*pos)->frequency != CPUFREQ_TABLE_END)
^
.../include/linux/cpufreq.h:520:25: warning: comparison between signed
and unsigned integer expressions [-Wsign-compare]
if ((*pos)->frequency != CPUFREQ_ENTRY_INVALID)
^
Constants CPUFREQ_ENTRY_INVALID and CPUFREQ_TABLE_END are signed, but
are used with unsigned member 'frequency' of cpufreq_frequency_table.
Update the macro definitions to be explicitly unsigned to match their
use.
This also corrects potentially wrong behavior of clk_rate_table_iter()
if unsigned long is wider than usigned int.
Fixes: 5eeaf1f18973 (cpufreq: Fix build error on some platforms that use cpufreq_for_each_*)
Signed-off-by: Brian W Hart <hartb@linux.vnet.ibm.com>
Reviewed-by: Simon Horman <horms+renesas@verge.net.au>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
When using USB 3.0 pen drive with the [AMD] FCH USB XHCI Controller
[1022:7814], the second hotplugging will experience the USB 3.0 pen
drive is recognized as high-speed device. After bisecting the kernel,
I found the commit number 41e7e056cdc662f704fa9262e5c6e213b4ab45dd
(USB: Allow USB 3.0 ports to be disabled.) causes the bug. After doing
some experiments, the bug can be fixed by avoiding executing the function
hub_usb3_port_disable(). Because the port status with [AMD] FCH USB
XHCI Controlleris [1022:7814] is already in RxDetect
(I tried printing out the port status before setting to Disabled state),
it's reasonable to check the port status before really executing
hub_usb3_port_disable().
Fixes: 41e7e056cdc6 (USB: Allow USB 3.0 ports to be disabled.)
Signed-off-by: Gavin Guo <gavin.guo@canonical.com>
Acked-by: Alan Stern <stern@rowland.harvard.edu>
Cc: <stable@vger.kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
There are 2 methods for ZLP (zero-length packet) generation:
1) In software
2) Automatic generation by device controller
1) is implemented in UDC driver and it attaches ZLP to IN packet if
descriptor->size < wLength
2) can be enabled/disabled by setting ZLT bit in the QH
When gadget ffs is connected to ubuntu host, the host sends
get descriptor request and wLength in setup packet is 255 while the
size of descriptor which will be sent by gadget in IN packet is
64 byte. So the composite driver sets req->zero = 1.
In UDC driver following code will be executed then
if (hwreq->req.zero && hwreq->req.length
&& (hwreq->req.length % hwep->ep.maxpacket == 0))
add_td_to_list(hwep, hwreq, 0);
Case-A:
So in case of ubuntu host, UDC driver will attach a ZLP to the IN packet.
ubuntu host will request 255 byte in IN request, gadget will send 64 byte
with ZLP and host will come to know that there is no more data.
But hold on, by default ZLT=0 for endpoint 0 so hardware also tries to
automatically generate the ZLP which blocks enumeration for ~6 seconds due
to endpoint 0 STALL, NAKs are sent to host for any requests (OUT/PING)
Case-B:
In case when gadget ffs is connected to Apple device, Apple device sends
setup packet with wLength=64. So descriptor->size = 64 and wLength=64
therefore req->zero = 0 and UDC driver will not attach any ZLP to the
IN packet. Apple device requests 64 bytes, gets 64 bytes and doesn't
further request for IN data. But ZLT=0 by default for endpoint 0 so
hardware tries to automatically generate the ZLP which blocks enumeration
for ~6 seconds due to endpoint 0 STALL, NAKs are sent to host for any
requests (OUT/PING)
According to USB2.0 specs:
8.5.3.2 Variable-length Data Stage
A control pipe may have a variable-length data phase in which the
host requests more data than is contained in the specified data
structure. When all of the data structure is returned to the host,
the function should indicate that the Data stage is ended by
returning a packet that is shorter than the MaxPacketSize for the
pipe. If the data structure is an exact multiple of wMaxPacketSize
for the pipe, the function will return a zero-length packet to indicate
the end of the Data stage.
In Case-A mentioned above:
If we disable software ZLP generation & ZLT=0 for endpoint 0 OR if software
ZLP generation is not disabled but we set ZLT=1 for endpoint 0 then
enumeration doesn't block for 6 seconds.
In Case-B mentioned above:
If we disable software ZLP generation & ZLT=0 for endpoint then enumeration
still blocks due to ZLP automatically generated by hardware and host not needing
it. But if we keep software ZLP generation enabled but we set ZLT=1 for
endpoint 0 then enumeration doesn't block for 6 seconds.
So the proper solution for this issue seems to disable automatic ZLP generation
by hardware (i.e by setting ZLT=1 for endpoint 0) and let software (UDC driver)
handle the ZLP generation based on req->zero field.
Cc: stable@vger.kernel.org
Signed-off-by: Abbas Raza <Abbas_Raza@mentor.com>
Signed-off-by: Peter Chen <peter.chen@freescale.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Need to protect mmio flip programming by event lock as well.
Need to also first enable pflip irq, then mmio program,
otherwise a flip completion may get unnoticed in the vblank
of actual completion if the flip is programmed, but
radeon_flip_work_func gets preempted immediately after
mmio programming and before vblank. In that case the
vblank irq handler wouldn't run radeon_crtc_handle_vblank()
with the completion check routine, miss the completed flip,
and only notice one vblank after actual completion, causing
a false/delayed report of flip completion.
Signed-off-by: Mario Kleiner <mario.kleiner.de@gmail.com>
Reviewed-by: Michel Dänzer <michel.daenzer@amd.com>
Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
|
|
Signed-off-by: Mario Kleiner <mario.kleiner.de@gmail.com>
Reviewed-by: Michel Dänzer <michel.daenzer@amd.com>
Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
|
|
Not needed anymore, as it is already unreffed within
radeon_flip_work_func() after its only use.
Signed-off-by: Mario Kleiner <mario.kleiner.de@gmail.com>
Reviewed-by: Michel Dänzer <michel.daenzer@amd.com>
Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
|
|
Otherwise the DRM core and userspace will be confused about which BO the
CRTC is scanning out.
Reviewed-by: Christian König <christian.koenig@amd.com>
Signed-off-by: Michel Dänzer <michel.daenzer@amd.com>
Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
|