From 4419470191386456e0b8ed4eb06a70b0021798a6 Mon Sep 17 00:00:00 2001 From: Pawan Gupta Date: Thu, 19 May 2022 20:26:07 -0700 Subject: Documentation: Add documentation for Processor MMIO Stale Data Add the admin guide for Processor MMIO stale data vulnerabilities. Signed-off-by: Pawan Gupta Signed-off-by: Borislav Petkov --- Documentation/admin-guide/hw-vuln/index.rst | 1 + .../hw-vuln/processor_mmio_stale_data.rst | 246 +++++++++++++++++++++ 2 files changed, 247 insertions(+) create mode 100644 Documentation/admin-guide/hw-vuln/processor_mmio_stale_data.rst (limited to 'Documentation') diff --git a/Documentation/admin-guide/hw-vuln/index.rst b/Documentation/admin-guide/hw-vuln/index.rst index 8cbc711cda93..4df436e7c417 100644 --- a/Documentation/admin-guide/hw-vuln/index.rst +++ b/Documentation/admin-guide/hw-vuln/index.rst @@ -17,3 +17,4 @@ are configurable at compile, boot or run time. special-register-buffer-data-sampling.rst core-scheduling.rst l1d_flush.rst + processor_mmio_stale_data.rst diff --git a/Documentation/admin-guide/hw-vuln/processor_mmio_stale_data.rst b/Documentation/admin-guide/hw-vuln/processor_mmio_stale_data.rst new file mode 100644 index 000000000000..9393c50b5afc --- /dev/null +++ b/Documentation/admin-guide/hw-vuln/processor_mmio_stale_data.rst @@ -0,0 +1,246 @@ +========================================= +Processor MMIO Stale Data Vulnerabilities +========================================= + +Processor MMIO Stale Data Vulnerabilities are a class of memory-mapped I/O +(MMIO) vulnerabilities that can expose data. The sequences of operations for +exposing data range from simple to very complex. Because most of the +vulnerabilities require the attacker to have access to MMIO, many environments +are not affected. System environments using virtualization where MMIO access is +provided to untrusted guests may need mitigation. These vulnerabilities are +not transient execution attacks. However, these vulnerabilities may propagate +stale data into core fill buffers where the data can subsequently be inferred +by an unmitigated transient execution attack. Mitigation for these +vulnerabilities includes a combination of microcode update and software +changes, depending on the platform and usage model. Some of these mitigations +are similar to those used to mitigate Microarchitectural Data Sampling (MDS) or +those used to mitigate Special Register Buffer Data Sampling (SRBDS). + +Data Propagators +================ +Propagators are operations that result in stale data being copied or moved from +one microarchitectural buffer or register to another. Processor MMIO Stale Data +Vulnerabilities are operations that may result in stale data being directly +read into an architectural, software-visible state or sampled from a buffer or +register. + +Fill Buffer Stale Data Propagator (FBSDP) +----------------------------------------- +Stale data may propagate from fill buffers (FB) into the non-coherent portion +of the uncore on some non-coherent writes. Fill buffer propagation by itself +does not make stale data architecturally visible. Stale data must be propagated +to a location where it is subject to reading or sampling. + +Sideband Stale Data Propagator (SSDP) +------------------------------------- +The sideband stale data propagator (SSDP) is limited to the client (including +Intel Xeon server E3) uncore implementation. The sideband response buffer is +shared by all client cores. For