From 4a8e43feeac7996b8de2d5b2823e316917493df4 Mon Sep 17 00:00:00 2001 From: David Howells Date: Tue, 9 Oct 2012 09:49:09 +0100 Subject: UAPI: (Scripted) Disintegrate include/mtd Signed-off-by: David Howells Acked-by: Arnd Bergmann Acked-by: Thomas Gleixner Acked-by: Michael Kerrisk Acked-by: Paul E. McKenney Acked-by: Dave Jones --- include/mtd/Kbuild | 5 - include/mtd/inftl-user.h | 91 --------- include/mtd/mtd-abi.h | 278 ---------------------------- include/mtd/mtd-user.h | 34 ---- include/mtd/nftl-user.h | 90 --------- include/mtd/ubi-user.h | 420 ------------------------------------------ include/uapi/mtd/Kbuild | 5 + include/uapi/mtd/inftl-user.h | 91 +++++++++ include/uapi/mtd/mtd-abi.h | 278 ++++++++++++++++++++++++++++ include/uapi/mtd/mtd-user.h | 34 ++++ include/uapi/mtd/nftl-user.h | 90 +++++++++ include/uapi/mtd/ubi-user.h | 420 ++++++++++++++++++++++++++++++++++++++++++ 12 files changed, 918 insertions(+), 918 deletions(-) delete mode 100644 include/mtd/inftl-user.h delete mode 100644 include/mtd/mtd-abi.h delete mode 100644 include/mtd/mtd-user.h delete mode 100644 include/mtd/nftl-user.h delete mode 100644 include/mtd/ubi-user.h create mode 100644 include/uapi/mtd/inftl-user.h create mode 100644 include/uapi/mtd/mtd-abi.h create mode 100644 include/uapi/mtd/mtd-user.h create mode 100644 include/uapi/mtd/nftl-user.h create mode 100644 include/uapi/mtd/ubi-user.h (limited to 'include') diff --git a/include/mtd/Kbuild b/include/mtd/Kbuild index 192f8fb7d546..e69de29bb2d1 100644 --- a/include/mtd/Kbuild +++ b/include/mtd/Kbuild @@ -1,5 +0,0 @@ -header-y += inftl-user.h -header-y += mtd-abi.h -header-y += mtd-user.h -header-y += nftl-user.h -header-y += ubi-user.h diff --git a/include/mtd/inftl-user.h b/include/mtd/inftl-user.h deleted file mode 100644 index 8376bd1a9e01..000000000000 --- a/include/mtd/inftl-user.h +++ /dev/null @@ -1,91 +0,0 @@ -/* - * Parts of INFTL headers shared with userspace - * - */ - -#ifndef __MTD_INFTL_USER_H__ -#define __MTD_INFTL_USER_H__ - -#include - -#define OSAK_VERSION 0x5120 -#define PERCENTUSED 98 - -#define SECTORSIZE 512 - -/* Block Control Information */ - -struct inftl_bci { - __u8 ECCsig[6]; - __u8 Status; - __u8 Status1; -} __attribute__((packed)); - -struct inftl_unithead1 { - __u16 virtualUnitNo; - __u16 prevUnitNo; - __u8 ANAC; - __u8 NACs; - __u8 parityPerField; - __u8 discarded; -} __attribute__((packed)); - -struct inftl_unithead2 { - __u8 parityPerField; - __u8 ANAC; - __u16 prevUnitNo; - __u16 virtualUnitNo; - __u8 NACs; - __u8 discarded; -} __attribute__((packed)); - -struct inftl_unittail { - __u8 Reserved[4]; - __u16 EraseMark; - __u16 EraseMark1; -} __attribute__((packed)); - -union inftl_uci { - struct inftl_unithead1 a; - struct inftl_unithead2 b; - struct inftl_unittail c; -}; - -struct inftl_oob { - struct inftl_bci b; - union inftl_uci u; -}; - - -/* INFTL Media Header */ - -struct INFTLPartition { - __u32 virtualUnits; - __u32 firstUnit; - __u32 lastUnit; - __u32 flags; - __u32 spareUnits; - __u32 Reserved0; - __u32 Reserved1; -} __attribute__((packed)); - -struct INFTLMediaHeader { - char bootRecordID[8]; - __u32 NoOfBootImageBlocks; - __u32 NoOfBinaryPartitions; - __u32 NoOfBDTLPartitions; - __u32 BlockMultiplierBits; - __u32 FormatFlags; - __u32 OsakVersion; - __u32 PercentUsed; - struct INFTLPartition Partitions[4]; -} __attribute__((packed)); - -/* Partition flag types */ -#define INFTL_BINARY 0x20000000 -#define INFTL_BDTL 0x40000000 -#define INFTL_LAST 0x80000000 - -#endif /* __MTD_INFTL_USER_H__ */ - - diff --git a/include/mtd/mtd-abi.h b/include/mtd/mtd-abi.h deleted file mode 100644 index 36eace03b2ac..000000000000 --- a/include/mtd/mtd-abi.h +++ /dev/null @@ -1,278 +0,0 @@ -/* - * Copyright © 1999-2010 David Woodhouse et al. - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation; either version 2 of the License, or - * (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License - * along with this program; if not, write to the Free Software - * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA - * - */ - -#ifndef __MTD_ABI_H__ -#define __MTD_ABI_H__ - -#include - -struct erase_info_user { - __u32 start; - __u32 length; -}; - -struct erase_info_user64 { - __u64 start; - __u64 length; -}; - -struct mtd_oob_buf { - __u32 start; - __u32 length; - unsigned char __user *ptr; -}; - -struct mtd_oob_buf64 { - __u64 start; - __u32 pad; - __u32 length; - __u64 usr_ptr; -}; - -/** - * MTD operation modes - * - * @MTD_OPS_PLACE_OOB: OOB data are placed at the given offset (default) - * @MTD_OPS_AUTO_OOB: OOB data are automatically placed at the free areas - * which are defined by the internal ecclayout - * @MTD_OPS_RAW: data are transferred as-is, with no error correction; - * this mode implies %MTD_OPS_PLACE_OOB - * - * These modes can be passed to ioctl(MEMWRITE) and are also used internally. - * See notes on "MTD file modes" for discussion on %MTD_OPS_RAW vs. - * %MTD_FILE_MODE_RAW. - */ -enum { - MTD_OPS_PLACE_OOB = 0, - MTD_OPS_AUTO_OOB = 1, - MTD_OPS_RAW = 2, -}; - -/** - * struct mtd_write_req - data structure for requesting a write operation - * - * @start: start address - * @len: length of data buffer - * @ooblen: length of OOB buffer - * @usr_data: user-provided data buffer - * @usr_oob: user-provided OOB buffer - * @mode: MTD mode (see "MTD operation modes") - * @padding: reserved, must be set to 0 - * - * This structure supports ioctl(MEMWRITE) operations, allowing data and/or OOB - * writes in various modes. To write to OOB-only, set @usr_data == NULL, and to - * write data-only, set @usr_oob == NULL. However, setting both @usr_data and - * @usr_oob to NULL is not allowed. - */ -struct mtd_write_req { - __u64 start; - __u64 len; - __u64 ooblen; - __u64 usr_data; - __u64 usr_oob; - __u8 mode; - __u8 padding[7]; -}; - -#define MTD_ABSENT 0 -#define MTD_RAM 1 -#define MTD_ROM 2 -#define MTD_NORFLASH 3 -#define MTD_NANDFLASH 4 -#define MTD_DATAFLASH 6 -#define MTD_UBIVOLUME 7 -#define MTD_MLCNANDFLASH 8 - -#define MTD_WRITEABLE 0x400 /* Device is writeable */ -#define MTD_BIT_WRITEABLE 0x800 /* Single bits can be flipped */ -#define MTD_NO_ERASE 0x1000 /* No erase necessary */ -#define MTD_POWERUP_LOCK 0x2000 /* Always locked after reset */ - -/* Some common devices / combinations of capabilities */ -#define MTD_CAP_ROM 0 -#define MTD_CAP_RAM (MTD_WRITEABLE | MTD_BIT_WRITEABLE | MTD_NO_ERASE) -#define MTD_CAP_NORFLASH (MTD_WRITEABLE | MTD_BIT_WRITEABLE) -#define MTD_CAP_NANDFLASH (MTD_WRITEABLE) - -/* Obsolete ECC byte placement modes (used with obsolete MEMGETOOBSEL) */ -#define MTD_NANDECC_OFF 0 // Switch off ECC (Not