From d88b1397c674178e595319fab4a3cd434c915639 Mon Sep 17 00:00:00 2001 From: Peter Ujfalusi Date: Wed, 25 Apr 2018 11:45:03 +0300 Subject: dmaengine: ti: New directory for Texas Instruments DMA drivers Collect the Texas Instruments DMA drivers under drivers/dma/ti/ Signed-off-by: Peter Ujfalusi Signed-off-by: Vinod Koul --- drivers/dma/ti/edma.c | 2568 +++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 2568 insertions(+) create mode 100644 drivers/dma/ti/edma.c (limited to 'drivers/dma/ti/edma.c') diff --git a/drivers/dma/ti/edma.c b/drivers/dma/ti/edma.c new file mode 100644 index 000000000000..93a5cbf13319 --- /dev/null +++ b/drivers/dma/ti/edma.c @@ -0,0 +1,2568 @@ +/* + * TI EDMA DMA engine driver + * + * Copyright 2012 Texas Instruments + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License as + * published by the Free Software Foundation version 2. + * + * This program is distributed "as is" WITHOUT ANY WARRANTY of any + * kind, whether express or implied; without even the implied warranty + * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + */ + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#include + +#include "../dmaengine.h" +#include "../virt-dma.h" + +/* Offsets matching "struct edmacc_param" */ +#define PARM_OPT 0x00 +#define PARM_SRC 0x04 +#define PARM_A_B_CNT 0x08 +#define PARM_DST 0x0c +#define PARM_SRC_DST_BIDX 0x10 +#define PARM_LINK_BCNTRLD 0x14 +#define PARM_SRC_DST_CIDX 0x18 +#define PARM_CCNT 0x1c + +#define PARM_SIZE 0x20 + +/* Offsets for EDMA CC global channel registers and their shadows */ +#define SH_ER 0x00 /* 64 bits */ +#define SH_ECR 0x08 /* 64 bits */ +#define SH_ESR 0x10 /* 64 bits */ +#define SH_CER 0x18 /* 64 bits */ +#define SH_EER 0x20 /* 64 bits */ +#define SH_EECR 0x28 /* 64 bits */ +#define SH_EESR 0x30 /* 64 bits */ +#define SH_SER 0x38 /* 64 bits */ +#define SH_SECR 0x40 /* 64 bits */ +#define SH_IER 0x50 /* 64 bits */ +#define SH_IECR 0x58 /* 64 bits */ +#define SH_IESR 0x60 /* 64 bits */ +#define SH_IPR 0x68 /* 64 bits */ +#define SH_ICR 0x70 /* 64 bits */ +#define SH_IEVAL 0x78 +#define SH_QER 0x80 +#define SH_QEER 0x84 +#define SH_QEECR 0x88 +#define SH_QEESR 0x8c +#define SH_QSER 0x90 +#define SH_QSECR 0x94 +#define SH_SIZE 0x200 + +/* Offsets for EDMA CC global registers */ +#define EDMA_REV 0x0000 +#define EDMA_CCCFG 0x0004 +#define EDMA_QCHMAP 0x0200 /* 8 registers */ +#define EDMA_DMAQNUM 0x0240 /* 8 registers (4 on OMAP-L1xx) */ +#define EDMA_QDMAQNUM 0x0260 +#define EDMA_QUETCMAP 0x0280 +#define EDMA_QUEPRI 0x0284 +#define EDMA_EMR 0x0300 /* 64 bits */ +#define EDMA_EMCR 0x0308 /* 64 bits */ +#define EDMA_QEMR 0x0310 +#define EDMA_QEMCR 0x0314 +#define EDMA_CCERR 0x0318 +#define EDMA_CCERRCLR 0x031c +#define EDMA_EEVAL 0x0320 +#define EDMA_DRAE 0x0340 /* 4 x 64 bits*/ +#define EDMA_QRAE 0x0380 /* 4 registers */ +#define EDMA_QUEEVTENTRY 0x0400 /* 2 x 16 registers */ +#define EDMA_QSTAT 0x0600 /* 2 registers */ +#define EDMA_QWMTHRA 0x0620 +#define EDMA_QWMTHRB 0x0624 +#define EDMA_CCSTAT 0x0640 + +#define EDMA_M 0x1000 /* global channel registers */ +#define EDMA_ECR 0x1008 +#define EDMA_ECRH 0x100C +#define EDMA_SHADOW0 0x2000 /* 4 shadow regions */ +#define EDMA_PARM 0x4000 /* PaRAM entries */ + +#define PARM_OFFSET(param_no) (EDMA_PARM + ((param_no) << 5)) + +#define EDMA_DCHMAP 0x0100 /* 64 registers */ + +/* CCCFG register */ +#define GET_NUM_DMACH(x) (x & 0x7) /* bits 0-2 */ +#define GET_NUM_QDMACH(x) ((x & 0x70) >> 4) /* bits 4-6 */ +#define GET_NUM_PAENTRY(x) ((x & 0x7000) >> 12) /* bits 12-14 */ +#define GET_NUM_EVQUE(x) ((x & 0x70000) >> 16) /* bits 16-18 */ +#define GET_NUM_REGN(x) ((x & 0x300000) >> 20) /* bits 20-21 */ +#define CHMAP_EXIST BIT(24) + +/* CCSTAT register */ +#define EDMA_CCSTAT_ACTV BIT(4) + +/* + * Max of 20 segments per channel to conserve PaRAM slots + * Also note that MAX_NR_SG should be atleast the no.of periods + * that are required for ASoC, otherwise DMA prep calls will + * fail. Today davinci-pcm is the only user of this driver and + * requires atleast 17 slots, so we setup the default to 20. + */ +#define MAX_NR_SG 20 +#define EDMA_MAX_SLOTS MAX_NR_SG +#define EDMA_DESCRIPTORS 16 + +#define EDMA_CHANNEL_ANY -1 /* for edma_alloc_channel() */ +#define EDMA_SLOT_ANY -1 /* for edma_alloc_slot() */ +#define EDMA_CONT_PARAMS_ANY 1001 +#define EDMA_CONT_PARAMS_FIXED_EXACT 1002 +#define EDMA_CONT_PARAMS_FIXED_NOT_EXACT 1003 + +/* PaRAM slots are laid out like this */ +struct edmacc_param { + u32 opt; + u32 src; + u32 a_b_cnt; + u32 dst; + u32 src_dst_bidx; + u32 link_bcntrld; + u32 src_dst_cidx; + u32 ccnt; +} __packed; + +/* fields in edmacc_param.opt */ +#define SAM BIT(0) +#define DAM BIT(1) +#define SYNCDIM BIT(2) +#define STATIC BIT(3) +#define EDMA_FWID (0x07 << 8) +#define TCCMODE BIT(11) +#define EDMA_TCC(t) ((t) << 12) +#define TCINTEN BIT(20) +#define ITCINTEN BIT(21) +#define TCCHEN BIT(22) +#define ITCCHEN BIT(23) + +struct edma_pset { + u32 len; + dma_addr_t addr; + struct edmacc_param param; +}; + +struct edma_desc { + struct virt_dma_desc vdesc; + struct list_head node; + enum dma_transfer_direction direction; + int cyclic; + int absync; + int pset_nr; + struct edma_chan *echan; + int processed; + + /* + * The following 4 elements are used for residue accounting. + * + * - processed_stat: the number of SG elements we have traversed + * so far to cover accounting. This is updated directly to processed + * during edma_callback and is always <= processed, because processed + * refers to the number of pending transfer (programmed to EDMA + * controller), where as processed_stat tracks number of transfers + * accounted for so far. + * + * - residue: The amount of bytes we have left to transfer for this desc + * + * - residue_stat: The residue in bytes of data we have covered + * so far for accounting. This is updated directly to residue + * during callbacks to keep it current. + * + * - sg_len: Tracks the length of the current intermediate transfer, + * this is required to update the residue during intermediate transfer + * completion callback. + */ + int processed_stat; + u32 sg_len; + u32 residue; + u32 residue_stat; + + struct edma_pset pset[0]; +}; + +struct edma_cc; + +struct edma_tc { + struct device_node *node; + u16 id; +}; + +struct edma_chan { + struct virt_dma_chan vchan; + struct list_head node; + struct edma_desc *edesc; + struct edma_cc *ecc; + struct edma_tc *tc; + int ch_num; + bool alloced; + bool hw_triggered; + int slot[EDMA_MAX_SLOTS]; + int missed; + struct dma_slave_config cfg; +}; + +struct edma_cc { + struct device *dev; + struct edma_soc_info *info; + void __iomem *base; + int id; + bool legacy_mode; + + /* eDMA3 resource information */ + unsigned num_channels; + unsigned num_qchannels; + unsigned num_region; + unsigned num_slots; + unsigned num_tc; + bool chmap_exist; + enum dma_event_q default_queue; + + unsigned int ccint; + unsigned int ccerrint; + + /* + * The slot_inuse bit for each PaRAM slot is clear unless the slot is + * in use by Linux or if it is allocated to be used by DSP. + */ + unsigned long *slot_inuse; + + struct dma_device dma_slave; + struct dma_device *dma_memcpy; + struct edma_chan *slave_chans; + struct edma_tc *tc_list; + int dummy_slot; +}; + +/* dummy param set used to (re)initialize parameter RAM slots */ +static const struct edmacc_param dummy_paramset = { + .link_bcntrld = 0xffff, + .ccnt = 1, +}; + +#define EDMA_BINDING_LEGACY 0 +#define EDMA_BINDING_TPCC 1 +static const u32 edma_binding_type[] = { + [EDMA_BINDING_LEGACY] = EDMA_BINDING_LEGACY, + [EDMA_BINDING_TPCC] = EDMA_BINDING_TPCC, +}; + +static const struct of_device_id edma_of_ids[] = { + { + .compatible = "ti,edma3", + .data = &edma_binding_type[EDMA_BINDING_LEGACY], + }, + { + .compatible = "ti,edma3-tpcc", + .data = &edma_binding_type[EDMA_BINDING_TPCC], + }, + {} +}; +MODULE_DEVICE_TABLE(of, edma_of_ids); + +static const struct of_device_id edma_tptc_of_ids[] = { + { .compatible = "ti,edma3-tptc", }, + {} +}; +MODULE_DEVICE_TABLE(of, edma_tptc_of_ids); + +static inline unsigned int edma_read(struct edma_cc *ecc, int offset) +{ + return (unsigned int)__raw_readl(ecc->base + offset); +} + +static inline void edma_write(struct edma_cc *ecc, int offset, int val) +{ + __raw_writel(val, ecc->base + offset); +} + +static inline void edma_modify(struct edma_cc *ecc, int offset, unsigned and, + unsigned or) +{ + unsigned val = edma_read(ecc, offset); + + val &= and; + val |= or; + edma_write(ecc, offset, val); +} + +static inline void edma_and(struct edma_cc *ecc, int offset, unsigned and) +{ + unsigned