From f58e2c33ffa31b8d4a71609a5e71e8d893574a07 Mon Sep 17 00:00:00 2001 From: Claudio Scordino Date: Wed, 20 Aug 2008 15:18:45 +0200 Subject: sched: new documentation about CFS Rewrite of the CFS documentation - because the old one was sorely out-dated. Signed-off-by: Claudio Scordino Acked-by: Peter Zijlstra Signed-off-by: Ingo Molnar --- Documentation/scheduler/sched-design-CFS.txt | 371 ++++++++++++++++----------- 1 file changed, 218 insertions(+), 153 deletions(-) (limited to 'Documentation') diff --git a/Documentation/scheduler/sched-design-CFS.txt b/Documentation/scheduler/sched-design-CFS.txt index 88bcb8767335..b2aa856339a7 100644 --- a/Documentation/scheduler/sched-design-CFS.txt +++ b/Documentation/scheduler/sched-design-CFS.txt @@ -1,151 +1,218 @@ + ============= + CFS Scheduler + ============= -This is the CFS scheduler. - -80% of CFS's design can be summed up in a single sentence: CFS basically -models an "ideal, precise multi-tasking CPU" on real hardware. - -"Ideal multi-tasking CPU" is a (non-existent :-)) CPU that has 100% -physical power and which can run each task at precise equal speed, in -parallel, each at 1/nr_running speed. For example: if there are 2 tasks -running then it runs each at 50% physical power - totally in parallel. - -On real hardware, we can run only a single task at once, so while that -one task runs, the other tasks that are waiting for the CPU are at a -disadvantage - the current task gets an unfair amount of CPU time. In -CFS this fairness imbalance is expressed and tracked via the per-task -p->wait_runtime (nanosec-unit) value. "wait_runtime" is the amount of -time the task should now run on the CPU for it to become completely fair -and balanced. - -( small detail: on 'ideal' hardware, the p->wait_runtime value would - always be zero - no task would ever get 'out of balance' from the - 'ideal' share of CPU time. ) - -CFS's task picking logic is based on this p->wait_runtime value and it -is thus very simple: it always tries to run the task with the largest -p->wait_runtime value. In other words, CFS tries to run the task with -the 'gravest need' for more CPU time. So CFS always tries to split up -CPU time between runnable tasks as close to 'ideal multitasking -hardware' as possible. - -Most of the rest of CFS's design just falls out of this really simple -concept, with a few add-on embellishments like nice levels, -multiprocessing and various algorithm variants to recognize sleepers. - -In practice it works like this: the system runs a task a bit, and when -the task schedules (or a scheduler tick happens) the task's CPU usage is -'accounted for': the (small) time it just spent using the physical CPU -is deducted from p->wait_runtime. [minus the 'fair share' it would have -gotten anyway]. Once p->wait_runtime gets low enough so that another -task becomes the 'leftmost task' of the time-ordered rbtree it maintains -(plus a small amount of 'granularity' distance relative to the leftmost -task so that we do not over-schedule tasks and trash the cache) then the -new leftmost task is picked and the current task is preempted. - -The rq->fair_clock value tracks the 'CPU time a runnable task would have -fairly gotten, had it been runnable during that time'. So by using -rq->fair_clock values we can accurately timestamp and measure the -'expected CPU time' a task should have gotten. All runnable tasks are -sorted in the rbtree by the "rq->fair_clock - p->wait_runtime" key, and -CFS picks the 'leftmost' task and sticks to it. As the system progresses -forwards, newly woken tasks are put into the tree more and more to the -right - slowly but surely giving a chance for every task to become the -'leftmost task' and thus get on the CPU within a deterministic amount of -time. - -Some implementation details: - - - the introduction of Scheduling Classes: an extensible hierarchy of - scheduler modules. These modules encapsulate scheduling policy - details and are handled by the scheduler core without the core - code assuming about them