recommended) -#define MTD_NANDECC_PLACE 1 // Use the given placement in the structure (YAFFS1 legacy mode) -#define MTD_NANDECC_AUTOPLACE 2 // Use the default placement scheme -#define MTD_NANDECC_PLACEONLY 3 // Use the given placement in the structure (Do not store ecc result on read) -#define MTD_NANDECC_AUTOPL_USR 4 // Use the given autoplacement scheme rather than using the default - -/* OTP mode selection */ -#define MTD_OTP_OFF 0 -#define MTD_OTP_FACTORY 1 -#define MTD_OTP_USER 2 - -struct mtd_info_user { - __u8 type; - __u32 flags; - __u32 size; /* Total size of the MTD */ - __u32 erasesize; - __u32 writesize; - __u32 oobsize; /* Amount of OOB data per block (e.g. 16) */ - __u64 padding; /* Old obsolete field; do not use */ -}; - -struct region_info_user { - __u32 offset; /* At which this region starts, - * from the beginning of the MTD */ - __u32 erasesize; /* For this region */ - __u32 numblocks; /* Number of blocks in this region */ - __u32 regionindex; -}; - -struct otp_info { - __u32 start; - __u32 length; - __u32 locked; -}; - -/* - * Note, the following ioctl existed in the past and was removed: - * #define MEMSETOOBSEL _IOW('M', 9, struct nand_oobinfo) - * Try to avoid adding a new ioctl with the same ioctl number. - */ - -/* Get basic MTD characteristics info (better to use sysfs) */ -#define MEMGETINFO _IOR('M', 1, struct mtd_info_user) -/* Erase segment of MTD */ -#define MEMERASE _IOW('M', 2, struct erase_info_user) -/* Write out-of-band data from MTD */ -#define MEMWRITEOOB _IOWR('M', 3, struct mtd_oob_buf) -/* Read out-of-band data from MTD */ -#define MEMREADOOB _IOWR('M', 4, struct mtd_oob_buf) -/* Lock a chip (for MTD that supports it) */ -#define MEMLOCK _IOW('M', 5, struct erase_info_user) -/* Unlock a chip (for MTD that supports it) */ -#define MEMUNLOCK _IOW('M', 6, struct erase_info_user) -/* Get the number of different erase regions */ -#define MEMGETREGIONCOUNT _IOR('M', 7, int) -/* Get information about the erase region for a specific index */ -#define MEMGETREGIONINFO _IOWR('M', 8, struct region_info_user) -/* Get info about OOB modes (e.g., RAW, PLACE, AUTO) - legacy interface */ -#define MEMGETOOBSEL _IOR('M', 10, struct nand_oobinfo) -/* Check if an eraseblock is bad */ -#define MEMGETBADBLOCK _IOW('M', 11, __kernel_loff_t) -/* Mark an eraseblock as bad */ -#define MEMSETBADBLOCK _IOW('M', 12, __kernel_loff_t) -/* Set OTP (One-Time Programmable) mode (factory vs. user) */ -#define OTPSELECT _IOR('M', 13, int) -/* Get number of OTP (One-Time Programmable) regions */ -#define OTPGETREGIONCOUNT _IOW('M', 14, int) -/* Get all OTP (One-Time Programmable) info about MTD */ -#define OTPGETREGIONINFO _IOW('M', 15, struct otp_info) -/* Lock a given range of user data (must be in mode %MTD_FILE_MODE_OTP_USER) */ -#define OTPLOCK _IOR('M', 16, struct otp_info) -/* Get ECC layout (deprecated) */ -#define ECCGETLAYOUT _IOR('M', 17, struct nand_ecclayout_user) -/* Get statistics about corrected/uncorrected errors */ -#define ECCGETSTATS _IOR('M', 18, struct mtd_ecc_stats) -/* Set MTD mode on a per-file-descriptor basis (see "MTD file modes") */ -#define MTDFILEMODE _IO('M', 19) -/* Erase segment of MTD (supports 64-bit address) */ -#define MEMERASE64 _IOW('M', 20, struct erase_info_user64) -/* Write data to OOB (64-bit version) */ -#define MEMWRITEOOB64 _IOWR('M', 21, struct mtd_oob_buf64) -/* Read data from OOB (64-bit version) */ -#define MEMREADOOB64 _IOWR('M', 22, struct mtd_oob_buf64) -/* Check if chip is locked (for MTD that supports it) */ -#define MEMISLOCKED _IOR('M', 23, struct erase_info_user) -/* - * Most generic write interface; can write in-band and/or out-of-band in various - * modes (see "struct mtd_write_req"). This ioctl is not supported for flashes - * without OOB, e.g., NOR flash. - */ -#define MEMWRITE _IOWR('M', 24, struct mtd_write_req) - -/* - * Obsolete legacy interface. Keep it in order not to break userspace - * interfaces - */ -struct nand_oobinfo { - __u32 useecc; - __u32 eccbytes; - __u32 oobfree[8][2]; - __u32 eccpos[32]; -}; - -struct nand_oobfree { - __u32 offset; - __u32 length; -}; - -#define MTD_MAX_OOBFREE_ENTRIES 8 -#define MTD_MAX_ECCPOS_ENTRIES 64 -/* - * OBSOLETE: ECC layout control structure. Exported to user-space via ioctl - * ECCGETLAYOUT for backwards compatbility and should not be mistaken as a - * complete set of ECC information. The ioctl truncates the larger internal - * structure to retain binary compatibility with the static declaration of the - * ioctl. Note that the "MTD_MAX_..._ENTRIES" macros represent the max size of - * the user struct, not the MAX size of the internal struct nand_ecclayout. - */ -struct nand_ecclayout_user { - __u32 eccbytes; - __u32 eccpos[MTD_MAX_ECCPOS_ENTRIES]; - __u32 oobavail; - struct nand_oobfree oobfree[MTD_MAX_OOBFREE_ENTRIES]; -}; - -/** - * struct mtd_ecc_stats - error correction stats - * - * @corrected: number of corrected bits - * @failed: number of uncorrectable errors - * @badblocks: number of bad blocks in this partition - * @bbtblocks: number of blocks reserved for bad block tables - */ -struct mtd_ecc_stats { - __u32 corrected; - __u32 failed; - __u32 badblocks; - __u32 bbtblocks; -}; - -/* - * MTD file modes - for read/write access to MTD - * - * @MTD_FILE_MODE_NORMAL: OTP disabled, ECC enabled - * @MTD_FILE_MODE_OTP_FACTORY: OTP enabled in factory mode - * @MTD_FILE_MODE_OTP_USER: OTP enabled in user mode - * @MTD_FILE_MODE_RAW: OTP disabled, ECC disabled - * - * These modes can be set via ioctl(MTDFILEMODE). The mode mode will be retained - * separately for each open file descriptor. - * - * Note: %MTD_FILE_MODE_RAW provides the same functionality as %MTD_OPS_RAW - - * raw access to the flash, without error correction or autoplacement schemes. - * Wherever possible, the MTD_OPS_* mode will override the MTD_FILE_MODE_* mode - * (e.g., when using ioctl(MEMWRITE)), but in some cases, the MTD_FILE_MODE is - * used out of necessity (e.g., `write()', ioctl(MEMWRITEOOB64)). - */ -enum mtd_file_modes { - MTD_FILE_MODE_NORMAL = MTD_OTP_OFF, - MTD_FILE_MODE_OTP_FACTORY = MTD_OTP_FACTORY, - MTD_FILE_MODE_OTP_USER = MTD_OTP_USER, - MTD_FILE_MODE_RAW, -}; - -#endif /* __MTD_ABI_H__ */ diff --git a/include/mtd/mtd-user.h b/include/mtd/mtd-user.h deleted file mode 100644 index 83327c808c86..000000000000 --- a/include/mtd/mtd-user.h +++ /dev/null @@ -1,34 +0,0 @@ -/* - * Copyright © 1999-2010 David Woodhouse - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation; either version 2 of the License, or - * (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License - * along with this program; if not, write to the Free