val = edma_read(ecc, offset); + + val &= and; + edma_write(ecc, offset, val); +} + +static inline void edma_or(struct edma_cc *ecc, int offset, unsigned or) +{ + unsigned val = edma_read(ecc, offset); + + val |= or; + edma_write(ecc, offset, val); +} + +static inline unsigned int edma_read_array(struct edma_cc *ecc, int offset, + int i) +{ + return edma_read(ecc, offset + (i << 2)); +} + +static inline void edma_write_array(struct edma_cc *ecc, int offset, int i, + unsigned val) +{ + edma_write(ecc, offset + (i << 2), val); +} + +static inline void edma_modify_array(struct edma_cc *ecc, int offset, int i, + unsigned and, unsigned or) +{ + edma_modify(ecc, offset + (i << 2), and, or); +} + +static inline void edma_or_array(struct edma_cc *ecc, int offset, int i, + unsigned or) +{ + edma_or(ecc, offset + (i << 2), or); +} + +static inline void edma_or_array2(struct edma_cc *ecc, int offset, int i, int j, + unsigned or) +{ + edma_or(ecc, offset + ((i * 2 + j) << 2), or); +} + +static inline void edma_write_array2(struct edma_cc *ecc, int offset, int i, + int j, unsigned val) +{ + edma_write(ecc, offset + ((i * 2 + j) << 2), val); +} + +static inline unsigned int edma_shadow0_read(struct edma_cc *ecc, int offset) +{ + return edma_read(ecc, EDMA_SHADOW0 + offset); +} + +static inline unsigned int edma_shadow0_read_array(struct edma_cc *ecc, + int offset, int i) +{ + return edma_read(ecc, EDMA_SHADOW0 + offset + (i << 2)); +} + +static inline void edma_shadow0_write(struct edma_cc *ecc, int offset, + unsigned val) +{ + edma_write(ecc, EDMA_SHADOW0 + offset, val); +} + +static inline void edma_shadow0_write_array(struct edma_cc *ecc, int offset, + int i, unsigned val) +{ + edma_write(ecc, EDMA_SHADOW0 + offset + (i << 2), val); +} + +static inline unsigned int edma_param_read(struct edma_cc *ecc, int offset, + int param_no) +{ + return edma_read(ecc, EDMA_PARM + offset + (param_no << 5)); +} + +static inline void edma_param_write(struct edma_cc *ecc, int offset, + int param_no, unsigned val) +{ + edma_write(ecc, EDMA_PARM + offset + (param_no << 5), val); +} + +static inline void edma_param_modify(struct edma_cc *ecc, int offset, + int param_no, unsigned and, unsigned or) +{ + edma_modify(ecc, EDMA_PARM + offset + (param_no << 5), and, or); +} + +static inline void edma_param_and(struct edma_cc *ecc, int offset, int param_no, + unsigned and) +{ + edma_and(ecc, EDMA_PARM + offset + (param_no << 5), and); +} + +static inline void edma_param_or(struct edma_cc *ecc, int offset, int param_no, + unsigned or) +{ + edma_or(ecc, EDMA_PARM + offset + (param_no << 5), or); +} + +static inline void edma_set_bits(int offset, int len, unsigned long *p) +{ + for (; len > 0; len--) + set_bit(offset + (len - 1), p); +} + +static void edma_assign_priority_to_queue(struct edma_cc *ecc, int queue_no, + int priority) +{ + int bit = queue_no * 4; + + edma_modify(ecc, EDMA_QUEPRI, ~(0x7 << bit), ((priority & 0x7) << bit)); +} + +static void edma_set_chmap(struct edma_chan *echan, int slot) +{ + struct edma_cc *ecc = echan->ecc; + int channel = EDMA_CHAN_SLOT(echan->ch_num); + + if (ecc->chmap_exist) { + slot = EDMA_CHAN_SLOT(slot); + edma_write_array(ecc, EDMA_DCHMAP, channel, (slot << 5)); + } +} + +static void edma_setup_interrupt(struct edma_chan *echan, bool enable) +{ + struct edma_cc *ecc = echan->ecc; + int channel = EDMA_CHAN_SLOT(echan->ch_num); + + if (enable) { + edma_shadow0_write_array(ecc, SH_ICR, channel >> 5, + BIT(channel & 0x1f)); + edma_shadow0_write_array(ecc, SH_IESR, channel >> 5, + BIT(channel & 0x1f)); + } else { + edma_shadow0_write_array(ecc, SH_IECR, channel >> 5, + BIT(channel & 0x1f)); + } +} + +/* + * paRAM slot management functions + */ +static void edma_write_slot(struct edma_cc *ecc, unsigned slot, + const struct edmacc_param *param) +{ + slot = EDMA_CHAN_SLOT(slot); + if (slot >= ecc->num_slots) + return; + memcpy_toio(ecc->base + PARM_OFFSET(slot), param, PARM_SIZE); +} + +static int edma_read_slot(struct edma_cc *ecc, unsigned slot, + struct edmacc_param *param) +{ + slot = EDMA_CHAN_SLOT(slot); + if (slot >= ecc->num_slots) + return -EINVAL; + memcpy_fromio(param, ecc->base + PARM_OFFSET(slot), PARM_SIZE); + + return 0; +} + +/** + * edma_alloc_slot - allocate DMA parameter RAM + * @ecc: pointer to edma_cc struct + * @slot: specific slot to allocate; negative for "any unused slot" + * + * This allocates a parameter RAM slot, initializing it to hold a + * dummy transfer. Slots allocated using this routine have not been + * mapped to a hardware DMA channel, and will normally be used by + * linking to them from a slot associated with a DMA channel. + * + * Normal use is to pass EDMA_SLOT_ANY as the @slot, but specific + * slots may be allocated on behalf of DSP firmware. + * + * Returns the number of the slot, else negative errno. + */ +static int edma_alloc_slot(struct edma_cc *ecc, int slot) +{ + if (slot >= 0) { + slot = EDMA_CHAN_SLOT(slot); + /* Requesting entry paRAM slot for a HW triggered channel. */ + if (ecc->chmap_exist && slot < ecc->num_channels) + slot = EDMA_SLOT_ANY; + } + + if (slot < 0) { + if (ecc->chmap_exist) + slot = 0; + else + slot = ecc->num_channels; + for (;;) { + slot = find_next_zero_bit(ecc->slot_inuse, + ecc->num_slots, + slot); + if (slot == ecc->num_slots) + return -ENOMEM; + if (!test_and_set_bit(slot, ecc->slot_inuse)) + break; + } + } else if (slot >= ecc->num_slots) { + return -EINVAL; + } else if (test_and_set_bit(slot, ecc->slot_inuse)) { + return -EBUSY; + } + + edma_write_slot(ecc, slot, &dummy_paramset); + + return EDMA_CTLR_CHAN(ecc->id, slot); +} + +static void edma_free_slot(struct edma_cc *ecc, unsigned slot) +{ + slot = EDMA_CHAN_SLOT(slot); + if (slot >= ecc->num_slots) + return; + + edma_write_slot(ecc, slot, &dummy_paramset); + clear_bit(slot, ecc->slot_inuse); +} + +/** + * edma_link - link one parameter RAM slot to another + * @ecc: pointer to edma_cc struct + * @from: parameter RAM slot originating the link + * @to: parameter RAM slot which is the link target + * + * The originating slot should not be part of any active DMA transfer. + */ +static void edma_link(struct edma_cc *ecc, unsigned from, unsigned to) +{ + if (unlikely(EDMA_CTLR(from) != EDMA_CTLR(to))) + dev_warn(ecc->dev, "Ignoring eDMA instance for linking\n"); + + from = EDMA_CHAN_SLOT(from); + to = EDMA_CHAN_SLOT(to); + if (from >= ecc->num_slots || to >= ecc->num_slots) + return; + + edma_param_modify(ecc, PARM_LINK_BCNTRLD, from, 0xffff0000, + PARM_OFFSET(to)); +} + +/** + * edma_get_position - returns the current transfer point + * @ecc: pointer to edma_cc struct + * @slot: parameter RAM slot being examined + * @dst: true selects the dest position, false the source + * + * Returns the position of the current active slot + */ +static dma_addr_t edma_get_position(struct edma_cc *ecc, unsigned slot, + bool dst) +{ + u32 offs; + + slot = EDMA_CHAN_SLOT(slot); + offs = PARM_OFFSET(slot); + offs += dst ? PARM_DST : PARM_SRC; + + return edma_read(ecc, offs); +} + +/* + * Channels with event associations will be triggered by their hardware + * events, and channels without such associations will be triggered by + * software. (At this writing there is no interface for using software + * triggers except with channels that don't support hardware triggers.) + */ +static void edma_start(struct edma_chan *echan) +{ + struct edma_cc *ecc = echan->ecc; + int channel = EDMA_CHAN_SLOT(echan->ch_num); + int j = (channel >> 5); + unsigned int mask = BIT(channel & 0x1f); + + if (!echan->hw_triggered) { + /* EDMA channels without event association */ + dev_dbg(ecc->dev, "ESR%d %08x\n", j, + edma_shadow0_read_array(ecc, SH_ESR, j)); + edma_shadow0_write_array(ecc, SH_ESR, j, mask); + } else { + /* EDMA channel with event association */ + dev_dbg(ecc->dev, "ER%d %08x\n", j, + edma_shadow0_read_array(ecc, SH_ER, j)); + /* Clear any pending event or error */ + edma_write_array(ecc, EDMA_ECR, j, mask); + edma_write_array(ecc, EDMA_EMCR, j, mask); + /* Clear any SER */ + edma_shadow0_write_array(ecc, SH_SECR, j, mask); + edma_shadow0_write_array(ecc, SH_EESR, j, mask); + dev_dbg(ecc->dev, "EER%d %08x\n", j, + edma_shadow0_read_array(ecc, SH_EER, j)); + } +} + +static void edma_stop(struct edma_chan *echan) +{ + struct edma_cc *ecc = echan->ecc; + int channel = EDMA_CHAN_SLOT(echan->ch_num); + int j = (channel >> 5); + unsigned int mask = BIT(channel & 0x1f); + + edma_shadow0_write_array(ecc, SH_EECR, j, mask); + edma_shadow0_write_array(ecc, SH_ECR, j, mask); + edma_shadow0_write_array(ecc, SH_SECR, j, mask); + edma_write_array(ecc, EDMA_EMCR, j, mask); + + /* clear