non-coherent reads that go to sideband +destinations, the uncore logic returns 64 bytes of data to the core, including +both requested data and unrequested stale data, from a transaction buffer and +the sideband response buffer. As a result, stale data from the sideband +response and transaction buffers may now reside in a core fill buffer. + +Primary Stale Data Propagator (PSDP) +------------------------------------ +The primary stale data propagator (PSDP) is limited to the client (including +Intel Xeon server E3) uncore implementation. Similar to the sideband response +buffer, the primary response buffer is shared by all client cores. For some +processors, MMIO primary reads will return 64 bytes of data to the core fill +buffer including both requested data and unrequested stale data. This is +similar to the sideband stale data propagator. + +Vulnerabilities +=============== +Device Register Partial Write (DRPW) (CVE-2022-21166) +----------------------------------------------------- +Some endpoint MMIO registers incorrectly handle writes that are smaller than +the register size. Instead of aborting the write or only copying the correct +subset of bytes (for example, 2 bytes for a 2-byte write), more bytes than +specified by the write transaction may be written to the register. On +processors affected by FBSDP, this may expose stale data from the fill buffers +of the core that created the write transaction. + +Shared Buffers Data Sampling (SBDS) (CVE-2022-21125) +---------------------------------------------------- +After propagators may have moved data around the uncore and copied stale data +into client core fill buffers, processors affected by MFBDS can leak data from +the fill buffer. It is limited to the client (including Intel Xeon server E3) +uncore implementation. + +Shared Buffers Data Read (SBDR) (CVE-2022-21123) +------------------------------------------------ +It is similar to Shared Buffer Data Sampling (SBDS) except that the data is +directly read into the architectural software-visible state. It is limited to +the client (including Intel Xeon server E3) uncore implementation. + +Affected Processors +=================== +Not all the CPUs are affected by all the variants. For instance, most +processors for the server market (excluding Intel Xeon E3 processors) are +impacted by only Device Register Partial Write (DRPW). + +Below is the list of affected Intel processors [#f1]_: + + =================== ============ ========= + Common name Family_Model Steppings + =================== ============ ========= + HASWELL_X 06_3FH 2,4 + SKYLAKE_L 06_4EH 3 + BROADWELL_X 06_4FH All + SKYLAKE_X 06_55H 3,4,6,7,11 + BROADWELL_D 06_56H 3,4,5 + SKYLAKE 06_5EH 3 + ICELAKE_X 06_6AH 4,5,6 + ICELAKE_D 06_6CH 1 + ICELAKE_L 06_7EH 5 + ATOM_TREMONT_D 06_86H All + LAKEFIELD 06_8AH 1 + KABYLAKE_L 06_8EH 9 to 12 + ATOM_TREMONT 06_96H 1 + ATOM_TREMONT_L 06_9CH 0 + KABYLAKE 06_9EH 9 to 13 + COMETLAKE 06_A5H 2,3,5 + COMETLAKE_L 06_A6H 0,1 + ROCKETLAKE 06_A7H 1 + =================== ============ ========= + +If a CPU is in the affected processor list, but not affected by a variant, it +is indicated by new bits in MSR IA32_ARCH_CAPABILITIES. As described in a later +section, mitigation largely remains the same for all the variants, i.e. to +clear the CPU fill buffers via VERW instruction. + +New bits in MSRs +================ +Newer processors and microcode update on existing affected processors added