Software - * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA - * - */ - -#ifndef __MTD_USER_H__ -#define __MTD_USER_H__ - -#include - -/* This file is blessed for inclusion by userspace */ -#include - -typedef struct mtd_info_user mtd_info_t; -typedef struct erase_info_user erase_info_t; -typedef struct region_info_user region_info_t; -typedef struct nand_oobinfo nand_oobinfo_t; -typedef struct nand_ecclayout_user nand_ecclayout_t; - -#endif /* __MTD_USER_H__ */ diff --git a/include/mtd/nftl-user.h b/include/mtd/nftl-user.h deleted file mode 100644 index bdeabd86ad99..000000000000 --- a/include/mtd/nftl-user.h +++ /dev/null @@ -1,90 +0,0 @@ -/* - * Copyright © 1999-2010 David Woodhouse - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation; either version 2 of the License, or - * (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License - * along with this program; if not, write to the Free Software - * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA - * - */ - -#ifndef __MTD_NFTL_USER_H__ -#define __MTD_NFTL_USER_H__ - -#include - -/* Block Control Information */ - -struct nftl_bci { - unsigned char ECCSig[6]; - __u8 Status; - __u8 Status1; -}__attribute__((packed)); - -/* Unit Control Information */ - -struct nftl_uci0 { - __u16 VirtUnitNum; - __u16 ReplUnitNum; - __u16 SpareVirtUnitNum; - __u16 SpareReplUnitNum; -} __attribute__((packed)); - -struct nftl_uci1 { - __u32 WearInfo; - __u16 EraseMark; - __u16 EraseMark1; -} __attribute__((packed)); - -struct nftl_uci2 { - __u16 FoldMark; - __u16 FoldMark1; - __u32 unused; -} __attribute__((packed)); - -union nftl_uci { - struct nftl_uci0 a; - struct nftl_uci1 b; - struct nftl_uci2 c; -}; - -struct nftl_oob { - struct nftl_bci b; - union nftl_uci u; -}; - -/* NFTL Media Header */ - -struct NFTLMediaHeader { - char DataOrgID[6]; - __u16 NumEraseUnits; - __u16 FirstPhysicalEUN; - __u32 FormattedSize; - unsigned char UnitSizeFactor; -} __attribute__((packed)); - -#define MAX_ERASE_ZONES (8192 - 512) - -#define ERASE_MARK 0x3c69 -#define SECTOR_FREE 0xff -#define SECTOR_USED 0x55 -#define SECTOR_IGNORE 0x11 -#define SECTOR_DELETED 0x00 - -#define FOLD_MARK_IN_PROGRESS 0x5555 - -#define ZONE_GOOD 0xff -#define ZONE_BAD_ORIGINAL 0 -#define ZONE_BAD_MARKED 7 - - -#endif /* __MTD_NFTL_USER_H__ */ diff --git a/include/mtd/ubi-user.h b/include/mtd/ubi-user.h deleted file mode 100644 index 53cae1e11e57..000000000000 --- a/include/mtd/ubi-user.h +++ /dev/null @@ -1,420 +0,0 @@ -/* - * Copyright © International Business Machines Corp., 2006 - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation; either version 2 of the License, or - * (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See - * the GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License - * along with this program; if not, write to the Free Software - * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA - * - * Author: Artem Bityutskiy (Битюцкий Артём) - */ - -#ifndef __UBI_USER_H__ -#define __UBI_USER_H__ - -#include - -/* - * UBI device creation (the same as MTD device attachment) - * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - * - * MTD devices may be attached using %UBI_IOCATT ioctl command of the UBI - * control device. The caller has to properly fill and pass - * &struct ubi_attach_req object - UBI will attach the MTD device specified in - * the request and return the newly created UBI device number as the ioctl - * return value. - * - * UBI device deletion (the same as MTD device detachment) - * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - * - * An UBI device maybe deleted with %UBI_IOCDET ioctl command of the UBI - * control device. - * - * UBI volume creation - * ~~~~~~~~~~~~~~~~~~~ - * - * UBI volumes are created via the %UBI_IOCMKVOL ioctl command of UBI character - * device. A &struct ubi_mkvol_req object has to be properly filled and a - * pointer to it has to be passed to the ioctl. - * - * UBI volume deletion - * ~~~~~~~~~~~~~~~~~~~ - * - * To delete a volume, the %UBI_IOCRMVOL ioctl command of the UBI character - * device should be used. A pointer to the 32-bit volume ID hast to be passed - * to the ioctl. - * - * UBI volume re-size - * ~~~~~~~~~~~~~~~~~~ - * - * To re-size a volume, the %UBI_IOCRSVOL ioctl command of the UBI character - * device should be used. A &struct ubi_rsvol_req object has to be properly - * filled and a pointer to it has to be passed to the ioctl. - * - * UBI volumes re-name - * ~~~~~~~~~~~~~~~~~~~ - * - * To re-name several volumes atomically at one go, the %UBI_IOCRNVOL command - * of the UBI character device should be used. A &struct ubi_rnvol_req object - * has to be properly filled and a pointer to it has to be passed to the ioctl. - * - * UBI volume update - * ~~~~~~~~~~~~~~~~~ - * - * Volume update should be done via the %UBI_IOCVOLUP ioctl command of the - * corresponding UBI volume character device. A pointer to a 64-bit update - * size should be passed to the ioctl. After this, UBI expects user to write - * this number of bytes to the volume character device. The update is finished - * when the claimed number of bytes is passed. So, the volume update sequence - * is something like: - * - * fd = open("/dev/my_volume"); - * ioctl(fd, UBI_IOCVOLUP, &image_size); - * write(fd, buf, image_size); - * close(fd); - * - * Logical eraseblock erase - * ~~~~~~~~~~~~~~~~~~~~~~~~ - * - * To erase a logical eraseblock, the %UBI_IOCEBER ioctl command of the - * corresponding UBI volume character device should be used. This command - * unmaps the requested logical eraseblock, makes sure the corresponding - * physical eraseblock is successfully erased, and returns. - * - * Atomic logical eraseblock change - * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - * - * Atomic logical eraseblock change operation is called using the %UBI_IOCEBCH - * ioctl command of the corresponding UBI volume character device. A pointer to - * a &struct ubi_leb_change_req object has to be passed to the ioctl. Then the - * user is expected to write the requested amount of bytes (similarly to what - * should be done in case of the "volume update" ioctl). - * - * Logical eraseblock map - * ~~~~~~~~~~~~~~~~~~~~~ - * - * To map a logical eraseblock to a physical eraseblock, the %UBI_IOCEBMAP - * ioctl command should be used. A pointer to a &struct ubi_map_req object is - * expected to be passed. The ioctl maps the requested logical eraseblock to - * a physical eraseblock and returns. Only non-mapped logical eraseblocks can - * be mapped. If the logical eraseblock specified in the request is already - * mapped to a physical eraseblock, the ioctl fails and