possibly pending completion interrupt */ + edma_shadow0_write_array(ecc, SH_ICR, j, mask); + + dev_dbg(ecc->dev, "EER%d %08x\n", j, + edma_shadow0_read_array(ecc, SH_EER, j)); + + /* REVISIT: consider guarding against inappropriate event + * chaining by overwriting with dummy_paramset. + */ +} + +/* + * Temporarily disable EDMA hardware events on the specified channel, + * preventing them from triggering new transfers + */ +static void edma_pause(struct edma_chan *echan) +{ + int channel = EDMA_CHAN_SLOT(echan->ch_num); + unsigned int mask = BIT(channel & 0x1f); + + edma_shadow0_write_array(echan->ecc, SH_EECR, channel >> 5, mask); +} + +/* Re-enable EDMA hardware events on the specified channel. */ +static void edma_resume(struct edma_chan *echan) +{ + int channel = EDMA_CHAN_SLOT(echan->ch_num); + unsigned int mask = BIT(channel & 0x1f); + + edma_shadow0_write_array(echan->ecc, SH_EESR, channel >> 5, mask); +} + +static void edma_trigger_channel(struct edma_chan *echan) +{ + struct edma_cc *ecc = echan->ecc; + int channel = EDMA_CHAN_SLOT(echan->ch_num); + unsigned int mask = BIT(channel & 0x1f); + + edma_shadow0_write_array(ecc, SH_ESR, (channel >> 5), mask); + + dev_dbg(ecc->dev, "ESR%d %08x\n", (channel >> 5), + edma_shadow0_read_array(ecc, SH_ESR, (channel >> 5))); +} + +static void edma_clean_channel(struct edma_chan *echan) +{ + struct edma_cc *ecc = echan->ecc; + int channel = EDMA_CHAN_SLOT(echan->ch_num); + int j = (channel >> 5); + unsigned int mask = BIT(channel & 0x1f); + + dev_dbg(ecc->dev, "EMR%d %08x\n", j, edma_read_array(ecc, EDMA_EMR, j)); + edma_shadow0_write_array(ecc, SH_ECR, j, mask); + /* Clear the corresponding EMR bits */ + edma_write_array(ecc, EDMA_EMCR, j, mask); + /* Clear any SER */ + edma_shadow0_write_array(ecc, SH_SECR, j, mask); + edma_write(ecc, EDMA_CCERRCLR, BIT(16) | BIT(1) | BIT(0)); +} + +/* Move channel to a specific event queue */ +static void edma_assign_channel_eventq(struct edma_chan *echan, + enum dma_event_q eventq_no) +{ + struct edma_cc *ecc = echan->ecc; + int channel = EDMA_CHAN_SLOT(echan->ch_num); + int bit = (channel & 0x7) * 4; + + /* default to low priority queue */ + if (eventq_no == EVENTQ_DEFAULT) + eventq_no = ecc->default_queue; + if (eventq_no >= ecc->num_tc) + return; + + eventq_no &= 7; + edma_modify_array(ecc, EDMA_DMAQNUM, (channel >> 3), ~(0x7 << bit), + eventq_no << bit); +} + +static int edma_alloc_channel(struct edma_chan *echan, + enum dma_event_q eventq_no) +{ + struct edma_cc *ecc = echan->ecc; + int channel = EDMA_CHAN_SLOT(echan->ch_num); + + /* ensure access through shadow region 0 */ + edma_or_array2(ecc, EDMA_DRAE, 0, channel >> 5, BIT(channel & 0x1f)); + + /* ensure no events are pending */ + edma_stop(echan); + + edma_setup_interrupt(echan, true); + + edma_assign_channel_eventq(echan, eventq_no); + + return 0; +} + +static void edma_free_channel(struct edma_chan *echan) +{ + /* ensure no events are pending */ + edma_stop(echan); + /* REVISIT should probably take out of shadow region 0 */ + edma_setup_interrupt(echan, false); +} + +static inline struct edma_cc *to_edma_cc(struct dma_device *d) +{ + return container_of(d, struct edma_cc, dma_slave); +} + +static inline struct edma_chan *to_edma_chan(struct dma_chan *c) +{ + return container_of(c, struct edma_chan, vchan.chan); +} + +static inline struct edma_desc *to_edma_desc(struct dma_async_tx_descriptor *tx) +{ + return container_of(tx, struct edma_desc, vdesc.tx); +} + +static void edma_desc_free(struct virt_dma_desc *vdesc) +{ + kfree(container_of(vdesc, struct edma_desc, vdesc)); +} + +/* Dispatch a queued descriptor to the controller (caller holds lock) */ +static void edma_execute(struct edma_chan *echan) +{ + struct edma_cc *ecc = echan->ecc; + struct virt_dma_desc *vdesc; + struct edma_desc *edesc; + struct device *dev = echan->vchan.chan.device->dev; + int i, j, left, nslots; + + if (!echan->edesc) { + /* Setup is needed for the first transfer */ + vdesc = vchan_next_desc(&echan->vchan); + if (!vdesc) + return; + list_del(&vdesc->node); + echan->edesc = to_edma_desc(&vdesc->tx); + } + + edesc = echan->edesc; + + /* Find out how many left */ + left = edesc->pset_nr - edesc->processed; + nslots = min(MAX_NR_SG, left); + edesc->sg_len = 0; + + /* Write descriptor PaRAM set(s) */ + for (i = 0; i < nslots; i++) { + j = i + edesc->processed; + edma_write_slot(ecc, echan->slot[i], &edesc->pset[j].param); + edesc->sg_len += edesc->pset[j].len; + dev_vdbg(dev, + "\n pset[%d]:\n" + " chnum\t%d\n" + " slot\t%d\n" + " opt\t%08x\n" + " src\t%08x\n" + " dst\t%08x\n" + " abcnt\t%08x\n" + " ccnt\t%08x\n" + " bidx\t%08x\n" + " cidx\t%08x\n" + " lkrld\t%08x\n", + j, echan->ch_num, echan->slot[i], + edesc->pset[j].param.opt, + edesc->pset[j].param.src, + edesc->pset[j].param.dst, + edesc->pset[j].param.a_b_cnt, + edesc->pset[j].param.ccnt, + edesc->pset[j].param.src_dst_bidx, + edesc->pset[j].param.src_dst_cidx, + edesc->pset[j].param.link_bcntrld); + /* Link to the previous slot if not the last set */ + if (i != (nslots - 1)) + edma_link(ecc, echan->slot[i], echan->slot[i + 1]); + } + + edesc->processed += nslots; + + /* + * If this is either the last set in a set of SG-list transactions + * then setup a link to the dummy slot, this results in all future + * events being absorbed and that's OK because we're done + */ + if (edesc->processed == edesc->pset_nr) { + if (edesc->cyclic) + edma_link(ecc, echan->slot[nslots - 1], echan->slot[1]); + else + edma_link(ecc, echan->slot[nslots - 1], + echan->ecc->dummy_slot); + } + + if (echan->missed) { + /* + * This happens due to setup times between intermediate + * transfers in long SG lists which have to be broken up into + * transfers of MAX_NR_SG + */ + dev_dbg(dev, "missed event on channel %d\n", echan->ch_num); + edma_clean_channel(echan); + edma_stop(echan); + edma_start(echan); + edma_trigger_channel(echan); + echan->missed = 0; + } else if (edesc->processed <= MAX_NR_SG) { + dev_dbg(dev, "first transfer starting on channel %d\n", + echan->ch_num); + edma_start(echan); + } else { + dev_dbg(dev, "chan: %d: completed %d elements, resuming\n", + echan->ch_num, edesc->processed); + edma_resume(echan); + } +} + +static int edma_terminate_all(struct dma_chan *chan) +{ + struct edma_chan *echan = to_edma_chan(chan); + unsigned long flags; + LIST_HEAD(head); + + spin_lock_irqsave(&echan->vchan.lock, flags); + + /* + * Stop DMA activity: we assume the callback will not be called + * after edma_dma() returns (even if it does, it will see + * echan->edesc is NULL and exit.) + */ + if (echan->edesc) { + edma_stop(echan); + /* Move the cyclic channel back to default queue */ + if (!echan->tc && echan->edesc->cyclic) + edma_assign_channel_eventq(echan, EVENTQ_DEFAULT); + + vchan_terminate_vdesc(&echan->edesc->vdesc); + echan->edesc = NULL; + } + + vchan_get_all_descriptors(&echan->vchan, &head); + spin_unlock_irqrestore(&echan->vchan.lock, flags); + vchan_dma_desc_free_list(&echan->vchan, &head); + + return 0; +} + +static void edma_synchronize(struct dma_chan *chan) +{ + struct edma_chan *echan = to_edma_chan(chan); + + vchan_synchronize(&echan->vchan); +} + +static int edma_slave_config(struct dma_chan *chan, + struct dma_slave_config *cfg) +{ + struct edma_chan *echan = to_edma_chan(chan); + + if (cfg->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES || + cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES) + return -EINVAL; + + if (cfg->src_maxburst > chan->device->max_burst || + cfg->dst_maxburst > chan->device->max_burst) + return -EINVAL; + + memcpy(&echan->cfg, cfg, sizeof(echan->cfg)); + + return 0; +} + +static int edma_dma_pause(struct dma_chan *chan) +{ + struct edma_chan *echan = to_edma_chan(chan); + + if (!echan->edesc) + return -EINVAL; + + edma_pause(echan); + return 0; +} + +static int edma_dma_resume(struct dma_chan *chan) +{ + struct edma_chan *echan = to_edma_chan(chan); + + edma_resume(echan); + return 0; +} + +/* + * A PaRAM set configuration abstraction used by other modes + * @chan: Channel who's PaRAM set we're configuring + * @pset: PaRAM set to initialize and setup. + * @src_addr: Source address of the DMA + * @dst_addr: Destination address of the DMA + * @burst: In units of dev_width, how much to send + * @dev_width: How much is the dev_width + * @dma_length: Total length of the DMA transfer + * @direction: Direction of the transfer + */ +static int edma_config_pset(struct dma_chan *chan, struct edma_pset *epset, + dma_addr_t src_addr, dma_addr_t dst_addr, u32 burst, + unsigned