new +bits to IA32_ARCH_CAPABILITIES MSR. These bits can be used to enumerate +specific variants of Processor MMIO Stale Data vulnerabilities and mitigation +capability. + +MSR IA32_ARCH_CAPABILITIES +-------------------------- +Bit 13 - SBDR_SSDP_NO - When set, processor is not affected by either the + Shared Buffers Data Read (SBDR) vulnerability or the sideband stale + data propagator (SSDP). +Bit 14 - FBSDP_NO - When set, processor is not affected by the Fill Buffer + Stale Data Propagator (FBSDP). +Bit 15 - PSDP_NO - When set, processor is not affected by Primary Stale Data + Propagator (PSDP). +Bit 17 - FB_CLEAR - When set, VERW instruction will overwrite CPU fill buffer + values as part of MD_CLEAR operations. Processors that do not + enumerate MDS_NO (meaning they are affected by MDS) but that do + enumerate support for both L1D_FLUSH and MD_CLEAR implicitly enumerate + FB_CLEAR as part of their MD_CLEAR support. +Bit 18 - FB_CLEAR_CTRL - Processor supports read and write to MSR + IA32_MCU_OPT_CTRL[FB_CLEAR_DIS]. On such processors, the FB_CLEAR_DIS + bit can be set to cause the VERW instruction to not perform the + FB_CLEAR action. Not all processors that support FB_CLEAR will support + FB_CLEAR_CTRL. + +MSR IA32_MCU_OPT_CTRL +--------------------- +Bit 3 - FB_CLEAR_DIS - When set, VERW instruction does not perform the FB_CLEAR +action. This may be useful to reduce the performance impact of FB_CLEAR in +cases where system software deems it warranted (for example, when performance +is more critical, or the untrusted software has no MMIO access). Note that +FB_CLEAR_DIS has no impact on enumeration (for example, it does not change +FB_CLEAR or MD_CLEAR enumeration) and it may not be supported on all processors +that enumerate FB_CLEAR. + +Mitigation +========== +Like MDS, all variants of Processor MMIO Stale Data vulnerabilities have the +same mitigation strategy to force the CPU to clear the affected buffers before +an attacker can extract the secrets. + +This is achieved by using the otherwise unused and obsolete VERW instruction in +combination with a microcode update. The microcode clears the affected CPU +buffers when the VERW instruction is executed. + +Kernel reuses the MDS function to invoke the buffer clearing: + + mds_clear_cpu_buffers() + +On MDS affected CPUs, the kernel already invokes CPU buffer clear on +kernel/userspace, hypervisor/guest and C-state (idle) transitions. No +additional mitigation is needed on such CPUs. + +For CPUs not affected by MDS or TAA, mitigation is needed only for the attacker +with MMIO capability. Therefore, VERW is not required for kernel/userspace. For +virtualization case, VERW is only needed at VMENTER for a guest with MMIO +capability. + +Mitigation points +----------------- +Return to user space +^^^^^^^^^^^^^^^^^^^^ +Same mitigation as MDS when affected by MDS/TAA, otherwise no mitigation +needed. + +C-State transition +^^^^^^^^^^^^^^^^^^ +Control register writes by CPU during C-state transition can propagate data +from fill buffer to uncore buffers. Execute VERW before C-state transition to +clear CPU fill buffers. + +Guest entry point +^^^^^^^^^^^^^^^^^ +Same mitigation as MDS when processor is also affected by MDS/TAA, otherwise +execute VERW at VMENTER only for MMIO capable guests. On CPUs not affected by +MDS/TAA, guest without MMIO access cannot extract secrets using Processor MMIO +Stale Data vulnerabilities, so there is no need