too much. - - - sched_fair.c implements the 'CFS desktop scheduler': it is a - replacement for the vanilla scheduler's SCHED_OTHER interactivity - code. - - I'd like to give credit to Con Kolivas for the general approach here: - he has proven via RSDL/SD that 'fair scheduling' is possible and that - it results in better desktop scheduling. Kudos Con! - - The CFS patch uses a completely different approach and implementation - from RSDL/SD. My goal was to make CFS's interactivity quality exceed - that of RSDL/SD, which is a high standard to meet :-) Testing - feedback is welcome to decide this one way or another. [ and, in any - case, all of SD's logic could be added via a kernel/sched_sd.c module - as well, if Con is interested in such an approach. ] - - CFS's design is quite radical: it does not use runqueues, it uses a - time-ordered rbtree to build a 'timeline' of future task execution, - and thus has no 'array switch' artifacts (by which both the vanilla - scheduler and RSDL/SD are affected). - - CFS uses nanosecond granularity accounting and does not rely on any - jiffies or other HZ detail. Thus the CFS scheduler has no notion of - 'timeslices' and has no heuristics whatsoever. There is only one - central tunable (you have to switch on CONFIG_SCHED_DEBUG): - - /proc/sys/kernel/sched_granularity_ns - - which can be used to tune the scheduler from 'desktop' (low - latencies) to 'server' (good batching) workloads. It defaults to a - setting suitable for desktop workloads. SCHED_BATCH is handled by the - CFS scheduler module too. - - Due to its design, the CFS scheduler is not prone to any of the - 'attacks' that exist today against the heuristics of the stock - scheduler: fiftyp.c, thud.c, chew.c, ring-test.c, massive_intr.c all - work fine and do not impact interactivity and produce the expected - behavior. - - the CFS scheduler has a much stronger handling of nice levels and - SCHED_BATCH: both types of workloads should be isolated much more - agressively than under the vanilla scheduler. - - ( another detail: due to nanosec accounting and timeline sorting, - sched_yield() support is very simple under CFS, and in fact under - CFS sched_yield() behaves much better than under any other - scheduler i have tested so far. ) - - - sched_rt.c implements SCHED_FIFO and SCHED_RR semantics, in a simpler - way than the vanilla scheduler does. It uses 100 runqueues (for all - 100 RT priority levels, instead of 140 in the vanilla scheduler) - and it needs no expired array. - - - reworked/sanitized SMP load-balancing: the runqueue-walking - assumptions are gone from the load-balancing code now, and - iterators of the scheduling modules are used. The balancing code got - quite a bit simpler as a result. - - -Group scheduler extension to CFS -================================ - -Normally the scheduler operates on individual tasks and strives to provide -fair CPU time to each task. Sometimes, it may be desirable to group tasks -and provide fair CPU time to each such task group. For example, it may -be desirable to first provide fair CPU time to each user on the system -and then to each task belonging to a user. - -CONFIG_FAIR_GROUP_SCHED strives to achieve exactly that. It lets -SCHED_NORMAL/BATCH tasks be be grouped and divides CPU time fairly among such -groups. At present, there are two (mutually exclusive) mechanisms to group -tasks for CPU bandwidth control purpose: - - - Based on user id (CONFIG_FAIR_USER_SCHED) - In this option, tasks are grouped according to their user id. - - Based on "cgroup" pseudo filesystem (CONFIG_FAIR_CGROUP_SCHED) - This options lets the administrator create arbitrary groups - of tasks, using the "cgroup" pseudo filesystem. See - Documentation/cgroups.txt for more information about this - filesystem. -Only one of these options to group tasks can be chosen and not both. +1. OVERVIEW + +CFS stands for "Completely Fair Scheduler," and is the new "desktop" process +scheduler implemented by Ingo Molnar and merged in Linux 2.6.23. It is the +replacement for the previous vanilla scheduler's SCHED_OTHER interactivity +code. + +80% of CFS's design can be summed up in a single sentence: CFS basically models +an "ideal, precise multi-tasking CPU" on real hardware. + +"Ideal multi-tasking CPU" is a (non-existent :-)) CPU that has 100% physical +power and which can run each task at precise equal speed, in parallel, each at +1/nr_running speed. For example: if there are 2 tasks running, then it runs +each at 50% physical power --- i.e., actually in parallel. + +On real hardware, we can run only a single task at once, so we have to +introduce the concept of "virtual runtime." The virtual runtime of a task +specifies when its next timeslice would start execution on the ideal +multi-tasking CPU described above. In practice, the virtual runtime of a task +is its actual runtime normalized to the total number of running tasks. + + + +2. FEW IMPLEMENTATION DETAILS + +In CFS the virtual runtime is expressed and tracked via the per-task +p->se.vruntime (nanosec-unit) value. This way, it's possible to accurately +timestamp and measure the "expected CPU time" a task should have gotten. + +[ small detail: on "ideal" hardware, at any time all tasks would have the same + p->se.vruntime value --- i.e., tasks would execute simultaneously and no task + would ever get "out of balance" from the "ideal" share of CPU time. ] + +CFS's task picking logic is based on this p->se.vruntime value and it is thus +very simple: it always tries to run the task with the smallest p->se.vruntime +value (i.e., the task which executed least so far). CFS always tries to split +up CPU time between runnable tasks as close to "ideal multitasking hardware" as +possible. + +Most of the rest of CFS's design just falls out of this really simple concept, +with a few add-on embellishments like nice levels, multiprocessing and various +algorithm variants to recognize sleepers. + + + +3. THE RBTREE + +CFS's design is quite radical: it does not use the old data structures for the +runqueues, but it uses a time-ordered rbtree to build a "timeline" of future +task execution, and thus has no "array switch" artifacts (by which both the +previous vanilla scheduler and RSDL/SD are affected). + +CFS also maintains the rq->cfs.min_vruntime value, which is a monotonic +increasing value tracking the smallest vruntime among all tasks in the +runqueue. The total amount of work done by the system is tracked using +min_vruntime; that value is used to place newly activated entities on the left +side of the tree as much as possible. + +The total number of running tasks in the runqueue is accounted through the +rq->cfs.load value, which is the sum of the weights of the tasks queued on the +runqueue. + +CFS maintains a time-ordered rbtree, where all runnable tasks are sorted by the +p->se.vruntime key (there is a subtraction using rq->cfs.min_vruntime to +account for possible wraparounds). CFS picks the "leftmost" task from this +tree and sticks to it. +As the system progresses forwards, the executed tasks are put into the tree +more and more to the right --- slowly but surely giving a chance for every task +to become the "leftmost task" and thus get on the CPU within a deterministic +amount of time. + +Summing up, CFS works like this: it runs a task a bit, and when the task +schedules (or a scheduler tick happens) the task's CPU usage is "accounted +for": the (small) time it just spent using the physical CPU is added to +p->se.vruntime. Once p->se.vruntime gets high enough so that another task +becomes the "leftmost task" of the time-ordered rbtree it maintains (plus a +small amount of "granularity" distance relative to the leftmost task so that we +do not over-schedule tasks and trash the cache), then the new leftmost task is +picked and the current task is preempted. + + + +4. SOME FEATURES OF CFS + +CFS uses nanosecond granularity accounting and does not rely on any jiffies or +other HZ detail. Thus the CFS scheduler has no notion of "timeslices" in the +way the previous