int acnt, unsigned int dma_length, + enum dma_transfer_direction direction) +{ + struct edma_chan *echan = to_edma_chan(chan); + struct device *dev = chan->device->dev; + struct edmacc_param *param = &epset->param; + int bcnt, ccnt, cidx; + int src_bidx, dst_bidx, src_cidx, dst_cidx; + int absync; + + /* src/dst_maxburst == 0 is the same case as src/dst_maxburst == 1 */ + if (!burst) + burst = 1; + /* + * If the maxburst is equal to the fifo width, use + * A-synced transfers. This allows for large contiguous + * buffer transfers using only one PaRAM set. + */ + if (burst == 1) { + /* + * For the A-sync case, bcnt and ccnt are the remainder + * and quotient respectively of the division of: + * (dma_length / acnt) by (SZ_64K -1). This is so + * that in case bcnt over flows, we have ccnt to use. + * Note: In A-sync tranfer only, bcntrld is used, but it + * only applies for sg_dma_len(sg) >= SZ_64K. + * In this case, the best way adopted is- bccnt for the + * first frame will be the remainder below. Then for + * every successive frame, bcnt will be SZ_64K-1. This + * is assured as bcntrld = 0xffff in end of function. + */ + absync = false; + ccnt = dma_length / acnt / (SZ_64K - 1); + bcnt = dma_length / acnt - ccnt * (SZ_64K - 1); + /* + * If bcnt is non-zero, we have a remainder and hence an + * extra frame to transfer, so increment ccnt. + */ + if (bcnt) + ccnt++; + else + bcnt = SZ_64K - 1; + cidx = acnt; + } else { + /* + * If maxburst is greater than the fifo address_width, + * use AB-synced transfers where A count is the fifo + * address_width and B count is the maxburst. In this + * case, we are limited to transfers of C count frames + * of (address_width * maxburst) where C count is limited + * to SZ_64K-1. This places an upper bound on the length + * of an SG segment that can be handled. + */ + absync = true; + bcnt = burst; + ccnt = dma_length / (acnt * bcnt); + if (ccnt > (SZ_64K - 1)) { + dev_err(dev, "Exceeded max SG segment size\n"); + return -EINVAL; + } + cidx = acnt * bcnt; + } + + epset->len = dma_length; + + if (direction == DMA_MEM_TO_DEV) { + src_bidx = acnt; + src_cidx = cidx; + dst_bidx = 0; + dst_cidx = 0; + epset->addr = src_addr; + } else if (direction == DMA_DEV_TO_MEM) { + src_bidx = 0; + src_cidx = 0; + dst_bidx = acnt; + dst_cidx = cidx; + epset->addr = dst_addr; + } else if (direction == DMA_MEM_TO_MEM) { + src_bidx = acnt; + src_cidx = cidx; + dst_bidx = acnt; + dst_cidx = cidx; + } else { + dev_err(dev, "%s: direction not implemented yet\n", __func__); + return -EINVAL; + } + + param->opt = EDMA_TCC(EDMA_CHAN_SLOT(echan->ch_num)); + /* Configure A or AB synchronized transfers */ + if (absync) + param->opt |= SYNCDIM; + + param->src = src_addr; + param->dst = dst_addr; + + param->src_dst_bidx = (dst_bidx << 16) | src_bidx; + param->src_dst_cidx = (dst_cidx << 16) | src_cidx; + + param->a_b_cnt = bcnt << 16 | acnt; + param->ccnt = ccnt; + /* + * Only time when (bcntrld) auto reload is required is for + * A-sync case, and in this case, a requirement of reload value + * of SZ_64K-1 only is assured. 'link' is initially set to NULL + * and then later will be populated by edma_execute. + */ + param->link_bcntrld = 0xffffffff; + return absync; +} + +static struct dma_async_tx_descriptor *edma_prep_slave_sg( + struct dma_chan *chan, struct scatterlist *sgl, + unsigned int sg_len, enum dma_transfer_direction direction, + unsigned long tx_flags, void *context) +{ + struct edma_chan *echan = to_edma_chan(chan); + struct device *dev = chan->device->dev; + struct edma_desc *edesc; + dma_addr_t src_addr = 0, dst_addr = 0; + enum dma_slave_buswidth dev_width; + u32 burst; + struct scatterlist *sg; + int i, nslots, ret; + + if (unlikely(!echan || !sgl || !sg_len)) + return NULL; + + if (direction == DMA_DEV_TO_MEM) { + src_addr = echan->cfg.src_addr; + dev_width = echan->cfg.src_addr_width; + burst = echan->cfg.src_maxburst; + } else if (direction == DMA_MEM_TO_DEV) { + dst_addr = echan->cfg.dst_addr; + dev_width = echan->cfg.dst_addr_width; + burst = echan->cfg.dst_maxburst; + } else { + dev_err(dev, "%s: bad direction: %d\n", __func__, direction); + return NULL; + } + + if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) { + dev_err(dev, "%s: Undefined slave buswidth\n", __func__); + return NULL; + } + + edesc = kzalloc(sizeof(*edesc) + sg_len * sizeof(edesc->pset[0]), + GFP_ATOMIC); + if (!edesc) + return NULL; + + edesc->pset_nr = sg_len; + edesc->residue = 0; + edesc->direction = direction; + edesc->echan = echan; + + /* Allocate a PaRAM slot, if needed */ + nslots = min_t(unsigned, MAX_NR_SG, sg_len); + + for (i = 0; i < nslots; i++) { + if (echan->slot[i] < 0) { + echan->slot[i] = + edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY); + if (echan->slot[i] < 0) { + kfree(edesc); + dev_err(dev, "%s: Failed to allocate slot\n", + __func__); + return NULL; + } + } + } + + /* Configure PaRAM sets for each SG */ + for_each_sg(sgl, sg, sg_len, i) { + /* Get address for each SG */ + if (direction == DMA_DEV_TO_MEM) + dst_addr = sg_dma_address(sg); + else + src_addr = sg_dma_address(sg); + + ret = edma_config_pset(chan, &edesc->pset[i], src_addr, + dst_addr, burst, dev_width, + sg_dma_len(sg), direction); + if (ret < 0) { + kfree(edesc); + return NULL; + } + + edesc->absync = ret; + edesc->residue += sg_dma_len(sg); + + if (i == sg_len - 1) + /* Enable completion interrupt */ + edesc->pset[i].param.opt |= TCINTEN; + else if (!((i+1) % MAX_NR_SG)) + /* + * Enable early completion interrupt for the + * intermediateset. In this case the driver will be + * notified when the paRAM set is submitted to TC. This + * will allow more time to set up the next set of slots. + */ + edesc->pset[i].param.opt |= (TCINTEN | TCCMODE); + } + edesc->residue_stat = edesc->residue; + + return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags); +} + +static struct dma_async_tx_descriptor *edma_prep_dma_memcpy( + struct dma_chan *chan, dma_addr_t dest, dma_addr_t src, + size_t len, unsigned long tx_flags) +{ + int ret, nslots; + struct edma_desc *edesc; + struct device *dev = chan->device->dev; + struct edma_chan *echan = to_edma_chan(chan); + unsigned int width, pset_len, array_size; + + if (unlikely(!echan || !len)) + return NULL; + + /* Align the array size (acnt block) with the transfer properties */ + switch (__ffs((src | dest | len))) { + case 0: + array_size = SZ_32K - 1; + break; + case 1: + array_size = SZ_32K - 2; + break; + default: + array_size = SZ_32K - 4; + break; + } + + if (len < SZ_64K) { + /* + * Transfer size less than 64K can be handled with one paRAM + * slot and with one burst. + * ACNT = length + */ + width = len; + pset_len = len; + nslots = 1; + } else { + /* + * Transfer size bigger than 64K will be handled with maximum of + * two paRAM slots. + * slot1: (full_length / 32767) times 32767 bytes bursts. + * ACNT = 32767, length1: (full_length / 32767) * 32767 + * slot2: the remaining amount of data after slot1. + * ACNT = full_length - length1, length2 = ACNT + * + * When the full_length is multibple of 32767 one slot can be + * used to complete the transfer. + */ + width = array_size; + pset_len = rounddown(len, width); + /* One slot is enough for lengths multiple of (SZ_32K -1) */ + if (unlikely(pset_len == len)) + nslots = 1; + else + nslots = 2; + } + + edesc = kzalloc(sizeof(*edesc) + nslots * sizeof(edesc->pset[0]), + GFP_ATOMIC); + if (!edesc) + return NULL; + + edesc->pset_nr = nslots; + edesc->residue = edesc->residue_stat = len; + edesc->direction = DMA_MEM_TO_MEM; + edesc->echan = echan; + + ret = edma_config_pset(chan, &edesc->pset[0], src, dest, 1, + width, pset_len, DMA_MEM_TO_MEM); + if (ret < 0) { + kfree(edesc); + return NULL; + } + + edesc->absync = ret; + + edesc->pset[0].param.opt |= ITCCHEN; + if (nslots == 1) { + /* Enable transfer complete interrupt */ + edesc->pset[0].param.opt |= TCINTEN; + } else { + /* Enable transfer complete chaining for the first slot */ + edesc->pset[0].param.opt |= TCCHEN; + + if (echan->slot[1] < 0) { + echan->slot[1] = edma_alloc_slot(echan->ecc, + EDMA_SLOT_ANY); + if (echan->slot[1] < 0) { + kfree(edesc); + dev_err(dev, "%s: Failed to allocate slot\n", + __func__); + return NULL; + } + } + dest += pset_len; + src += pset_len; + pset_len = width = len % array_size; + + ret = edma_config_pset(chan, &edesc->pset[1], src, dest, 1, + width, pset_len, DMA_MEM_TO_MEM); + if (ret < 0) { + kfree(edesc); + return NULL; + } + + edesc->pset[1].param.opt |= ITCCHEN; + edesc->pset[1].param.opt |= TCINTEN; + } + + return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags); +} + +static