to execute VERW for such guests. + +Mitigation control on the kernel command line +--------------------------------------------- +The kernel command line allows to control the Processor MMIO Stale Data +mitigations at boot time with the option "mmio_stale_data=". The valid +arguments for this option are: + + ========== ================================================================= + full If the CPU is vulnerable, enable mitigation; CPU buffer clearing + on exit to userspace and when entering a VM. Idle transitions are + protected as well. It does not automatically disable SMT. + full,nosmt Same as full, with SMT disabled on vulnerable CPUs. This is the + complete mitigation. + off Disables mitigation completely. + ========== ================================================================= + +If the CPU is affected and mmio_stale_data=off is not supplied on the kernel +command line, then the kernel selects the appropriate mitigation. + +Mitigation status information +----------------------------- +The Linux kernel provides a sysfs interface to enumerate the current +vulnerability status of the system: whether the system is vulnerable, and +which mitigations are active. The relevant sysfs file is: + + /sys/devices/system/cpu/vulnerabilities/mmio_stale_data + +The possible values in this file are: + + .. list-table:: + + * - 'Not affected' + - The processor is not vulnerable + * - 'Vulnerable' + - The processor is vulnerable, but no mitigation enabled + * - 'Vulnerable: Clear CPU buffers attempted, no microcode' + - The processor is vulnerable, but microcode is not updated. The + mitigation is enabled on a best effort basis. + * - 'Mitigation: Clear CPU buffers' + - The processor is vulnerable and the CPU buffer clearing mitigation is + enabled. + +If the processor is vulnerable then the following information is appended to +the above information: + + ======================== =========================================== + 'SMT vulnerable' SMT is enabled + 'SMT disabled' SMT is disabled + 'SMT Host state unknown' Kernel runs in a VM, Host SMT state unknown + ======================== =========================================== + +References +---------- +.. [#f1] Affected Processors + https://www.intel.com/content/www/us/en/developer/topic-technology/software-security-guidance/processors-affected-consolidated-product-cpu-model.html -- cgit v1.2.3-59-g8ed1b From 8cb861e9e3c9a55099ad3d08e1a3b653d29c33ca Mon Sep 17 00:00:00 2001 From: Pawan Gupta Date: Thu, 19 May 2022 20:29:11 -0700 Subject: x86/speculation/mmio: Add mitigation for Processor MMIO Stale Data Processor MMIO Stale Data is a class of vulnerabilities that may expose data after an MMIO operation. For details please refer to Documentation/admin-guide/hw-vuln/processor_mmio_stale_data.rst. These vulnerabilities are broadly categorized as: Device Register Partial Write (DRPW): Some endpoint MMIO registers incorrectly handle writes that are smaller than the register size. Instead of aborting the write or only copying the correct subset of bytes (for example, 2 bytes for a 2-byte write), more bytes than specified by the write transaction may be written to the register. On some processors, this may expose stale data from the fill buffers of the core that created the write transaction. Shared Buffers Data Sampling (SBDS): After propagators may have moved data around the uncore and copied stale data into client core fill buffers, processors