returns error. - * - * Logical eraseblock unmap - * ~~~~~~~~~~~~~~~~~~~~~~~~ - * - * To unmap a logical eraseblock to a physical eraseblock, the %UBI_IOCEBUNMAP - * ioctl command should be used. The ioctl unmaps the logical eraseblocks, - * schedules corresponding physical eraseblock for erasure, and returns. Unlike - * the "LEB erase" command, it does not wait for the physical eraseblock being - * erased. Note, the side effect of this is that if an unclean reboot happens - * after the unmap ioctl returns, you may find the LEB mapped again to the same - * physical eraseblock after the UBI is run again. - * - * Check if logical eraseblock is mapped - * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - * - * To check if a logical eraseblock is mapped to a physical eraseblock, the - * %UBI_IOCEBISMAP ioctl command should be used. It returns %0 if the LEB is - * not mapped, and %1 if it is mapped. - * - * Set an UBI volume property - * ~~~~~~~~~~~~~~~~~~~~~~~~~ - * - * To set an UBI volume property the %UBI_IOCSETPROP ioctl command should be - * used. A pointer to a &struct ubi_set_vol_prop_req object is expected to be - * passed. The object describes which property should be set, and to which value - * it should be set. - */ - -/* - * When a new UBI volume or UBI device is created, users may either specify the - * volume/device number they want to create or to let UBI automatically assign - * the number using these constants. - */ -#define UBI_VOL_NUM_AUTO (-1) -#define UBI_DEV_NUM_AUTO (-1) - -/* Maximum volume name length */ -#define UBI_MAX_VOLUME_NAME 127 - -/* ioctl commands of UBI character devices */ - -#define UBI_IOC_MAGIC 'o' - -/* Create an UBI volume */ -#define UBI_IOCMKVOL _IOW(UBI_IOC_MAGIC, 0, struct ubi_mkvol_req) -/* Remove an UBI volume */ -#define UBI_IOCRMVOL _IOW(UBI_IOC_MAGIC, 1, __s32) -/* Re-size an UBI volume */ -#define UBI_IOCRSVOL _IOW(UBI_IOC_MAGIC, 2, struct ubi_rsvol_req) -/* Re-name volumes */ -#define UBI_IOCRNVOL _IOW(UBI_IOC_MAGIC, 3, struct ubi_rnvol_req) - -/* ioctl commands of the UBI control character device */ - -#define UBI_CTRL_IOC_MAGIC 'o' - -/* Attach an MTD device */ -#define UBI_IOCATT _IOW(UBI_CTRL_IOC_MAGIC, 64, struct ubi_attach_req) -/* Detach an MTD device */ -#define UBI_IOCDET _IOW(UBI_CTRL_IOC_MAGIC, 65, __s32) - -/* ioctl commands of UBI volume character devices */ - -#define UBI_VOL_IOC_MAGIC 'O' - -/* Start UBI volume update */ -#define UBI_IOCVOLUP _IOW(UBI_VOL_IOC_MAGIC, 0, __s64) -/* LEB erasure command, used for debugging, disabled by default */ -#define UBI_IOCEBER _IOW(UBI_VOL_IOC_MAGIC, 1, __s32) -/* Atomic LEB change command */ -#define UBI_IOCEBCH _IOW(UBI_VOL_IOC_MAGIC, 2, __s32) -/* Map LEB command */ -#define UBI_IOCEBMAP _IOW(UBI_VOL_IOC_MAGIC, 3, struct ubi_map_req) -/* Unmap LEB command */ -#define UBI_IOCEBUNMAP _IOW(UBI_VOL_IOC_MAGIC, 4, __s32) -/* Check if LEB is mapped command */ -#define UBI_IOCEBISMAP _IOR(UBI_VOL_IOC_MAGIC, 5, __s32) -/* Set an UBI volume property */ -#define UBI_IOCSETVOLPROP _IOW(UBI_VOL_IOC_MAGIC, 6, \ - struct ubi_set_vol_prop_req) - -/* Maximum MTD device name length supported by UBI */ -#define MAX_UBI_MTD_NAME_LEN 127 - -/* Maximum amount of UBI volumes that can be re-named at one go */ -#define UBI_MAX_RNVOL 32 - -/* - * UBI volume type constants. - * - * @UBI_DYNAMIC_VOLUME: dynamic volume - * @UBI_STATIC_VOLUME: static volume - */ -enum { - UBI_DYNAMIC_VOLUME = 3, - UBI_STATIC_VOLUME = 4, -}; - -/* - * UBI set volume property ioctl constants. - * - * @UBI_VOL_PROP_DIRECT_WRITE: allow (any non-zero value) or disallow (value 0) - * user to directly write and erase individual - * eraseblocks on dynamic volumes - */ -enum { - UBI_VOL_PROP_DIRECT_WRITE = 1, -}; - -/** - * struct ubi_attach_req - attach MTD device request. - * @ubi_num: UBI device number to create - * @mtd_num: MTD device number to attach - * @vid_hdr_offset: VID header offset (use defaults if %0) - * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs - * @padding: reserved for future, not used, has to be zeroed - * - * This data structure is used to specify MTD device UBI has to attach and the - * parameters it has to use. The number which should be assigned to the new UBI - * device is passed in @ubi_num. UBI may automatically assign the number if - * @UBI_DEV_NUM_AUTO is passed. In this case, the device number is returned in - * @ubi_num. - * - * Most applications should pass %0 in @vid_hdr_offset to make UBI use default - * offset of the VID header within physical eraseblocks. The default offset is - * the next min. I/O unit after the EC header. For example, it will be offset - * 512 in case of a 512 bytes page NAND flash with no sub-page support. Or - * it will be 512 in case of a 2KiB page NAND flash with 4 512-byte sub-pages. - * - * But in rare cases, if this optimizes things, the VID header may be placed to - * a different offset. For example, the boot-loader might do things faster if - * the VID header sits at the end of the first 2KiB NAND page with 4 sub-pages. - * As the boot-loader would not normally need to read EC headers (unless it - * needs UBI in RW mode), it might be faster to calculate ECC. This is weird - * example, but it real-life example. So, in this example, @vid_hdr_offer would - * be 2KiB-64 bytes = 1984. Note, that this position is not even 512-bytes - * aligned, which is OK, as UBI is clever enough to realize this is 4th - * sub-page of the first page and add needed padding. - * - * The @max_beb_per1024 is the maximum amount of bad PEBs UBI expects on the - * UBI device per 1024 eraseblocks. This value is often given in an other form - * in the NAND datasheet (min NVB i.e. minimal number of valid blocks). The - * maximum expected bad eraseblocks per 1024 is then: - * 1024 * (1 - MinNVB / MaxNVB) - * Which gives 20 for most NAND devices. This limit is used in order to derive - * amount of eraseblock UBI reserves for handling new bad blocks. If the device - * has more bad eraseblocks than this limit, UBI does not reserve any physical - * eraseblocks for new bad eraseblocks, but attempts to use available - * eraseblocks (if any). The accepted range is 0-768. If 0 is given, the - * default kernel value of %CONFIG_MTD_UBI_BEB_LIMIT will be used. - */ -struct ubi_attach_req { - __s32 ubi_num; - __s32 mtd_num; - __s32 vid_hdr_offset; - __s16 max_beb_per1024; - __s8 padding[10]; -}; - -/** - * struct ubi_mkvol_req - volume description data structure used in - * volume creation requests. - * @vol_id: volume number - * @alignment: volume alignment - * @bytes: volume size in bytes - * @vol_type: volume type (%UBI_DYNAMIC_VOLUME