struct dma_async_tx_descriptor *edma_prep_dma_cyclic( + struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len, + size_t period_len, enum dma_transfer_direction direction, + unsigned long tx_flags) +{ + struct edma_chan *echan = to_edma_chan(chan); + struct device *dev = chan->device->dev; + struct edma_desc *edesc; + dma_addr_t src_addr, dst_addr; + enum dma_slave_buswidth dev_width; + bool use_intermediate = false; + u32 burst; + int i, ret, nslots; + + if (unlikely(!echan || !buf_len || !period_len)) + return NULL; + + if (direction == DMA_DEV_TO_MEM) { + src_addr = echan->cfg.src_addr; + dst_addr = buf_addr; + dev_width = echan->cfg.src_addr_width; + burst = echan->cfg.src_maxburst; + } else if (direction == DMA_MEM_TO_DEV) { + src_addr = buf_addr; + dst_addr = echan->cfg.dst_addr; + dev_width = echan->cfg.dst_addr_width; + burst = echan->cfg.dst_maxburst; + } else { + dev_err(dev, "%s: bad direction: %d\n", __func__, direction); + return NULL; + } + + if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) { + dev_err(dev, "%s: Undefined slave buswidth\n", __func__); + return NULL; + } + + if (unlikely(buf_len % period_len)) { + dev_err(dev, "Period should be multiple of Buffer length\n"); + return NULL; + } + + nslots = (buf_len / period_len) + 1; + + /* + * Cyclic DMA users such as audio cannot tolerate delays introduced + * by cases where the number of periods is more than the maximum + * number of SGs the EDMA driver can handle at a time. For DMA types + * such as Slave SGs, such delays are tolerable and synchronized, + * but the synchronization is difficult to achieve with Cyclic and + * cannot be guaranteed, so we error out early. + */ + if (nslots > MAX_NR_SG) { + /* + * If the burst and period sizes are the same, we can put + * the full buffer into a single period and activate + * intermediate interrupts. This will produce interrupts + * after each burst, which is also after each desired period. + */ + if (burst == period_len) { + period_len = buf_len; + nslots = 2; + use_intermediate = true; + } else { + return NULL; + } + } + + edesc = kzalloc(sizeof(*edesc) + nslots * sizeof(edesc->pset[0]), + GFP_ATOMIC); + if (!edesc) + return NULL; + + edesc->cyclic = 1; + edesc->pset_nr = nslots; + edesc->residue = edesc->residue_stat = buf_len; + edesc->direction = direction; + edesc->echan = echan; + + dev_dbg(dev, "%s: channel=%d nslots=%d period_len=%zu buf_len=%zu\n", + __func__, echan->ch_num, nslots, period_len, buf_len); + + for (i = 0; i < nslots; i++) { + /* Allocate a PaRAM slot, if needed */ + if (echan->slot[i] < 0) { + echan->slot[i] = + edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY); + if (echan->slot[i] < 0) { + kfree(edesc); + dev_err(dev, "%s: Failed to allocate slot\n", + __func__); + return NULL; + } + } + + if (i == nslots - 1) { + memcpy(&edesc->pset[i], &edesc->pset[0], + sizeof(edesc->pset[0])); + break; + } + + ret = edma_config_pset(chan, &edesc->pset[i], src_addr, + dst_addr, burst, dev_width, period_len, + direction); + if (ret < 0) { + kfree(edesc); + return NULL; + } + + if (direction == DMA_DEV_TO_MEM) + dst_addr += period_len; + else + src_addr += period_len; + + dev_vdbg(dev, "%s: Configure period %d of buf:\n", __func__, i); + dev_vdbg(dev, + "\n pset[%d]:\n" + " chnum\t%d\n" + " slot\t%d\n" + " opt\t%08x\n" + " src\t%08x\n" + " dst\t%08x\n" + " abcnt\t%08x\n" + " ccnt\t%08x\n" + " bidx\t%08x\n" + " cidx\t%08x\n" + " lkrld\t%08x\n", + i, echan->ch_num, echan->slot[i], + edesc->pset[i].param.opt, + edesc->pset[i].param.src, + edesc->pset[i].param.dst, + edesc->pset[i].param.a_b_cnt, + edesc->pset[i].param.ccnt, + edesc->pset[i].param.src_dst_bidx, + edesc->pset[i].param.src_dst_cidx, + edesc->pset[i].param.link_bcntrld); + + edesc->absync = ret; + + /* + * Enable period interrupt only if it is requested + */ + if (tx_flags & DMA_PREP_INTERRUPT) { + edesc->pset[i].param.opt |= TCINTEN; + + /* Also enable intermediate interrupts if necessary */ + if (use_intermediate) + edesc->pset[i].param.opt |= ITCINTEN; + } + } + + /* Place the cyclic channel to highest priority queue */ + if (!echan->tc) + edma_assign_channel_eventq(echan, EVENTQ_0); + + return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags); +} + +static void edma_completion_handler(struct edma_chan *echan) +{ + struct device *dev = echan->vchan.chan.device->dev; + struct edma_desc *edesc; + + spin_lock(&echan->vchan.lock); + edesc = echan->edesc; + if (edesc) { + if (edesc->cyclic) { + vchan_cyclic_callback(&edesc->vdesc); + spin_unlock(&echan->vchan.lock); + return; + } else if (edesc->processed == edesc->pset_nr) { + edesc->residue = 0; + edma_stop(echan); + vchan_cookie_complete(&edesc->vdesc); + echan->edesc = NULL; + + dev_dbg(dev, "Transfer completed on channel %d\n", + echan->ch_num); + } else { + dev_dbg(dev, "Sub transfer completed on channel %d\n", + echan->ch_num); + + edma_pause(echan); + + /* Update statistics for tx_status */ + edesc->residue -= edesc->sg_len; + edesc->residue_stat = edesc->residue; + edesc->processed_stat = edesc->processed; + } + edma_execute(echan); + } + + spin_unlock(&echan->vchan.lock); +} + +/* eDMA interrupt handler */ +static irqreturn_t dma_irq_handler(int irq, void *data) +{ + struct edma_cc *ecc = data; + int ctlr; + u32 sh_ier; + u32 sh_ipr; + u32 bank; + + ctlr = ecc->id; + if (ctlr < 0) + return IRQ_NONE; + + dev_vdbg(ecc->dev, "dma_irq_handler\n"); + + sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 0); + if (!sh_ipr) { + sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 1); + if (!sh_ipr) + return IRQ_NONE; + sh_ier = edma_shadow0_read_array(ecc, SH_IER, 1); + bank = 1; + } else { + sh_ier = edma_shadow0_read_array(ecc, SH_IER, 0); + bank = 0; + } + + do { + u32 slot; + u32 channel; + + slot = __ffs(sh_ipr); + sh_ipr &= ~(BIT(slot)); + + if (sh_ier & BIT(slot)) { + channel = (bank << 5) | slot; + /* Clear the corresponding IPR bits */ + edma_shadow0_write_array(ecc, SH_ICR, bank, BIT(slot)); + edma_completion_handler(&ecc->slave_chans[channel]); + } + } while (sh_ipr); + + edma_shadow0_write(ecc, SH_IEVAL, 1); + return IRQ_HANDLED; +} + +static void edma_error_handler(struct edma_chan *echan) +{ + struct edma_cc *ecc = echan->ecc; + struct device *dev = echan->vchan.chan.device->dev; + struct edmacc_param p; + int err; + + if (!echan->edesc) + return; + + spin_lock(&echan->vchan.lock); + + err = edma_read_slot(ecc, echan->slot[0], &p); + + /* + * Issue later based on missed flag which will be sure + * to happen as: + * (1) we finished transmitting an intermediate slot and + * edma_execute is coming up. + * (2) or we finished current transfer and issue will + * call edma_execute. + * + * Important note: issuing can be dangerous here and + * lead to some nasty recursion when we are in a NULL + * slot. So we avoid doing so and set the missed flag. + */ + if (err || (p.a_b_cnt == 0 && p.ccnt == 0)) { + dev_dbg(dev, "Error on null slot, setting miss\n"); + echan->missed = 1; + } else { + /* + * The slot is already programmed but the event got + * missed, so its safe to issue it here. + */ + dev_dbg(dev, "Missed event, TRIGGERING\n"); + edma_clean_channel(echan); + edma_stop(echan); + edma_start(echan); + edma_trigger_channel(echan); + } + spin_unlock(&echan->vchan.lock); +} + +static inline bool edma_error_pending(struct edma_cc *ecc) +{ + if (edma_read_array(ecc, EDMA_EMR, 0) || + edma_read_array(ecc, EDMA_EMR, 1) || + edma_read(ecc, EDMA_QEMR) || edma_read(ecc, EDMA_CCERR)) + return true; + + return false; +} + +/* eDMA error interrupt handler */ +static irqreturn_t dma_ccerr_handler(int irq, void *data) +{ + struct edma_cc *ecc = data; + int i, j; + int ctlr; + unsigned int cnt = 0; + unsigned int val; + + ctlr = ecc->id; + if (ctlr < 0) + return IRQ_NONE; + + dev_vdbg(ecc->dev, "dma_ccerr_handler\n"); + + if (!edma_error_pending(ecc)) { + /* + * The registers indicate no pending error event but the irq + * handler has been called. + * Ask eDMA to re-evaluate the error registers. + */ + dev_err(ecc->dev, "%s: Error interrupt without error event!