affected by MFBDS can leak data from the fill buffer. Shared Buffers Data Read (SBDR): It is similar to Shared Buffer Data Sampling (SBDS) except that the data is directly read into the architectural software-visible state. An attacker can use these vulnerabilities to extract data from CPU fill buffers using MDS and TAA methods. Mitigate it by clearing the CPU fill buffers using the VERW instruction before returning to a user or a guest. On CPUs not affected by MDS and TAA, user application cannot sample data from CPU fill buffers using MDS or TAA. A guest with MMIO access can still use DRPW or SBDR to extract data architecturally. Mitigate it with VERW instruction to clear fill buffers before VMENTER for MMIO capable guests. Add a kernel parameter mmio_stale_data={off|full|full,nosmt} to control the mitigation. Signed-off-by: Pawan Gupta Signed-off-by: Borislav Petkov --- Documentation/admin-guide/kernel-parameters.txt | 36 ++++++++ arch/x86/include/asm/nospec-branch.h | 2 + arch/x86/kernel/cpu/bugs.c | 111 +++++++++++++++++++++++- arch/x86/kvm/vmx/vmx.c | 3 + 4 files changed, 148 insertions(+), 4 deletions(-) (limited to 'Documentation') diff --git a/Documentation/admin-guide/kernel-parameters.txt b/Documentation/admin-guide/kernel-parameters.txt index 3f1cc5e317ed..c4893782055b 100644 --- a/Documentation/admin-guide/kernel-parameters.txt +++ b/Documentation/admin-guide/kernel-parameters.txt @@ -3105,6 +3105,7 @@ kvm.nx_huge_pages=off [X86] no_entry_flush [PPC] no_uaccess_flush [PPC] + mmio_stale_data=off [X86] Exceptions: This does not have any effect on @@ -3126,6 +3127,7 @@ Equivalent to: l1tf=flush,nosmt [X86] mds=full,nosmt [X86] tsx_async_abort=full,nosmt [X86] + mmio_stale_data=full,nosmt [X86] mminit_loglevel= [KNL] When CONFIG_DEBUG_MEMORY_INIT is set, this @@ -3135,6 +3137,40 @@ log everything. Information is printed at KERN_DEBUG so loglevel=8 may also need to be specified. + mmio_stale_data= + [X86,INTEL] Control mitigation for the Processor + MMIO Stale Data vulnerabilities. + + Processor MMIO Stale Data is a class of + vulnerabilities that may expose data after an MMIO + operation. Exposed data could originate or end in + the same CPU buffers as affected by MDS and TAA. + Therefore, similar to MDS and TAA, the mitigation + is to clear the affected CPU buffers. + + This parameter controls the mitigation. The + options are: + + full - Enable mitigation on vulnerable CPUs + + full,nosmt - Enable mitigation and disable SMT on + vulnerable CPUs. + + off - Unconditionally disable mitigation + + On MDS or TAA affected machines, + mmio_stale_data=off can be prevented by an active + MDS or TAA mitigation as these vulnerabilities are + mitigated with the same mechanism so in order to + disable this mitigation, you need to specify + mds=off and tsx_async_abort=off too. + + Not specifying this option is equivalent to + mmio_stale_data=full. + + For details see: + Documentation/admin-guide/hw-vuln/processor_mmio_stale_data.rst + module.sig_enforce [KNL] When CONFIG_MODULE_SIG is set, this means that modules without (valid) signatures will fail to load. diff --git a/arch/x86/include/asm/nospec-branch.h b/arch/x86/include/asm/nospec-branch.h index acbaeaf83b61..da251a5645b0 100644 --- a/arch/x86/include/asm/nospec-branch.h +++ b/arch/x86/include/asm/nospec-branch.h @@ -269,6 +269,8 @@ DECLARE_STATIC_KEY_FALSE(mds_idle_clear); DECLARE_STATIC_KEY_FALSE(switch_mm_cond_l1d_flush); +DECLARE_STATIC_KEY_FALSE(mmio_stale_data_clear); + #include /** diff --git a/arch/x86/kernel/cpu/bugs.c b/arch/x86/kernel/cpu/bugs.c index e05d207e7ec9..7b01ba9bc701 100644 --- a/arch/x86/kernel/cpu/bugs.c +++ b/arch/x86/kernel/cpu/bugs.c @@ -43,6 +43,7 @@ static void __init l1tf_select_mitigation(void); static void __init mds_select_mitigation(void); static void __init md_clear_update_mitigation(void); static void __init taa_select_mitigation(void); +static void __init mmio_select_mitigation(void); static void __init srbds_select_mitigation(void); static void __init l1d_flush_select_mitigation(void); @@ -85,6 +86,10 @@ EXPORT_SYMBOL_GPL(mds_idle_clear); */ DEFINE_STATIC_KEY_FALSE(switch_mm_cond_l1d_flush); +/* Controls CPU Fill buffer clear before KVM guest MMIO accesses */ +DEFINE_STATIC_KEY_FALSE(mmio_stale_data_clear); +EXPORT_SYMBOL_GPL(mmio_stale_data_clear); + void __init check_bugs(void) { identify_boot_cpu(); @@ -119,12 +124,14 @@ void __init check_bugs(void) l1tf_select_mitigation(); mds_select_mitigation(); taa_select_mitigation(); + mmio_select_mitigation(); srbds_select_mitigation(); l1d_flush_select_mitigation(); /* - * As MDS and TAA mitigations are inter-related, update and print their - * mitigation after TAA mitigation selection is done. + * As MDS, TAA and MMIO Stale Data mitigations are inter-related, update + * and print their mitigation after MDS, TAA and MMIO Stale Data + * mitigation selection is done. */ md_clear_update_mitigation(); @@ -390,6 +397,90 @@ static int __init tsx_async_abort_parse_cmdline(char *str) } early_param("tsx_async_abort", tsx_async_abort_parse_cmdline); +#undef pr_fmt +#define pr_fmt(fmt) "MMIO Stale Data: " fmt + +enum mmio_mitigations { + MMIO_MITIGATION_OFF, + MMIO_MITIGATION_UCODE_NEEDED, + MMIO_MITIGATION_VERW, +}; + +/* Default mitigation for Processor MMIO Stale Data vulnerabilities */ +static enum mmio_mitigations mmio_mitigation __ro_after_init = MMIO_MITIGATION_VERW; +static bool mmio_nosmt __ro_after_init = false; + +static const char * const mmio_strings[] = { + [MMIO_MITIGATION_OFF] = "Vulnerable", + [MMIO_MITIGATION_UCODE_NEEDED] = "Vulnerable: Clear CPU buffers attempted, no microcode", + [MMIO_MITIGATION_VERW] = "Mitigation: Clear CPU buffers", +}; + +static void __init mmio_select_mitigation(void) +{ + u64 ia32_cap; + + if (!boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA) || + cpu_mitigations_off()) { + mmio_mitigation = MMIO_MITIGATION_OFF; + return; + } + + if (mmio_mitigation == MMIO_MITIGATION_OFF) + return; + + ia32_cap = x86_read_arch_cap_msr(); + + /* + * Enable CPU buffer clear mitigation for host and VMM, if also affected + * by MDS or TAA. Otherwise, enable mitigation for VMM only. + */ + if (boot_cpu_has_bug(X86_BUG_MDS) || (boot_cpu_has_bug(X86_BUG_TAA) && + boot_cpu_has(X86_FEATURE_RTM))) + static_branch_enable(&mds_user_clear); + else + static_branch_enable(&mmio_stale_data_clear); + + /* + * Check if the system has the right microcode. + * + * CPU Fill buffer clear mitigation is enumerated by either an explicit + * FB_CLEAR or by the presence of both MD_CLEAR and L1D_FLUSH on MDS + * affected systems. + */ + if ((ia32_cap & ARCH_CAP_FB_CLEAR) || + (boot_cpu_has(X86_FEATURE_MD_CLEAR) && + boot_cpu_has(X86_FEATURE_FLUSH_L1D) && + !