or %UBI_STATIC_VOLUME) - * @padding1: reserved for future, not used, has to be zeroed - * @name_len: volume name length - * @padding2: reserved for future, not used, has to be zeroed - * @name: volume name - * - * This structure is used by user-space programs when creating new volumes. The - * @used_bytes field is only necessary when creating static volumes. - * - * The @alignment field specifies the required alignment of the volume logical - * eraseblock. This means, that the size of logical eraseblocks will be aligned - * to this number, i.e., - * (UBI device logical eraseblock size) mod (@alignment) = 0. - * - * To put it differently, the logical eraseblock of this volume may be slightly - * shortened in order to make it properly aligned. The alignment has to be - * multiple of the flash minimal input/output unit, or %1 to utilize the entire - * available space of logical eraseblocks. - * - * The @alignment field may be useful, for example, when one wants to maintain - * a block device on top of an UBI volume. In this case, it is desirable to fit - * an integer number of blocks in logical eraseblocks of this UBI volume. With - * alignment it is possible to update this volume using plane UBI volume image - * BLOBs, without caring about how to properly align them. - */ -struct ubi_mkvol_req { - __s32 vol_id; - __s32 alignment; - __s64 bytes; - __s8 vol_type; - __s8 padding1; - __s16 name_len; - __s8 padding2[4]; - char name[UBI_MAX_VOLUME_NAME + 1]; -} __packed; - -/** - * struct ubi_rsvol_req - a data structure used in volume re-size requests. - * @vol_id: ID of the volume to re-size - * @bytes: new size of the volume in bytes - * - * Re-sizing is possible for both dynamic and static volumes. But while dynamic - * volumes may be re-sized arbitrarily, static volumes cannot be made to be - * smaller than the number of bytes they bear. To arbitrarily shrink a static - * volume, it must be wiped out first (by means of volume update operation with - * zero number of bytes). - */ -struct ubi_rsvol_req { - __s64 bytes; - __s32 vol_id; -} __packed; - -/** - * struct ubi_rnvol_req - volumes re-name request. - * @count: count of volumes to re-name - * @padding1: reserved for future, not used, has to be zeroed - * @vol_id: ID of the volume to re-name - * @name_len: name length - * @padding2: reserved for future, not used, has to be zeroed - * @name: new volume name - * - * UBI allows to re-name up to %32 volumes at one go. The count of volumes to - * re-name is specified in the @count field. The ID of the volumes to re-name - * and the new names are specified in the @vol_id and @name fields. - * - * The UBI volume re-name operation is atomic, which means that should power cut - * happen, the volumes will have either old name or new name. So the possible - * use-cases of this command is atomic upgrade. Indeed, to upgrade, say, volumes - * A and B one may create temporary volumes %A1 and %B1 with the new contents, - * then atomically re-name A1->A and B1->B, in which case old %A and %B will - * be removed. - * - * If it is not desirable to remove old A and B, the re-name request has to - * contain 4 entries: A1->A, A->A1, B1->B, B->B1, in which case old A1 and B1 - * become A and B, and old A and B will become A1 and B1. - * - * It is also OK to request: A1->A, A1->X, B1->B, B->Y, in which case old A1 - * and B1 become A and B, and old A and B become X and Y. - * - * In other words, in case of re-naming into an existing volume name, the - * existing volume is removed, unless it is re-named as well at the same - * re-name request. - */ -struct ubi_rnvol_req { - __s32 count; - __s8 padding1[12]; - struct { - __s32 vol_id; - __s16 name_len; - __s8 padding2[2]; - char name[UBI_MAX_VOLUME_NAME + 1]; - } ents[UBI_MAX_RNVOL]; -} __packed; - -/** - * struct ubi_leb_change_req - a data structure used in atomic LEB change - * requests. - * @lnum: logical eraseblock number to change - * @bytes: how many bytes will be written to the logical eraseblock - * @dtype: pass "3" for better compatibility with old kernels - * @padding: reserved for future, not used, has to be zeroed - * - * The @dtype field used to inform UBI about what kind of data will be written - * to the LEB: long term (value 1), short term (value 2), unknown (value 3). - * UBI tried to pick a PEB with lower erase counter for short term data and a - * PEB with higher erase counter for long term data. But this was not really - * used because users usually do not know this and could easily mislead UBI. We - * removed this feature in May 2012. UBI currently just ignores the @dtype - * field. But for better compatibility with older kernels it is recommended to - * set @dtype to 3 (unknown). - */ -struct ubi_leb_change_req { - __s32 lnum; - __s32 bytes; - __s8 dtype; /* obsolete, do not use! */ - __s8 padding[7]; -} __packed; - -/** - * struct ubi_map_req - a data structure used in map LEB requests. - * @dtype: pass "3" for better compatibility with old kernels - * @lnum: logical eraseblock number to unmap - * @padding: reserved for future, not used, has to be zeroed - */ -struct ubi_map_req { - __s32 lnum; - __s8 dtype; /* obsolete, do not use! */ - __s8 padding[3]; -} __packed; - - -/** - * struct ubi_set_vol_prop_req - a data structure used to set an UBI volume - * property. - * @property: property to set (%UBI_VOL_PROP_DIRECT_WRITE) - * @padding: reserved for future, not used, has to be zeroed - * @value: value to set - */ -struct ubi_set_vol_prop_req { - __u8 property; - __u8 padding[7]; - __u64 value; -} __packed; - -#endif /* __UBI_USER_H__ */ diff --git a/include/uapi/mtd/Kbuild b/include/uapi/mtd/Kbuild index aafaa5aa54d4..5a691e10cd0e 100644 --- a/include/uapi/mtd/Kbuild +++ b/include/uapi/mtd/Kbuild @@ -1 +1,6 @@ # UAPI Header export list +header-y += inftl-user.h +header-y += mtd-abi.h +header-y += mtd-user.h +header-y += nftl-user.h +header-y += ubi-user.h diff --git a/include/uapi/mtd/inftl-user.h b/include/uapi/mtd/inftl-user.h new file mode 100644 index 000000000000..8376bd1a9e01 --- /dev/null +++ b/include/uapi/mtd/inftl-user.h @@ -0,0 +1,91 @@ +/* + * Parts of INFTL headers shared with userspace + * + */ + +#ifndef __MTD_INFTL_USER_H__ +#define __MTD_INFTL_USER_H__ + +#include + +#define OSAK_VERSION 0x5120 +#define PERCENTUSED 98 + +#define SECTORSIZE 512 + +/* Block Control Information */ + +struct inftl_bci { + __u8 ECCsig[6]; + __u8 Status; + __u8 Status1; +} __attribute__((packed)); + +struct inftl_unithead1 { + __u16 virtualUnitNo; + __u16 prevUnitNo; + __u8 ANAC; + __u8 NACs; + __u8 parityPerField; + __u8 discarded; +} __attribute__((packed)); + +struct