scheduler had, and has no heuristics whatsoever. There is +only one central tunable (you have to switch on CONFIG_SCHED_DEBUG): + + /proc/sys/kernel/sched_granularity_ns + +which can be used to tune the scheduler from "desktop" (i.e., low latencies) to +"server" (i.e., good batching) workloads. It defaults to a setting suitable +for desktop workloads. SCHED_BATCH is handled by the CFS scheduler module too. + +Due to its design, the CFS scheduler is not prone to any of the "attacks" that +exist today against the heuristics of the stock scheduler: fiftyp.c, thud.c, +chew.c, ring-test.c, massive_intr.c all work fine and do not impact +interactivity and produce the expected behavior. + +The CFS scheduler has a much stronger handling of nice levels and SCHED_BATCH +than the previous vanilla scheduler: both types of workloads are isolated much +more aggressively. + +SMP load-balancing has been reworked/sanitized: the runqueue-walking +assumptions are gone from the load-balancing code now, and iterators of the +scheduling modules are used. The balancing code got quite a bit simpler as a +result. + + + +5. SCHEDULING CLASSES + +The new CFS scheduler has been designed in such a way to introduce "Scheduling +Classes," an extensible hierarchy of scheduler modules. These modules +encapsulate scheduling policy details and are handled by the scheduler core +without the core code assuming too much about them. + +sched_fair.c implements the CFS scheduler described above. -Group scheduler tunables: +sched_rt.c implements SCHED_FIFO and SCHED_RR semantics, in a simpler way than +the previous vanilla scheduler did. It uses 100 runqueues (for all 100 RT +priority levels, instead of 140 in the previous scheduler) and it needs no +expired array. -When CONFIG_FAIR_USER_SCHED is defined, a directory is created in sysfs for -each new user and a "cpu_share" file is added in that directory. +Scheduling classes are implemented through the sched_class structure, which +contains hooks to functions that must be called whenever an interesting event +occurs. + +This is the (partial) list of the hooks: + + - enqueue_task(...) + + Called when a task enters a runnable state. + It puts the scheduling entity (task) into the red-black tree and + increments the nr_running variable. + + - dequeue_tree(...) + + When a task is no longer runnable, this function is called to keep the + corresponding scheduling entity out of the red-black tree. It decrements + the nr_running variable. + + - yield_task(...) + + This function is basically just a dequeue followed by an enqueue, unless the + compat_yield sysctl is turned on; in that case, it places the scheduling + entity at the right-most end of the red-black tree. + + - check_preempt_curr(...) + + This function checks if a task that entered the runnable state should + preempt the currently running task. + + - pick_next_task(...) + + This function chooses the most appropriate task eligible to run next. + + - set_curr_task(...) + + This function is called when a task changes its scheduling class or changes + its task group. + + - task_tick(...) + + This function is mostly called from time tick functions; it might lead to + process switch. This drives the running preemption. + + - task_new(...) + + The core scheduler gives the scheduling module an opportunity to manage new + task startup. The CFS scheduling module uses it for group scheduling, while + the scheduling module for a real-time task does not use it. + + + +6. GROUP SCHEDULER EXTENSIONS TO CFS + +Normally, the scheduler operates on individual tasks and strives to provide +fair CPU time to each task. Sometimes, it may be desirable to group tasks and +provide fair CPU time to each such task group. For example, it may be +desirable to first provide fair CPU time to each user on the system and then to +each task belonging to a user. + +CONFIG_GROUP_SCHED strives to achieve exactly that. It lets tasks to be +grouped and divides CPU time fairly among such groups. + +CONFIG_RT_GROUP_SCHED permits to group