\n", + __func__); + edma_write(ecc, EDMA_EEVAL, 1); + return IRQ_NONE; + } + + while (1) { + /* Event missed register(s) */ + for (j = 0; j < 2; j++) { + unsigned long emr; + + val = edma_read_array(ecc, EDMA_EMR, j); + if (!val) + continue; + + dev_dbg(ecc->dev, "EMR%d 0x%08x\n", j, val); + emr = val; + for (i = find_next_bit(&emr, 32, 0); i < 32; + i = find_next_bit(&emr, 32, i + 1)) { + int k = (j << 5) + i; + + /* Clear the corresponding EMR bits */ + edma_write_array(ecc, EDMA_EMCR, j, BIT(i)); + /* Clear any SER */ + edma_shadow0_write_array(ecc, SH_SECR, j, + BIT(i)); + edma_error_handler(&ecc->slave_chans[k]); + } + } + + val = edma_read(ecc, EDMA_QEMR); + if (val) { + dev_dbg(ecc->dev, "QEMR 0x%02x\n", val); + /* Not reported, just clear the interrupt reason. */ + edma_write(ecc, EDMA_QEMCR, val); + edma_shadow0_write(ecc, SH_QSECR, val); + } + + val = edma_read(ecc, EDMA_CCERR); + if (val) { + dev_warn(ecc->dev, "CCERR 0x%08x\n", val); + /* Not reported, just clear the interrupt reason. */ + edma_write(ecc, EDMA_CCERRCLR, val); + } + + if (!edma_error_pending(ecc)) + break; + cnt++; + if (cnt > 10) + break; + } + edma_write(ecc, EDMA_EEVAL, 1); + return IRQ_HANDLED; +} + +/* Alloc channel resources */ +static int edma_alloc_chan_resources(struct dma_chan *chan) +{ + struct edma_chan *echan = to_edma_chan(chan); + struct edma_cc *ecc = echan->ecc; + struct device *dev = ecc->dev; + enum dma_event_q eventq_no = EVENTQ_DEFAULT; + int ret; + + if (echan->tc) { + eventq_no = echan->tc->id; + } else if (ecc->tc_list) { + /* memcpy channel */ + echan->tc = &ecc->tc_list[ecc->info->default_queue]; + eventq_no = echan->tc->id; + } + + ret = edma_alloc_channel(echan, eventq_no); + if (ret) + return ret; + + echan->slot[0] = edma_alloc_slot(ecc, echan->ch_num); + if (echan->slot[0] < 0) { + dev_err(dev, "Entry slot allocation failed for channel %u\n", + EDMA_CHAN_SLOT(echan->ch_num)); + ret = echan->slot[0]; + goto err_slot; + } + + /* Set up channel -> slot mapping for the entry slot */ + edma_set_chmap(echan, echan->slot[0]); + echan->alloced = true; + + dev_dbg(dev, "Got eDMA channel %d for virt channel %d (%s trigger)\n", + EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id, + echan->hw_triggered ? "HW" : "SW"); + + return 0; + +err_slot: + edma_free_channel(echan); + return ret; +} + +/* Free channel resources */ +static void edma_free_chan_resources(struct dma_chan *chan) +{ + struct edma_chan *echan = to_edma_chan(chan); + struct device *dev = echan->ecc->dev; + int i; + + /* Terminate transfers */ + edma_stop(echan); + + vchan_free_chan_resources(&echan->vchan); + + /* Free EDMA PaRAM slots */ + for (i = 0; i < EDMA_MAX_SLOTS; i++) { + if (echan->slot[i] >= 0) { + edma_free_slot(echan->ecc, echan->slot[i]); + echan->slot[i] = -1; + } + } + + /* Set entry slot to the dummy slot */ + edma_set_chmap(echan, echan->ecc->dummy_slot); + + /* Free EDMA channel */ + if (echan->alloced) { + edma_free_channel(echan); + echan->alloced = false; + } + + echan->tc = NULL; + echan->hw_triggered = false; + + dev_dbg(dev, "Free eDMA channel %d for virt channel %d\n", + EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id); +} + +/* Send pending descriptor to hardware */ +static void edma_issue_pending(struct dma_chan *chan) +{ + struct edma_chan *echan = to_edma_chan(chan); + unsigned long flags; + + spin_lock_irqsave(&echan->vchan.lock, flags); + if (vchan_issue_pending(&echan->vchan) && !echan->edesc) + edma_execute(echan); + spin_unlock_irqrestore(&echan->vchan.lock, flags); +} + +/* + * This limit exists to avoid a possible infinite loop when waiting for proof + * that a particular transfer is completed. This limit can be hit if there + * are large bursts to/from slow devices or the CPU is never able to catch + * the DMA hardware idle. On an AM335x transfering 48 bytes from the UART + * RX-FIFO, as many as 55 loops have been seen. + */ +#define EDMA_MAX_TR_WAIT_LOOPS 1000 + +static u32 edma_residue(struct edma_desc *edesc) +{ + bool dst = edesc->direction == DMA_DEV_TO_MEM; + int loop_count = EDMA_MAX_TR_WAIT_LOOPS; + struct edma_chan *echan = edesc->echan; + struct edma_pset *pset = edesc->pset; + dma_addr_t done, pos; + int i; + + /* + * We always read the dst/src position from the first RamPar + * pset. That's the one which is active now. + */ + pos = edma_get_position(echan->ecc, echan->slot[0], dst); + + /* + * "pos" may represent a transfer request that is still being + * processed by the EDMACC or EDMATC. We will busy wait until + * any one of the situations occurs: + * 1. the DMA hardware is idle + * 2. a new transfer request is setup + * 3. we hit the loop limit + */ + while (edma_read(echan->ecc, EDMA_CCSTAT) & EDMA_CCSTAT_ACTV) { + /* check if a new transfer request is setup */ + if (edma_get_position(echan->ecc, + echan->slot[0], dst) != pos) { + break; + } + + if (!--loop_count) { + dev_dbg_ratelimited(echan->vchan.chan.device->dev, + "%s: timeout waiting for PaRAM update\n", + __func__); + break; + } + + cpu_relax(); + } + + /* + * Cyclic is simple. Just subtract pset[0].addr from pos. + * + * We never update edesc->residue in the cyclic case, so we + * can tell the remaining room to the end of the circular + * buffer. + */ + if (edesc->cyclic) { + done = pos - pset->addr; + edesc->residue_stat = edesc->residue - done; + return edesc->residue_stat; + } + + /* + * For SG operation we catch up with the last processed + * status. + */ + pset += edesc->processed_stat; + + for (i = edesc->processed_stat; i < edesc->processed; i++, pset++) { + /* + * If we are inside this pset address range, we know + * this is the active one. Get the current delta and + * stop walking the psets. + */ + if (pos >= pset->addr && pos < pset->addr + pset->len) + return edesc->residue_stat - (pos - pset->addr); + + /* Otherwise mark it done and update residue_stat. */ + edesc->processed_stat++; + edesc->residue_stat -= pset->len; + } + return edesc->residue_stat; +} + +/* Check request completion status */ +static enum dma_status edma_tx_status(struct dma_chan *chan, + dma_cookie_t cookie, + struct dma_tx_state *txstate) +{ + struct edma_chan *echan = to_edma_chan(chan); + struct virt_dma_desc *vdesc; + enum dma_status ret; + unsigned long flags; + + ret = dma_cookie_status(chan, cookie, txstate); + if (ret == DMA_COMPLETE || !txstate) + return ret; + + spin_lock_irqsave(&echan->vchan.lock, flags); + if (echan->edesc && echan->edesc->vdesc.tx.cookie == cookie) + txstate->residue = edma_residue(echan->edesc); + else if ((vdesc = vchan_find_desc(&echan->vchan, cookie))) + txstate->residue = to_edma_desc(&vdesc->tx)->residue; + spin_unlock_irqrestore(&echan->vchan.lock, flags); + + return ret; +} + +static bool edma_is_memcpy_channel(int ch_num, s32 *memcpy_channels) +{ + if (!memcpy_channels) + return false; + while (*memcpy_channels != -1) { + if (*memcpy_channels == ch_num) + return true; + memcpy_channels++; + } + return false; +} + +#define EDMA_DMA_BUSWIDTHS (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \ + BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \ + BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \ + BIT(DMA_SLAVE_BUSWIDTH_4_BYTES)) + +static void edma_dma_init(struct edma_cc *ecc, bool legacy_mode) +{ + struct dma_device *s_ddev = &ecc->dma_slave; + struct dma_device *m_ddev = NULL; + s32 *memcpy_channels = ecc->info->memcpy_channels; + int i, j; + + dma_cap_zero(s_ddev->cap_mask); + dma_cap_set(DMA_SLAVE, s_ddev->cap_mask); + dma_cap_set(DMA_CYCLIC, s_ddev->cap_mask); + if (ecc->legacy_mode && !memcpy_channels) { + dev_warn(ecc->dev, + "Legacy memcpy is enabled, things might not work\n"); + + dma_cap_set(DMA_MEMCPY, s_ddev->cap_mask); + s_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy; + s_ddev->directions = BIT(DMA_MEM_TO_MEM); + } + + s_ddev->device_prep_slave_sg = edma_prep_slave_sg; + s_ddev->device_prep_dma_cyclic = edma_prep_dma_cyclic; + s_ddev->device_alloc_chan_resources = edma_alloc_chan_resources; + s_ddev->device_free_chan_resources = edma_free_chan_resources; + s_ddev->device_issue_pending = edma_issue_pending; + s_ddev->device_tx_status = edma_tx_status; + s_ddev->device_config = edma_slave_config; + s_ddev->device_pause = edma_dma_pause; + s_ddev->device_resume = edma_dma_resume; + s_ddev->device_terminate_all = edma_terminate_all; + s_ddev->device_synchronize = edma_synchronize; + + s_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS; + s_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS; + s_ddev->directions |= (BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV)); + s_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST; + s_ddev->max_burst = SZ_32K - 1; /* CIDX: 16bit signed */ + + s_ddev->dev = ecc->dev; + INIT_LIST_HEAD(&s_ddev->channels); + + if (memcpy_channels) { + m_ddev = devm_kzalloc(ecc->dev, sizeof(*m_ddev), GFP_KERNEL); + if (!m_ddev) { + dev_warn(ecc->dev, "memcpy is disabled due to OoM\n"); + memcpy_channels = NULL; + goto ch_setup; + } + ecc->dma_memcpy = m_ddev; + + dma_cap_zero(m_ddev->cap_mask); + dma_cap_set(DMA_MEMCPY, m_ddev->cap_mask); + + m_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy; + m_ddev->device_alloc_chan_resources = edma_alloc_chan_resources; + m_ddev->device_free_chan_resources = edma_free_chan_resources; + m_ddev->device_issue_pending = edma_issue_pending; + m_ddev->device_tx_status = edma_tx_status; + m_ddev->device_config = edma_slave_config; + m_ddev->device_pause = edma_dma_pause; + m_ddev->device_resume = edma_dma_resume; + m_ddev->device_terminate_all = edma_terminate_all; + m_ddev->device_synchronize = edma_synchronize; + + m_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS; + m_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS; + m_ddev->directions = BIT(DMA_MEM_TO_MEM); + m_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST; + + m_ddev->dev = ecc->dev; + INIT_LIST_HEAD(&m_ddev->channels); + } else if (!ecc->legacy_mode) { + dev_info(ecc->dev, "memcpy is disabled\n"); + } + +ch_setup: + for (i = 0; i < ecc->num_channels; i++) { + struct edma_chan *echan = &ecc->slave_chans[i]; + echan->ch_num = EDMA_CTLR_CHAN(ecc->id, i); + echan->ecc = ecc; + echan->vchan.desc_free = edma_desc_free; + + if (m_ddev && edma_is_memcpy_channel(i, memcpy_channels)) + vchan_init(&echan->vchan, m_ddev); + else + vchan_init(&echan->vchan, s_ddev); + + INIT_LIST_HEAD(&echan->node); + for (j = 0; j < EDMA_MAX_SLOTS; j++) + echan->slot[j] = -1; + } +} + +static int edma_setup_from_hw(struct device *dev, struct edma_soc_info *pdata, + struct edma_cc *ecc) +{ + int i; + u32 value, cccfg; + s8 (*queue_priority_map)[2]; + + /* Decode the eDMA3 configuration from CCCFG register */ + cccfg = edma_read(ecc, EDMA_CCCFG); + + value = GET_NUM_REGN(cccfg); + ecc->num_region = BIT(value); + + value = GET_NUM_DMACH(cccfg); + ecc->num_channels = BIT(value + 1); + + value = GET_NUM_QDMACH(cccfg); + ecc->num_qchannels = value * 2; + + value = GET_NUM_PAENTRY(cccfg); + ecc->num_slots = BIT(value + 4); + + value = GET_NUM_EVQUE(cccfg); + ecc->num_tc = value + 1; + + ecc->chmap_exist = (cccfg & CHMAP_EXIST) ? true : false; + + dev_dbg(dev, "eDMA3 CC HW configuration (cccfg: 0x%08x):\n", cccfg); + dev_dbg(dev, "num_region: %u\n", ecc->num_region); + dev_dbg(dev, "num_channels: %u\n", ecc->num_channels); + dev_dbg(dev, "num_qchannels: %u\n", ecc->num_qchannels); + dev_dbg(dev, "num_slots: %u\n", ecc->num_slots); + dev_dbg(dev, "num_tc: %u\n", ecc->num_tc); + dev_dbg(dev, "chmap_exist: %s\n", ecc->chmap_exist ? "yes" : "no"); + + /* Nothing need to be done if queue priority is provided */ + if (pdata->queue_priority_mapping) + return 0; + + /* + * Configure TC/queue priority as follows: + * Q0 - priority 0 + * Q1 - priority 1 + * Q2 - priority 2 + * ... + * The meaning of priority numbers: 0 highest priority, 7 lowest + * priority. So Q0 is the highest priority queue and the last queue has + * the lowest priority. + */ + queue_priority_map = devm_kcalloc(dev, ecc->num_tc + 1, sizeof(s8), + GFP_KERNEL); + if (!queue_priority_map) + return -ENOMEM; + + for (i = 0; i < ecc->num_tc; i++) { + queue_priority_map[i][0] = i; + queue_priority_map[i][1] = i; + } + queue_priority_map[i][0] = -1; + queue_priority_map[i][1] = -1; + + pdata->queue_priority_mapping = queue_priority_map; + /* Default queue has the lowest priority */ + pdata->default_queue = i - 1; + + return 0; +} + +#if IS_ENABLED(CONFIG_OF) +static int edma_xbar_event_map(struct device *dev, struct edma_soc_info *pdata, + size_t sz) +{ + const char pname[] = "ti,edma-xbar-event-map"; + struct resource res; + void __iomem *xbar; + s16 (*xbar_chans)[2]; + size_t nelm = sz / sizeof(s16); + u32 shift, offset, mux; + int ret, i; + + xbar_chans = devm_kcalloc(dev, nelm + 2, sizeof(s16), GFP_KERNEL); + if (!xbar_chans) + return -ENOMEM; + + ret = of_address_to_resource(dev->of_node, 1, &res); + if (ret) + return -ENOMEM; + + xbar = devm_ioremap(dev, res.start, resource_size(&res)); + if (!xbar) + return -ENOMEM; + + ret = of_property_read_u16_array(dev->of_node, pname, (u16 *)xbar_chans, + nelm); + if (ret) + return -EIO; + + /* Invalidate last entry for the other user of this mess */ + nelm >>= 1; + xbar_chans[nelm][0] = -1; + xbar_chans[nelm][1] = -1; + + for (i = 0; i < nelm; i++) { + shift = (xbar_chans[i][1] & 0x03) << 3; + offset = xbar_chans[i][1] & 0xfffffffc; + mux = readl(xbar + offset); + mux &= ~(0xff << shift); + mux |= xbar_chans[i][0] << shift; + writel(mux, (xbar + offset)); + } + + pdata->xbar_chans = (const s16 (*)[2]) xbar_chans; + return 0; +} + +static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev, + bool legacy_mode) +{ + struct edma_soc_info *info; + struct property *prop; + int sz, ret; + + info = devm_kzalloc(dev, sizeof(struct edma_soc_info), GFP_KERNEL); + if (!info) + return ERR_PTR(-ENOMEM); + + if (legacy_mode) { + prop = of_find_property(dev->of_node, "ti,edma-xbar-event-map", + &sz); + if (prop) { + ret = edma_xbar_event_map(dev, info, sz); + if (ret) + return ERR_PTR(ret); + } + return info; + } + + /* Get the list of channels allocated to be used for memcpy */ + prop = of_find_property(dev->of_node, "ti,edma-memcpy-channels", &sz); + if (prop) { + const char pname[] = "ti,edma-memcpy-channels"; + size_t nelm = sz / sizeof(s32); + s32 *memcpy_ch; + + memcpy_ch = devm_kcalloc(dev, nelm + 1, sizeof(s32), + GFP_KERNEL); + if (!memcpy_ch) + return ERR_PTR(-ENOMEM); + + ret = of_property_read_u32_array(dev->of_node, pname, + (u32 *)memcpy_ch, nelm); + if (ret) + return ERR_PTR(ret); + + memcpy_ch[nelm] = -1; + info->memcpy_channels = memcpy_ch; + } + + prop = of_find_property(dev->of_node, "ti,edma-reserved-slot-ranges", + &sz); + if (prop) { + const char pname[] = "ti,edma-reserved-slot-ranges"; + u32 (*tmp)[2]; + s16 (*rsv_slots)[2]; + size_t nelm = sz / sizeof(*tmp); + struct edma_rsv_info *rsv_info; + int i; + + if (!nelm) + return info; + + tmp = kcalloc(nelm, sizeof(*tmp), GFP_KERNEL); + if (!tmp) + return ERR_PTR(-ENOMEM); + + rsv_info = devm_kzalloc(dev, sizeof(*rsv_info), GFP_KERNEL); + if (!rsv_info) { + kfree(tmp); + return ERR_PTR(-ENOMEM); + } + + rsv_slots = devm_kcalloc(dev, nelm + 1, sizeof(*rsv_slots), + GFP_KERNEL); + if (!rsv_slots) { + kfree(tmp); + return ERR_PTR(-ENOMEM); + } + + ret = of_property_read_u32_array(dev->of_node, pname, + (u32 *)tmp, nelm * 2); + if (ret) { + kfree(tmp); + return ERR_PTR(ret); + } + + for (i = 0; i < nelm; i++) { + rsv_slots[i][0] = tmp[i][0]; + rsv_slots[i][1] = tmp[i][1]; + } + rsv_slots[nelm][0] = -1; + rsv_slots[nelm][1] = -1; + + info->rsv = rsv_info; + info->rsv->rsv_slots = (const s16 (*)[2])rsv_slots; + + kfree(tmp); + } + + return info; +} + +static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec, + struct of_dma *ofdma) +{ + struct edma_cc *ecc = ofdma->of_dma_data; + struct dma_chan *chan = NULL; + struct edma_chan *echan; + int i; + + if (!ecc || dma_spec->args_count < 1) + return NULL; + + for (i = 0; i < ecc->num_channels; i++) { + echan = &ecc->slave_chans[i]; + if (echan->ch_num == dma_spec->args[0]) { + chan = &echan->vchan.chan; + break; + } + } + + if (!chan) + return NULL; + + if (echan->ecc->legacy_mode && dma_spec->args_count == 1) + goto out; + + if (!echan->ecc->legacy_mode && dma_spec->args_count == 2 && + dma_spec->args[1] < echan->ecc->num_tc) { + echan->tc = &echan->ecc->tc_list[dma_spec->args[1]]; + goto out; + } + + return NULL; +out: + /* The channel is going to be used as HW synchronized */ + echan->hw_triggered = true; + return dma_get_slave_channel(chan); +} +#else +static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev, + bool legacy_mode) +{ + return ERR_PTR(-EINVAL); +} + +static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec, + struct of_dma *ofdma) +{ + return NULL; +} +#endif + +static int edma_probe(struct platform_device *pdev) +{ + struct edma_soc_info *info = pdev->dev.platform_data; + s8 (*queue_priority_mapping)[2]; + int i, off, ln; + const s16 (*rsv_slots)[2]; + const s16 (*xbar_chans)[2]; + int irq; + char *irq_name; + struct resource *mem; + struct device_node *node = pdev->dev.of_node; + struct device *dev = &pdev->dev; + struct edma_cc *ecc; + bool legacy_mode = true; + int ret; + + if (node) { + const struct of_device_id *match; + + match = of_match_node(edma_of_ids, node); + if (match && (*(u32 *)match->data) == EDMA_BINDING_TPCC) + legacy_mode = false; + + info = edma_setup_info_from_dt(dev, legacy_mode); + if (IS_ERR(info)) { + dev_err(dev, "failed to get DT data\n"); + return PTR_ERR(info); + } + } + + if (!info) + return -ENODEV; + + pm_runtime_enable(dev); + ret = pm_runtime_get_sync(dev); + if (ret < 0) { + dev_err(dev, "pm_runtime_get_sync() failed\n"); + return ret; + } + + ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)); + if (ret) + return ret; + + ecc = devm_kzalloc(dev, sizeof(*ecc), GFP_KERNEL); + if (!ecc) + return -ENOMEM; + + ecc->dev = dev; + ecc->id = pdev->id; + ecc->legacy_mode = legacy_mode; + /* When booting with DT the pdev->id is -1 */ + if (ecc->id < 0) + ecc->id = 0; + + mem = platform_get_resource_byname(pdev, IORESOURCE_MEM, "edma3_cc"); + if (!mem) { + dev_dbg(dev, "mem resource not found, using index 0\n"); + mem = platform_get_resource(pdev, IORESOURCE_MEM, 0); + if (!mem) { + dev_err(dev, "no mem resource?