inftl_unithead2 { + __u8 parityPerField; + __u8 ANAC; + __u16 prevUnitNo; + __u16 virtualUnitNo; + __u8 NACs; + __u8 discarded; +} __attribute__((packed)); + +struct inftl_unittail { + __u8 Reserved[4]; + __u16 EraseMark; + __u16 EraseMark1; +} __attribute__((packed)); + +union inftl_uci { + struct inftl_unithead1 a; + struct inftl_unithead2 b; + struct inftl_unittail c; +}; + +struct inftl_oob { + struct inftl_bci b; + union inftl_uci u; +}; + + +/* INFTL Media Header */ + +struct INFTLPartition { + __u32 virtualUnits; + __u32 firstUnit; + __u32 lastUnit; + __u32 flags; + __u32 spareUnits; + __u32 Reserved0; + __u32 Reserved1; +} __attribute__((packed)); + +struct INFTLMediaHeader { + char bootRecordID[8]; + __u32 NoOfBootImageBlocks; + __u32 NoOfBinaryPartitions; + __u32 NoOfBDTLPartitions; + __u32 BlockMultiplierBits; + __u32 FormatFlags; + __u32 OsakVersion; + __u32 PercentUsed; + struct INFTLPartition Partitions[4]; +} __attribute__((packed)); + +/* Partition flag types */ +#define INFTL_BINARY 0x20000000 +#define INFTL_BDTL 0x40000000 +#define INFTL_LAST 0x80000000 + +#endif /* __MTD_INFTL_USER_H__ */ + + diff --git a/include/uapi/mtd/mtd-abi.h b/include/uapi/mtd/mtd-abi.h new file mode 100644 index 000000000000..36eace03b2ac --- /dev/null +++ b/include/uapi/mtd/mtd-abi.h @@ -0,0 +1,278 @@ +/* + * Copyright © 1999-2010 David Woodhouse et al. + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + +#ifndef __MTD_ABI_H__ +#define __MTD_ABI_H__ + +#include + +struct erase_info_user { + __u32 start; + __u32 length; +}; + +struct erase_info_user64 { + __u64 start; + __u64 length; +}; + +struct mtd_oob_buf { + __u32 start; + __u32 length; + unsigned char __user *ptr; +}; + +struct mtd_oob_buf64 { + __u64 start; + __u32 pad; + __u32 length; + __u64 usr_ptr; +}; + +/** + * MTD operation modes + * + * @MTD_OPS_PLACE_OOB: OOB data are placed at the given offset (default) + * @MTD_OPS_AUTO_OOB: OOB data are automatically placed at the free areas + * which are defined by the internal ecclayout + * @MTD_OPS_RAW: data are transferred as-is, with no error correction; + * this mode implies %MTD_OPS_PLACE_OOB + * + * These modes can be passed to ioctl(MEMWRITE) and are also used internally. + * See notes on "MTD file modes" for discussion on %MTD_OPS_RAW vs. + * %MTD_FILE_MODE_RAW. + */ +enum { + MTD_OPS_PLACE_OOB = 0, + MTD_OPS_AUTO_OOB = 1, + MTD_OPS_RAW = 2, +}; + +/** + * struct mtd_write_req - data structure for requesting a write operation + * + * @start: start address + * @len: length of data buffer + * @ooblen: length of OOB buffer + * @usr_data: user-provided data buffer + * @usr_oob: user-provided OOB buffer + * @mode: MTD mode (see "MTD operation modes") + * @padding: reserved, must be set to 0 + * + * This structure supports ioctl(MEMWRITE) operations, allowing data and/or OOB + * writes in various modes. To write to OOB-only, set @usr_data == NULL, and to + * write data-only, set @usr_oob == NULL. However, setting both @usr_data and + * @usr_oob to NULL is not allowed. + */ +struct mtd_write_req { + __u64 start; + __u64 len; + __u64 ooblen; + __u64 usr_data; + __u64 usr_oob; + __u8 mode; + __u8 padding[7]; +}; + +#define MTD_ABSENT 0 +#define MTD_RAM 1 +#define MTD_ROM 2 +#define MTD_NORFLASH 3 +#define MTD_NANDFLASH 4 +#define MTD_DATAFLASH 6 +#define MTD_UBIVOLUME 7 +#define MTD_MLCNANDFLASH 8 + +#define MTD_WRITEABLE 0x400 /* Device is writeable */ +#define MTD_BIT_WRITEABLE 0x800 /* Single bits can be flipped */ +#define MTD_NO_ERASE 0x1000 /* No erase necessary */ +#define MTD_POWERUP_LOCK 0x2000 /* Always locked after reset */ + +/* Some common devices / combinations of capabilities */ +#define MTD_CAP_ROM 0 +#define MTD_CAP_RAM (MTD_WRITEABLE | MTD_BIT_WRITEABLE | MTD_NO_ERASE) +#define MTD_CAP_NORFLASH (MTD_WRITEABLE | MTD_BIT_WRITEABLE) +#define MTD_CAP_NANDFLASH (MTD_WRITEABLE) + +/* Obsolete ECC byte placement modes (used with obsolete MEMGETOOBSEL) */ +#define MTD_NANDECC_OFF 0 // Switch off ECC (Not recommended) +#define MTD_NANDECC_PLACE 1 // Use the given placement in the structure (YAFFS1 legacy mode) +#define MTD_NANDECC_AUTOPLACE 2 // Use the default placement scheme +#define MTD_NANDECC_PLACEONLY 3 // Use the given placement in the structure (Do not store ecc result on read) +#define MTD_NANDECC_AUTOPL_USR 4 // Use the given autoplacement scheme rather than using the default + +/* OTP mode selection */ +#define MTD_OTP_OFF 0 +#define MTD_OTP_FACTORY 1 +#define MTD_OTP_USER 2 + +struct mtd_info_user { + __u8 type; + __u32 flags; + __u32 size; /* Total size of the MTD */ + __u32 erasesize; + __u32 writesize; + __u32 oobsize; /* Amount of OOB data per block (e.g. 16) */ + __u64 padding; /* Old obsolete field; do not use */ +}; + +struct region_info_user { + __u32 offset; /* At which this region starts, + * from the beginning of the MTD */ + __u32 erasesize; /* For this region */ + __u32 numblocks; /* Number of blocks in this region */ + __u32 regionindex; +}; + +struct otp_info { + __u32 start; + __u32 length; + __u32 locked; +}; + +/* + * Note, the following ioctl existed in the past and was removed: + * #define MEMSETOOBSEL _IOW('M', 9, struct nand_oobinfo) + * Try to avoid adding a new ioctl with the same ioctl number. + */ + +/* Get basic MTD characteristics info (better to use sysfs) */ +#define MEMGETINFO _IOR('M', 1, struct mtd_info_user) +/* Erase segment of MTD */ +#define MEMERASE _IOW('M', 2, struct erase_info_user) +/* Write out-of-band data from MTD */ +#define MEMWRITEOOB _IOWR('M', 3, struct mtd_oob_buf) +/* Read out-of-band data from MTD */ +#define MEMREADOOB _IOWR('M', 4, struct mtd_oob_buf) +/* Lock a chip (for MTD that supports it) */ +#define MEMLOCK _IOW('M', 5, struct erase_info_user) +/* Unlock a chip (for MTD that supports it) */ +#define MEMUNLOCK _IOW('M', 6, struct erase_info_user) +/* Get the number of different erase regions */ +#define MEMGETREGIONCOUNT _IOR('M', 7, int) +/* Get information about the erase region for a specific index */ +#define MEMGETREGIONINFO _IOWR('M', 8, struct region_info_user) +/* Get info about OOB modes (e.g., RAW, PLACE, AUTO) - legacy interface */ +#define MEMGETOOBSEL _IOR('M', 10, struct nand_oobinfo) +/* Check if an eraseblock is bad */ +#define MEMGETBADBLOCK _IOW('M', 11, __kernel_loff_t) +/* Mark an eraseblock as bad */ +#define MEMSETBADBLOCK _IOW('M', 12, __kernel_loff_t) +/* Set OTP (One-Time Programmable) mode (factory vs. user) */ +#define OTPSELECT _IOR('M', 13, int) +/* Get number of OTP (One-Time Programmable) regions */ +#define OTPGETREGIONCOUNT _IOW('M', 14, int) +/* Get all OTP (One-Time Programmable) info about MTD */ +#define