(ia32_cap & ARCH_CAP_MDS_NO))) + mmio_mitigation = MMIO_MITIGATION_VERW; + else + mmio_mitigation = MMIO_MITIGATION_UCODE_NEEDED; + + if (mmio_nosmt || cpu_mitigations_auto_nosmt()) + cpu_smt_disable(false); +} + +static int __init mmio_stale_data_parse_cmdline(char *str) +{ + if (!boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA)) + return 0; + + if (!str) + return -EINVAL; + + if (!strcmp(str, "off")) { + mmio_mitigation = MMIO_MITIGATION_OFF; + } else if (!strcmp(str, "full")) { + mmio_mitigation = MMIO_MITIGATION_VERW; + } else if (!strcmp(str, "full,nosmt")) { + mmio_mitigation = MMIO_MITIGATION_VERW; + mmio_nosmt = true; + } + + return 0; +} +early_param("mmio_stale_data", mmio_stale_data_parse_cmdline); + #undef pr_fmt #define pr_fmt(fmt) "" fmt @@ -402,19 +493,31 @@ static void __init md_clear_update_mitigation(void) goto out; /* - * mds_user_clear is now enabled. Update MDS mitigation, if - * necessary. + * mds_user_clear is now enabled. Update MDS, TAA and MMIO Stale Data + * mitigation, if necessary. */ if (mds_mitigation == MDS_MITIGATION_OFF && boot_cpu_has_bug(X86_BUG_MDS)) { mds_mitigation = MDS_MITIGATION_FULL; mds_select_mitigation(); } + if (taa_mitigation == TAA_MITIGATION_OFF && + boot_cpu_has_bug(X86_BUG_TAA)) { + taa_mitigation = TAA_MITIGATION_VERW; + taa_select_mitigation(); + } + if (mmio_mitigation == MMIO_MITIGATION_OFF && + boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA)) { + mmio_mitigation = MMIO_MITIGATION_VERW; + mmio_select_mitigation(); + } out: if (boot_cpu_has_bug(X86_BUG_MDS)) pr_info("MDS: %s\n", mds_strings[mds_mitigation]); if (boot_cpu_has_bug(X86_BUG_TAA)) pr_info("TAA: %s\n", taa_strings[taa_mitigation]); + if (boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA)) + pr_info("MMIO Stale Data: %s\n", mmio_strings[mmio_mitigation]); } #undef pr_fmt diff --git a/arch/x86/kvm/vmx/vmx.c b/arch/x86/kvm/vmx/vmx.c index 610355b9ccce..4fa216acadce 100644 --- a/arch/x86/kvm/vmx/vmx.c +++ b/arch/x86/kvm/vmx/vmx.c @@ -6773,6 +6773,9 @@ static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu, vmx_l1d_flush(vcpu); else if (static_branch_unlikely(&mds_user_clear)) mds_clear_cpu_buffers(); + else if (static_branch_unlikely(&mmio_stale_data_clear) && + kvm_arch_has_assigned_device(vcpu->kvm)) + mds_clear_cpu_buffers(); if (vcpu->arch.cr2 != native_read_cr2()) native_write_cr2(vcpu->arch.cr2); -- cgit v1.2.3-59-g8ed1b From 8d50cdf8b8341770bc6367bce40c0c1bb0e1d5b3 Mon Sep 17 00:00:00 2001 From: Pawan Gupta Date: Thu, 19 May 2022 20:32:13 -0700 Subject: x86/speculation/mmio: Add sysfs reporting for Processor MMIO Stale Data Add the sysfs reporting file for Processor MMIO Stale Data vulnerability. It exposes the vulnerability and mitigation state similar to the existing files for the other hardware vulnerabilities. Signed-off-by: Pawan Gupta Signed-off-by: Borislav Petkov --- Documentation/ABI/testing/sysfs-devices-system-cpu | 1 + arch/x86/kernel/cpu/bugs.c | 22 ++++++++++++++++++++++ drivers/base/cpu.c | 8 ++++++++ include/linux/cpu.h | 3 +++ 4 files changed, 34 insertions(+) (limited to 'Documentation') diff --git a/Documentation/ABI/testing/sysfs-devices-system-cpu b/Documentation/ABI/testing/sysfs-devices-system-cpu index 2ad01cad7f1c..bcc974d276dc 100644 --- a/Documentation/ABI/testing/sysfs-devices-system-cpu +++ b/Documentation/ABI/testing/sysfs-devices-system-cpu @@ -526,6 +526,7 @@ What: /sys/devices/system/cpu/vulnerabilities /sys/devices/system/cpu/vulnerabilities/srbds /sys/devices/system/cpu/vulnerabilities/tsx_async_abort /sys/devices/system/cpu/vulnerabilities/itlb_multihit + /sys/devices/system/cpu/vulnerabilities/mmio_stale_data