real-time (i.e., SCHED_FIFO and +SCHED_RR) tasks. + +CONFIG_FAIR_GROUP_SCHED permits to group CFS (i.e., SCHED_NORMAL and +SCHED_BATCH) tasks. + +At present, there are two (mutually exclusive) mechanisms to group tasks for +CPU bandwidth control purposes: + + - Based on user id (CONFIG_USER_SCHED) + + With this option, tasks are grouped according to their user id. + + - Based on "cgroup" pseudo filesystem (CONFIG_CGROUP_SCHED) + + This options needs CONFIG_CGROUPS to be defined, and lets the administrator + create arbitrary groups of tasks, using the "cgroup" pseudo filesystem. See + Documentation/cgroups.txt for more information about this filesystem. + +Only one of these options to group tasks can be chosen and not both. + +When CONFIG_USER_SCHED is defined, a directory is created in sysfs for each new +user and a "cpu_share" file is added in that directory. # cd /sys/kernel/uids # cat 512/cpu_share # Display user 512's CPU share @@ -155,16 +222,14 @@ each new user and a "cpu_share" file is added in that directory. 2048 # -CPU bandwidth between two users are divided in the ratio of their CPU shares. -For ex: if you would like user "root" to get twice the bandwidth of user -"guest", then set the cpu_share for both the users such that "root"'s -cpu_share is twice "guest"'s cpu_share - +CPU bandwidth between two users is divided in the ratio of their CPU shares. +For example: if you would like user "root" to get twice the bandwidth of user +"guest," then set the cpu_share for both the users such that "root"'s cpu_share +is twice "guest"'s cpu_share. -When CONFIG_FAIR_CGROUP_SCHED is defined, a "cpu.shares" file is created -for each group created using the pseudo filesystem. See example steps -below to create task groups and modify their CPU share using the "cgroups" -pseudo filesystem +When CONFIG_CGROUP_SCHED is defined, a "cpu.shares" file is created for each +group created using the pseudo filesystem. See example steps below to create +task groups and modify their CPU share using the "cgroups" pseudo filesystem. # mkdir /dev/cpuctl # mount -t cgroup -ocpu none /dev/cpuctl -- cgit v1.2.3-59-g8ed1b From 65eb3dc609dec17deea48dcd4de2e549d29a9824 Mon Sep 17 00:00:00 2001 From: Kevin Diggs Date: Tue, 26 Aug 2008 10:26:54 +0200 Subject: sched: add kernel doc for the completion, fix kernel-doc-nano-HOWTO.txt This patch adds kernel doc for the completion feature. An error in the split-man.pl PERL snippet in kernel-doc-nano-HOWTO.txt is also fixed. Signed-off-by: Kevin Diggs Signed-off-by: Ingo Molnar --- Documentation/kernel-doc-nano-HOWTO.txt | 4 +-- include/linux/completion.h | 41 ++++++++++++++++++++++++ kernel/sched.c | 56 +++++++++++++++++++++++++++++++++ 3 files changed, 99 insertions(+), 2 deletions(-) (limited to 'Documentation') diff --git a/Documentation/kernel-doc-nano-HOWTO.txt b/Documentation/kernel-doc-nano-HOWTO.txt index 0bd32748a467..c6841eee9598 100644 --- a/Documentation/kernel-doc-nano-HOWTO.txt +++ b/Documentation/kernel-doc-nano-HOWTO.txt @@ -168,10 +168,10 @@ if ($#ARGV < 0) { mkdir $ARGV[0],0777; $state = 0; while () { - if (/^\.TH \"[^\"]*\" 4 \"([^\"]*)\"/) { + if (/^\.TH \"[^\"]*\" 9 \"([^\"]*)\"/) { if ($state == 1) { close OUT } $state = 1; - $fn = "$ARGV[0]/$1.4"; + $fn = "$ARGV[0]/$1.9"; print STDERR "Creating $fn\n"; open OUT, ">$fn" or die "can't open $fn: $!\n"; print OUT $_; diff --git a/include/linux/completion.h b/include/linux/completion.h index 02ef8835999c..4a6b604ef7e4 100644 --- a/include/linux/completion.h +++ b/include/linux/completion.h @@ -10,6 +10,18 @@ #include +/** + * struct completion - structure used to maintain state for a "completion" + * + * This is the opaque structure used to maintain the state for a "completion". + * Completions currently use a FIFO to queue threads that have to wait for + * the "completion" event. + * + * See also: complete(), wait_for_completion() (and friends _timeout, + * _interruptible, _interruptible_timeout, and _killable), init_completion(), + * and macros DECLARE_COMPLETION(), DECLARE_COMPLETION_ONSTACK(), and + * INIT_COMPLETION(). + */ struct completion { unsigned int done; wait_queue_head_t wait; @@ -21,6 +33,14 @@ struct completion { #define COMPLETION_INITIALIZER_ONSTACK(work) \ ({ init_completion(&work); work; }) +/** + * DECLARE_COMPLETION: - declare and initialize a completion structure + * @work: identifier for the completion structure + * + * This macro declares and initializes a completion structure. Generally used + * for static declarations. You should use the _ONSTACK variant for automatic + * variables. + */ #define DECLARE_COMPLETION(work) \ struct completion work = COMPLETION_INITIALIZER(work) @@ -29,6 +49,13 @@ struct completion { * completions - so we use the _ONSTACK() variant for those that * are on the kernel stack: */ +/** + * DECLARE_COMPLETION_ONSTACK: - declare and initialize a completion structure + * @work: identifier for the completion structure + * + * This macro declares and initializes a completion structure on the kernel + * stack. + */ #ifdef CONFIG_LOCKDEP # define DECLARE_COMPLETION_ONSTACK(work) \ struct completion work = COMPLETION_INITIALIZER_ONSTACK(work) @@ -36,6 +63,13 @@ struct completion { # define DECLARE_COMPLETION_ONSTACK(work) DECLARE_COMPLETION(work) #endif +/** + * init_completion: - Initialize a dynamically allocated completion + * @x: completion structure that is to be initialized + * + * This inline function will initialize a dynamically created completion + * structure. + */ static inline void init_completion(struct completion *x) { x->done = 0; @@ -55,6 +89,13 @@ extern bool completion_done(struct completion *x); extern void complete(struct completion *); extern void complete_all(struct completion *); +/** + * INIT_COMPLETION: - reinitialize a completion structure + * @x: completion structure to be reinitialized + * + * This macro should be used to reinitialize a completion structure so it can + * be reused. This is especially important after complete_all() is used. + */ #define INIT_COMPLETION(x) ((x).done = 0) diff --git a/kernel/sched.c b/kernel/sched.c index 29e2ec0bd831..93f5ea08be97 100644 --- a/kernel/sched.c +++ b/kernel/sched.c @@ -4565,6 +4565,15 @@ __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive) } EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */ +/** + * complete: - signals a single thread waiting on this completion + * @x: holds the state of this particular completion + * + * This will wake up a single thread waiting on this completion. Threads will be + * awakened in the same order in which they were queued. + * + * See also complete_all(), wait_for_completion() and related routines. + */ void complete(struct completion *x) { unsigned long flags; @@ -4576,6 +4585,12 @@ void complete(struct completion *x) } EXPORT_SYMBOL(complete); +/** + * complete_all: - signals all threads waiting on this completion + * @x: holds the state of this particular completion + * + * This will wake up all threads waiting on this particular completion event. + */ void complete_all(struct completion *x) { unsigned long flags; @@ -4624,12 +4639,31 @@ wait_for_common(struct completion *x, long timeout, int state) return timeout; } +/** + * wait_for_completion: - waits for completion of a task + * @x: holds the state of this particular completion + * + * This waits to be signaled for completion of a specific task. It is NOT + * interruptible and there is no timeout. + * + * See also similar routines (i.e. wait_for_completion_timeout()) with timeout + * and interrupt capability. Also see complete(). + */ void __sched wait_for_completion(struct completion *x) { wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE); } EXPORT_SYMBOL(wait_for_completion); +/** + * wait_for_completion_timeout: - waits for completion of a task (w/timeout) + * @x: holds the state of this particular completion + * @timeout: timeout value in jiffies + * + * This waits for either a completion of a specific task to be signaled or for a + * specified timeout to expire. The timeout is in jiffies. It is not + * interruptible. + */ unsigned long __sched wait_for_completion_timeout(struct completion *x, unsigned long timeout) { @@ -4637,6 +4671,13 @@ wait_for_completion_timeout(struct completion *x, unsigned long timeout) } EXPORT_SYMBOL(wait_for_completion_timeout); +/** + * wait_for_completion_interruptible: - waits for completion of a task (w/intr) + * @x: holds the state of this particular completion + * + * This waits for completion of a specific task to be signaled. It is + * interruptible. + */ int __sched wait_for_completion_interruptible(struct completion *x) { long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE); @@ -4646,6 +4687,14 @@ int __sched wait_for_completion_interruptible(struct completion *x) } EXPORT_SYMBOL(wait_for_completion_interruptible); +/** + * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr)) + * @x: holds the state of this particular completion + * @timeout: timeout value in jiffies + * + * This waits for either a completion of a specific task to be signaled or for a + * specified timeout to expire. It is interruptible. The timeout is in jiffies. + */ unsigned long __sched wait_for_completion_interruptible_timeout(struct completion *x, unsigned long timeout) @@ -4654,6 +4703,13 @@ wait_for_completion_interruptible_timeout(struct completion *x, } EXPORT_SYMBOL(wait_for_completion_interruptible_timeout); +/** + * wait_for_completion_killable: - waits for completion of a task (killable) + * @x: holds the state of this particular completion + * + * This waits to be signaled for completion of a specific task. It can be + * interrupted by a kill signal. + */ int __sched wait_for_completion_killable(struct completion *x) { long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE); -- cgit v1.2.3-59-g8ed1b From 1a73ef6ac3f4b44abc9d1875eb9240d7524a7cf7 Mon Sep 17 00:00:00 2001 From: Martin Steigerwald Date: Tue, 23 Sep 2008 13:48:44 +0200 Subject: CFS scheduler: documentation about scheduling policies The documentation about the CFS scheduler is scarse when it comes to scheduling policies. This patch adds a chapter about the scheduling policies it supports. Peter Zijlstra provided most of the information for it in http://marc.info/?l=linux-kernel&m=122210038326356&w=2 Signed-off-by: Martin Steigerwald Acked-by: Peter Zijlstra Signed-off-by: Ingo Molnar --- Documentation/scheduler/sched-design-CFS.txt | 28 ++++++++++++++++++++++++++-- 1 file changed, 26 insertions(+), 2 deletions(-) (limited to 'Documentation') diff --git a/Documentation/scheduler/sched-design-CFS.txt b/Documentation/scheduler/sched-design-CFS.txt index b2aa856339a7..9d8eb553884c 100644 --- a/Documentation/scheduler/sched-design-CFS.txt +++ b/Documentation/scheduler/sched-design-CFS.txt @@ -114,7 +114,31 @@ result. -5. SCHEDULING CLASSES +5. Scheduling policies + +CFS implements three scheduling policies: + + - SCHED_NORMAL (traditionally called SCHED_OTHER): The scheduling + policy that is used for regular tasks. + + - SCHED_BATCH: Does not preempt nearly as often as regular tasks + would, thereby allowing tasks to run longer and make better use of + caches but at the cost of interactivity. This is well suited for + batch jobs. + + - SCHED_IDLE: This is even weaker than nice 19, but its not a true + idle timer scheduler in order to avoid to get into priority + inversion problems which would deadlock the machine. + +SCHED_FIFO/_RR are implemented in sched_rt.c and are as specified by +POSIX. + +The command chrt from util-linux-ng 2.13.1.1 can set all of these except +SCHED_IDLE. + + + +6. SCHEDULING CLASSES The new CFS scheduler has been designed in such a way to introduce "Scheduling Classes," an extensible hierarchy of scheduler modules. These modules @@ -179,7 +203,7 @@ This is the (partial) list of the hooks: -6. GROUP SCHEDULER EXTENSIONS TO CFS +7. GROUP SCHEDULER EXTENSIONS TO CFS Normally, the scheduler operates on individual tasks and strives to provide fair CPU time to each task. Sometimes, it may be desirable to group tasks and -- cgit v1.2.3-59-g8ed1b