OTPGETREGIONINFO _IOW('M', 15, struct otp_info) +/* Lock a given range of user data (must be in mode %MTD_FILE_MODE_OTP_USER) */ +#define OTPLOCK _IOR('M', 16, struct otp_info) +/* Get ECC layout (deprecated) */ +#define ECCGETLAYOUT _IOR('M', 17, struct nand_ecclayout_user) +/* Get statistics about corrected/uncorrected errors */ +#define ECCGETSTATS _IOR('M', 18, struct mtd_ecc_stats) +/* Set MTD mode on a per-file-descriptor basis (see "MTD file modes") */ +#define MTDFILEMODE _IO('M', 19) +/* Erase segment of MTD (supports 64-bit address) */ +#define MEMERASE64 _IOW('M', 20, struct erase_info_user64) +/* Write data to OOB (64-bit version) */ +#define MEMWRITEOOB64 _IOWR('M', 21, struct mtd_oob_buf64) +/* Read data from OOB (64-bit version) */ +#define MEMREADOOB64 _IOWR('M', 22, struct mtd_oob_buf64) +/* Check if chip is locked (for MTD that supports it) */ +#define MEMISLOCKED _IOR('M', 23, struct erase_info_user) +/* + * Most generic write interface; can write in-band and/or out-of-band in various + * modes (see "struct mtd_write_req"). This ioctl is not supported for flashes + * without OOB, e.g., NOR flash. + */ +#define MEMWRITE _IOWR('M', 24, struct mtd_write_req) + +/* + * Obsolete legacy interface. Keep it in order not to break userspace + * interfaces + */ +struct nand_oobinfo { + __u32 useecc; + __u32 eccbytes; + __u32 oobfree[8][2]; + __u32 eccpos[32]; +}; + +struct nand_oobfree { + __u32 offset; + __u32 length; +}; + +#define MTD_MAX_OOBFREE_ENTRIES 8 +#define MTD_MAX_ECCPOS_ENTRIES 64 +/* + * OBSOLETE: ECC layout control structure. Exported to user-space via ioctl + * ECCGETLAYOUT for backwards compatbility and should not be mistaken as a + * complete set of ECC information. The ioctl truncates the larger internal + * structure to retain binary compatibility with the static declaration of the + * ioctl. Note that the "MTD_MAX_..._ENTRIES" macros represent the max size of + * the user struct, not the MAX size of the internal struct nand_ecclayout. + */ +struct nand_ecclayout_user { + __u32 eccbytes; + __u32 eccpos[MTD_MAX_ECCPOS_ENTRIES]; + __u32 oobavail; + struct nand_oobfree oobfree[MTD_MAX_OOBFREE_ENTRIES]; +}; + +/** + * struct mtd_ecc_stats - error correction stats + * + * @corrected: number of corrected bits + * @failed: number of uncorrectable errors + * @badblocks: number of bad blocks in this partition + * @bbtblocks: number of blocks reserved for bad block tables + */ +struct mtd_ecc_stats { + __u32 corrected; + __u32 failed; + __u32 badblocks; + __u32 bbtblocks; +}; + +/* + * MTD file modes - for read/write access to MTD + * + * @MTD_FILE_MODE_NORMAL: OTP disabled, ECC enabled + * @MTD_FILE_MODE_OTP_FACTORY: OTP enabled in factory mode + * @MTD_FILE_MODE_OTP_USER: OTP enabled in user mode + * @MTD_FILE_MODE_RAW: OTP disabled, ECC disabled + * + * These modes can be set via ioctl(MTDFILEMODE). The mode mode will be retained + * separately for each open file descriptor. + * + * Note: %MTD_FILE_MODE_RAW provides the same functionality as %MTD_OPS_RAW - + * raw access to the flash, without error correction or autoplacement schemes. + * Wherever possible, the MTD_OPS_* mode will override the MTD_FILE_MODE_* mode + * (e.g., when using ioctl(MEMWRITE)), but in some cases, the MTD_FILE_MODE is + * used out of necessity (e.g., `write()', ioctl(MEMWRITEOOB64)). + */ +enum mtd_file_modes { + MTD_FILE_MODE_NORMAL = MTD_OTP_OFF, + MTD_FILE_MODE_OTP_FACTORY = MTD_OTP_FACTORY, + MTD_FILE_MODE_OTP_USER = MTD_OTP_USER, + MTD_FILE_MODE_RAW, +}; + +#endif /* __MTD_ABI_H__ */ diff --git a/include/uapi/mtd/mtd-user.h b/include/uapi/mtd/mtd-user.h new file mode 100644 index 000000000000..83327c808c86 --- /dev/null +++ b/include/uapi/mtd/mtd-user.h @@ -0,0 +1,34 @@ +/* + * Copyright © 1999-2010 David Woodhouse + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + +#ifndef __MTD_USER_H__ +#define __MTD_USER_H__ + +#include + +/* This file is blessed for inclusion by userspace */ +#include + +typedef struct mtd_info_user mtd_info_t; +typedef struct erase_info_user erase_info_t; +typedef struct region_info_user region_info_t; +typedef struct nand_oobinfo nand_oobinfo_t; +typedef struct nand_ecclayout_user nand_ecclayout_t; + +#endif /* __MTD_USER_H__ */ diff --git a/include/uapi/mtd/nftl-user.h b/include/uapi/mtd/nftl-user.h new file mode 100644 index 000000000000..bdeabd86ad99 --- /dev/null +++ b/include/uapi/mtd/nftl-user.h @@ -0,0 +1,90 @@ +/* + * Copyright © 1999-2010 David Woodhouse + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + +#ifndef __MTD_NFTL_USER_H__ +#define __MTD_NFTL_USER_H__ + +#include + +/* Block Control Information */ + +struct nftl_bci { + unsigned char ECCSig[6]; + __u8 Status; + __u8 Status1; +}__attribute__((packed)); + +/* Unit Control Information */ + +struct nftl_uci0 { + __u16 VirtUnitNum; + __u16 ReplUnitNum; + __u16 SpareVirtUnitNum; + __u16 SpareReplUnitNum; +} __attribute__((packed)); + +struct nftl_uci1 { + __u32 WearInfo; + __u16 EraseMark; + __u16 EraseMark1; +} __attribute__((packed)); + +struct nftl_uci2 { + __u16 FoldMark; + __u16 FoldMark1; + __u32 unused; +} __attribute__((packed)); + +union nftl_uci { + struct nftl_uci0 a; + struct nftl_uci1 b; + struct nftl_uci2 c; +}; + +struct nftl_oob { + struct nftl_bci b; + union nftl_uci u; +}; + +/* NFTL Media Header */ + +struct NFTLMediaHeader { + char DataOrgID[6]; + __u16 NumEraseUnits; + __u16 FirstPhysicalEUN; + __u32 FormattedSize; + unsigned char UnitSizeFactor; +} __attribute__((packed)); + +#define MAX_ERASE_ZONES (8192 - 512) + +#define ERASE_MARK 0x3c69 +#define SECTOR_FREE 0xff +#define SECTOR_USED 0x55 +#define SECTOR_IGNORE 0x11 +#define SECTOR_DELETED 0x00 + +#define FOLD_MARK_IN_PROGRESS 0x5555 + +#define ZONE_GOOD 0xff +#define ZONE_BAD_ORIGINAL 0 +#define ZONE_BAD_MARKED 7 + + +#endif /* __MTD_NFTL_USER_H__ */ diff --git a/include/uapi/mtd/ubi-user.h b/include/uapi/mtd/ubi-user.h new file mode 100644 index 000000000000..53cae1e11e57 --- /dev/null +++ b/include/uapi/mtd/ubi-user.h @@ -0,0 +1,420 @@ +/* + * Copyright © International Business Machines Corp., 2006 + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See + * the GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA + * + * Author: Artem Bityutskiy (Битюцкий Артём) + */ + +#ifndef __UBI_USER_H__ +#define __UBI_USER_H__ + +#include + +/* + * UBI device creation (the same as MTD device attachment) + * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + * + * MTD devices may be attached using %UBI_IOCATT ioctl command of the UBI + * control device. The caller has to properly fill and pass + * &struct ubi_attach_req object - UBI will attach the