\n"); + return -ENODEV; + } + } + ecc->base = devm_ioremap_resource(dev, mem); + if (IS_ERR(ecc->base)) + return PTR_ERR(ecc->base); + + platform_set_drvdata(pdev, ecc); + + /* Get eDMA3 configuration from IP */ + ret = edma_setup_from_hw(dev, info, ecc); + if (ret) + return ret; + + /* Allocate memory based on the information we got from the IP */ + ecc->slave_chans = devm_kcalloc(dev, ecc->num_channels, + sizeof(*ecc->slave_chans), GFP_KERNEL); + if (!ecc->slave_chans) + return -ENOMEM; + + ecc->slot_inuse = devm_kcalloc(dev, BITS_TO_LONGS(ecc->num_slots), + sizeof(unsigned long), GFP_KERNEL); + if (!ecc->slot_inuse) + return -ENOMEM; + + ecc->default_queue = info->default_queue; + + for (i = 0; i < ecc->num_slots; i++) + edma_write_slot(ecc, i, &dummy_paramset); + + if (info->rsv) { + /* Set the reserved slots in inuse list */ + rsv_slots = info->rsv->rsv_slots; + if (rsv_slots) { + for (i = 0; rsv_slots[i][0] != -1; i++) { + off = rsv_slots[i][0]; + ln = rsv_slots[i][1]; + edma_set_bits(off, ln, ecc->slot_inuse); + } + } + } + + /* Clear the xbar mapped channels in unused list */ + xbar_chans = info->xbar_chans; + if (xbar_chans) { + for (i = 0; xbar_chans[i][1] != -1; i++) { + off = xbar_chans[i][1]; + } + } + + irq = platform_get_irq_byname(pdev, "edma3_ccint"); + if (irq < 0 && node) + irq = irq_of_parse_and_map(node, 0); + + if (irq >= 0) { + irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccint", + dev_name(dev)); + ret = devm_request_irq(dev, irq, dma_irq_handler, 0, irq_name, + ecc); + if (ret) { + dev_err(dev, "CCINT (%d) failed --> %d\n", irq, ret); + return ret; + } + ecc->ccint = irq; + } + + irq = platform_get_irq_byname(pdev, "edma3_ccerrint"); + if (irq < 0 && node) + irq = irq_of_parse_and_map(node, 2); + + if (irq >= 0) { + irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccerrint", + dev_name(dev)); + ret = devm_request_irq(dev, irq, dma_ccerr_handler, 0, irq_name, + ecc); + if (ret) { + dev_err(dev, "CCERRINT (%d) failed --> %d\n", irq, ret); + return ret; + } + ecc->ccerrint = irq; + } + + ecc->dummy_slot = edma_alloc_slot(ecc, EDMA_SLOT_ANY); + if (ecc->dummy_slot < 0) { + dev_err(dev, "Can't allocate PaRAM dummy slot\n"); + return ecc->dummy_slot; + } + + queue_priority_mapping = info->queue_priority_mapping; + + if (!ecc->legacy_mode) { + int lowest_priority = 0; + struct of_phandle_args tc_args; + + ecc->tc_list = devm_kcalloc(dev, ecc->num_tc, + sizeof(*ecc->tc_list), GFP_KERNEL); + if (!ecc->tc_list) + return -ENOMEM; + + for (i = 0;; i++) { + ret = of_parse_phandle_with_fixed_args(node, "ti,tptcs", + 1, i, &tc_args); + if (ret || i == ecc->num_tc) + break; + + ecc->tc_list[i].node = tc_args.np; + ecc->tc_list[i].id = i; + queue_priority_mapping[i][1] = tc_args.args[0]; + if (queue_priority_mapping[i][1] > lowest_priority) { + lowest_priority = queue_priority_mapping[i][1]; + info->default_queue = i; + } + } + } + + /* Event queue priority mapping */ + for (i = 0; queue_priority_mapping[i][0] != -1; i++) + edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0], + queue_priority_mapping[i][1]); + + for (i = 0; i < ecc->num_region; i++) { + edma_write_array2(ecc, EDMA_DRAE, i, 0, 0x0); + edma_write_array2(ecc, EDMA_DRAE, i, 1, 0x0); + edma_write_array(ecc, EDMA_QRAE, i, 0x0); + } + ecc->info = info; + + /* Init the dma device and channels */ + edma_dma_init(ecc, legacy_mode); + + for (i = 0; i < ecc->num_channels; i++) { + /* Assign all channels to the default queue */ + edma_assign_channel_eventq(&ecc->slave_chans[i], + info->default_queue); + /* Set entry slot to the dummy slot */ + edma_set_chmap(&ecc->slave_chans[i], ecc->dummy_slot); + } + + ecc->dma_slave.filter.map = info->slave_map; + ecc->dma_slave.filter.mapcnt = info->slavecnt; + ecc->dma_slave.filter.fn = edma_filter_fn; + + ret = dma_async_device_register(&ecc->dma_slave); + if (ret) { + dev_err(dev, "slave ddev registration failed (%d)\n", ret); + goto err_reg1; + } + + if (ecc->dma_memcpy) { + ret = dma_async_device_register(ecc->dma_memcpy); + if (ret) { + dev_err(dev, "memcpy ddev registration failed (%d)\n", + ret); + dma_async_device_unregister(&ecc->dma_slave); + goto err_reg1; + } + } + + if (node) + of_dma_controller_register(node, of_edma_xlate, ecc); + + dev_info(dev, "TI EDMA DMA engine driver\n"); + + return 0; + +err_reg1: + edma_free_slot(ecc, ecc->dummy_slot); + return ret; +} + +static void edma_cleanupp_vchan(struct dma_device *dmadev) +{ + struct edma_chan *echan, *_echan; + + list_for_each_entry_safe(echan, _echan, + &dmadev->channels, vchan.chan.device_node) { + list_del(&echan->vchan.chan.device_node); + tasklet_kill(&echan->vchan.task); + } +} + +static int edma_remove(struct platform_device *pdev) +{ + struct device *dev = &pdev->dev; + struct edma_cc *ecc = dev_get_drvdata(dev); + + devm_free_irq(dev, ecc->ccint, ecc); + devm_free_irq(dev, ecc->ccerrint, ecc); + + edma_cleanupp_vchan(&ecc->dma_slave); + + if (dev->of_node) + of_dma_controller_free(dev->of_node); + dma_async_device_unregister(&ecc->dma_slave); + if (ecc->dma_memcpy) + dma_async_device_unregister(ecc->dma_memcpy); + edma_free_slot(ecc, ecc->dummy_slot); + + return 0; +} + +#ifdef CONFIG_PM_SLEEP +static int edma_pm_suspend(struct device *dev) +{ + struct edma_cc *ecc = dev_get_drvdata(dev); + struct edma_chan *echan = ecc->slave_chans; + int i; + + for (i = 0; i < ecc->num_channels; i++) { + if (echan[i].alloced) + edma_setup_interrupt(&echan[i], false); + } + + return 0; +} + +static int edma_pm_resume(struct device *dev) +{ + struct edma_cc *ecc = dev_get_drvdata(dev); + struct edma_chan *echan = ecc->slave_chans; + int i; + s8 (*queue_priority_mapping)[2]; + + /* re initialize dummy slot to dummy param set */ + edma_write_slot(ecc, ecc->dummy_slot, &dummy_paramset); + + queue_priority_mapping = ecc->info->queue_priority_mapping; + + /* Event queue priority mapping */ + for (i = 0; queue_priority_mapping[i][0] != -1; i++) + edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0], + queue_priority_mapping[i][1]); + + for (i = 0; i < ecc->num_channels; i++) { + if (echan[i].alloced) { + /* ensure access through shadow region 0 */ + edma_or_array2(ecc, EDMA_DRAE, 0, i >> 5, + BIT(i & 0x1f)); + + edma_setup_interrupt(&echan[i], true); + + /* Set up channel -> slot mapping for the entry slot */ + edma_set_chmap(&echan[i], echan[i].slot[0]); + } + } + + return 0; +} +#endif + +static const struct dev_pm_ops edma_pm_ops = { + SET_LATE_SYSTEM_SLEEP_PM_OPS(edma_pm_suspend, edma_pm_resume) +}; + +static struct platform_driver edma_driver = { + .probe = edma_probe, + .remove = edma_remove, + .driver = { + .name = "edma", + .pm = &edma_pm_ops, + .of_match_table = edma_of_ids, + }, +}; + +static int edma_tptc_probe(struct platform_device *pdev) +{ + pm_runtime_enable(&pdev->dev); + return pm_runtime_get_sync(&pdev->dev); +} + +static struct platform_driver edma_tptc_driver = { + .probe = edma_tptc_probe, + .driver = { + .name = "edma3-tptc", + .of_match_table = edma_tptc_of_ids, + }, +}; + +bool edma_filter_fn(struct dma_chan *chan, void *param) +{ + bool match = false; + + if (chan->device->dev->driver == &edma_driver.driver) { + struct edma_chan *echan = to_edma_chan(chan); + unsigned ch_req = *(unsigned *)param; + if (ch_req == echan->ch_num) { + /* The channel is going to be used as HW synchronized */ + echan->hw_triggered = true; + match = true; + } + } + return match; +} +EXPORT_SYMBOL(edma_filter_fn); + +static int edma_init(void) +{ + int ret; + + ret = platform_driver_register(&edma_tptc_driver); + if (ret) + return ret; + + return platform_driver_register(&edma_driver); +} +subsys_initcall(edma_init); + +static void __exit edma_exit(void) +{ + platform_driver_unregister(&edma_driver); + platform_driver_unregister(&edma_tptc_driver); +} +module_exit(edma_exit); + +MODULE_AUTHOR("Matt Porter "); +MODULE_DESCRIPTION("TI EDMA DMA engine driver"); +MODULE_LICENSE("GPL v2"); -- cgit v1.2.3-59-g8ed1b