Date: January 2018 Contact: Linux kernel mailing list Description: Information about CPU vulnerabilities diff --git a/arch/x86/kernel/cpu/bugs.c b/arch/x86/kernel/cpu/bugs.c index 56d5dea5e128..38853077ca58 100644 --- a/arch/x86/kernel/cpu/bugs.c +++ b/arch/x86/kernel/cpu/bugs.c @@ -1902,6 +1902,20 @@ static ssize_t tsx_async_abort_show_state(char *buf) sched_smt_active() ? "vulnerable" : "disabled"); } +static ssize_t mmio_stale_data_show_state(char *buf) +{ + if (mmio_mitigation == MMIO_MITIGATION_OFF) + return sysfs_emit(buf, "%s\n", mmio_strings[mmio_mitigation]); + + if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) { + return sysfs_emit(buf, "%s; SMT Host state unknown\n", + mmio_strings[mmio_mitigation]); + } + + return sysfs_emit(buf, "%s; SMT %s\n", mmio_strings[mmio_mitigation], + sched_smt_active() ? "vulnerable" : "disabled"); +} + static char *stibp_state(void) { if (spectre_v2_in_eibrs_mode(spectre_v2_enabled)) @@ -2002,6 +2016,9 @@ static ssize_t cpu_show_common(struct device *dev, struct device_attribute *attr case X86_BUG_SRBDS: return srbds_show_state(buf); + case X86_BUG_MMIO_STALE_DATA: + return mmio_stale_data_show_state(buf); + default: break; } @@ -2053,4 +2070,9 @@ ssize_t cpu_show_srbds(struct device *dev, struct device_attribute *attr, char * { return cpu_show_common(dev, attr, buf, X86_BUG_SRBDS); } + +ssize_t cpu_show_mmio_stale_data(struct device *dev, struct device_attribute *attr, char *buf) +{ + return cpu_show_common(dev, attr, buf, X86_BUG_MMIO_STALE_DATA); +} #endif diff --git a/drivers/base/cpu.c b/drivers/base/cpu.c index 2ef23fce0860..a97776ea9d99 100644 --- a/drivers/base/cpu.c +++ b/drivers/base/cpu.c @@ -564,6 +564,12 @@ ssize_t __weak cpu_show_srbds(struct device *dev, return sysfs_emit(buf, "Not affected\n"); } +ssize_t __weak cpu_show_mmio_stale_data(struct device *dev, + struct device_attribute *attr, char *buf) +{ + return sysfs_emit(buf, "Not affected\n"); +} + static DEVICE_ATTR(meltdown, 0444, cpu_show_meltdown, NULL); static DEVICE_ATTR(spectre_v1, 0444, cpu_show_spectre_v1, NULL); static DEVICE_ATTR(spectre_v2, 0444, cpu_show_spectre_v2, NULL); @@ -573,6 +579,7 @@ static DEVICE_ATTR(mds, 0444, cpu_show_mds, NULL); static DEVICE_ATTR(tsx_async_abort, 0444, cpu_show_tsx_async_abort, NULL); static DEVICE_ATTR(itlb_multihit, 0444, cpu_show_itlb_multihit, NULL); static DEVICE_ATTR(srbds, 0444, cpu_show_srbds, NULL); +static DEVICE_ATTR(mmio_stale_data, 0444, cpu_show_mmio_stale_data, NULL); static struct attribute *cpu_root_vulnerabilities_attrs[] = { &dev_attr_meltdown.attr, @@ -584,6 +591,7 @@ static struct attribute *cpu_root_vulnerabilities_attrs[] = { &dev_attr_tsx_async_abort.attr, &dev_attr_itlb_multihit.attr, &dev_attr_srbds.attr, + &dev_attr_mmio_stale_data.attr, NULL }; diff --git a/include/linux/cpu.h b/include/linux/cpu.h index 54dc2f9a2d56..2c7477354744 100644 --- a/include/linux/cpu.h +++ b/include/linux/cpu.h @@ -65,6 +65,9 @@ extern ssize_t cpu_show_tsx_async_abort(struct device *dev, extern ssize_t cpu_show_itlb_multihit(struct device *dev, struct device_attribute *attr, char *buf); extern ssize_t cpu_show_srbds(struct device *dev, struct device_attribute *attr, char *buf); +extern ssize_t cpu_show_mmio_stale_data(struct device *dev, + struct device_attribute *attr, + char *buf); extern __printf(4, 5) struct device *cpu_device_create(struct device *parent, void *drvdata, -- cgit v1.2.3-59-g8ed1b