MTD device specified in + * the request and return the newly created UBI device number as the ioctl + * return value. + * + * UBI device deletion (the same as MTD device detachment) + * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + * + * An UBI device maybe deleted with %UBI_IOCDET ioctl command of the UBI + * control device. + * + * UBI volume creation + * ~~~~~~~~~~~~~~~~~~~ + * + * UBI volumes are created via the %UBI_IOCMKVOL ioctl command of UBI character + * device. A &struct ubi_mkvol_req object has to be properly filled and a + * pointer to it has to be passed to the ioctl. + * + * UBI volume deletion + * ~~~~~~~~~~~~~~~~~~~ + * + * To delete a volume, the %UBI_IOCRMVOL ioctl command of the UBI character + * device should be used. A pointer to the 32-bit volume ID hast to be passed + * to the ioctl. + * + * UBI volume re-size + * ~~~~~~~~~~~~~~~~~~ + * + * To re-size a volume, the %UBI_IOCRSVOL ioctl command of the UBI character + * device should be used. A &struct ubi_rsvol_req object has to be properly + * filled and a pointer to it has to be passed to the ioctl. + * + * UBI volumes re-name + * ~~~~~~~~~~~~~~~~~~~ + * + * To re-name several volumes atomically at one go, the %UBI_IOCRNVOL command + * of the UBI character device should be used. A &struct ubi_rnvol_req object + * has to be properly filled and a pointer to it has to be passed to the ioctl. + * + * UBI volume update + * ~~~~~~~~~~~~~~~~~ + * + * Volume update should be done via the %UBI_IOCVOLUP ioctl command of the + * corresponding UBI volume character device. A pointer to a 64-bit update + * size should be passed to the ioctl. After this, UBI expects user to write + * this number of bytes to the volume character device. The update is finished + * when the claimed number of bytes is passed. So, the volume update sequence + * is something like: + * + * fd = open("/dev/my_volume"); + * ioctl(fd, UBI_IOCVOLUP, &image_size); + * write(fd, buf, image_size); + * close(fd); + * + * Logical eraseblock erase + * ~~~~~~~~~~~~~~~~~~~~~~~~ + * + * To erase a logical eraseblock, the %UBI_IOCEBER ioctl command of the + * corresponding UBI volume character device should be used. This command + * unmaps the requested logical eraseblock, makes sure the corresponding + * physical eraseblock is successfully erased, and returns. + * + * Atomic logical eraseblock change + * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + * + * Atomic logical eraseblock change operation is called using the %UBI_IOCEBCH + * ioctl command of the corresponding UBI volume character device. A pointer to + * a &struct ubi_leb_change_req object has to be passed to the ioctl. Then the + * user is expected to write the requested amount of bytes (similarly to what + * should be done in case of the "volume update" ioctl). + * + * Logical eraseblock map + * ~~~~~~~~~~~~~~~~~~~~~ + * + * To map a logical eraseblock to a physical eraseblock, the %UBI_IOCEBMAP + * ioctl command should be used. A pointer to a &struct ubi_map_req object is + * expected to be passed. The ioctl maps the requested logical eraseblock to + * a physical eraseblock and returns. Only non-mapped logical eraseblocks can + * be mapped. If the logical eraseblock specified in the request is already + * mapped to a physical eraseblock, the ioctl fails and returns error. + * + * Logical eraseblock unmap + * ~~~~~~~~~~~~~~~~~~~~~~~~ + * + * To unmap a logical eraseblock to a physical eraseblock, the %UBI_IOCEBUNMAP + * ioctl command should be used. The ioctl unmaps the logical eraseblocks, + * schedules corresponding physical eraseblock for erasure, and returns. Unlike + * the "LEB erase" command, it does not wait for the physical eraseblock being + * erased. Note, the side effect of this is that if an unclean reboot happens + * after the unmap ioctl returns, you may find the LEB mapped again to the same + * physical eraseblock after the UBI is run again. + * + * Check if logical eraseblock is mapped + * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + * + * To check if a logical eraseblock is mapped to a physical eraseblock, the + * %UBI_IOCEBISMAP ioctl command should be used. It returns %0 if the LEB is + * not mapped, and %1 if it is mapped. + * + * Set an UBI volume property + * ~~~~~~~~~~~~~~~~~~~~~~~~~ + * + * To set an UBI volume property the %UBI_IOCSETPROP ioctl command should be + * used. A pointer to a &struct ubi_set_vol_prop_req object is expected to be + * passed. The object describes which property should be set, and to which value + * it should be set. + */ + +/* + * When a new UBI volume or UBI device is created, users may either specify the + * volume/device number they want to create or to let UBI automatically assign + * the number using these constants. + */ +#define UBI_VOL_NUM_AUTO (-1) +#define UBI_DEV_NUM_AUTO (-1) + +/* Maximum volume name length */ +#define UBI_MAX_VOLUME_NAME 127 + +/* ioctl commands of UBI character devices */ + +#define UBI_IOC_MAGIC 'o' + +/* Create an UBI volume */ +#define UBI_IOCMKVOL _IOW(UBI_IOC_MAGIC, 0, struct ubi_mkvol_req) +/* Remove an UBI volume */ +#define UBI_IOCRMVOL _IOW(UBI_IOC_MAGIC, 1, __s32) +/* Re-size an UBI volume */ +#define UBI_IOCRSVOL _IOW(UBI_IOC_MAGIC, 2, struct ubi_rsvol_req) +/* Re-name volumes */ +#define UBI_IOCRNVOL _IOW(UBI_IOC_MAGIC, 3, struct ubi_rnvol_req) + +/* ioctl commands of the UBI control character device */ + +#define UBI_CTRL_IOC_MAGIC 'o' + +/* Attach an MTD device */ +#define UBI_IOCATT _IOW(UBI_CTRL_IOC_MAGIC, 64, struct ubi_attach_req) +/* Detach an MTD device */ +#define UBI_IOCDET _IOW(UBI_CTRL_IOC_MAGIC, 65, __s32) + +/* ioctl commands of UBI volume character devices */ + +#define UBI_VOL_IOC_MAGIC 'O' + +/* Start UBI volume update */ +#define UBI_IOCVOLUP _IOW(UBI_VOL_IOC_MAGIC, 0, __s64) +/* LEB erasure command, used for debugging, disabled by default */ +#define UBI_IOCEBER _IOW(UBI_VOL_IOC_MAGIC, 1, __s32) +/* Atomic LEB change command */ +#define UBI_IOCEBCH _IOW(UBI_VOL_IOC_MAGIC, 2, __s32) +/* Map LEB command */ +#define UBI_IOCEBMAP _IOW(UBI_VOL_IOC_MAGIC, 3, struct ubi_map_req) +/* Unmap LEB command */ +#define UBI_IOCEBUNMAP _IOW(UBI_VOL_IOC_MAGIC, 4, __s32) +/* Check if LEB is mapped command */ +#define UBI_IOCEBISMAP _IOR(UBI_VOL_IOC_MAGIC, 5, __s32) +/* Set an UBI volume property */ +#define UBI_IOCSETVOLPROP _IOW(UBI_VOL_IOC_MAGIC, 6, \ + struct ubi_set_vol_prop_req) + +/* Maximum MTD device name length supported by UBI */ +#define MAX_UBI_MTD_NAME_LEN 127 + +/* Maximum amount of UBI volumes that can be re-named at one go */ +#define UBI_MAX_RNVOL 32 + +/* + * UBI volume type constants. + * + * @UBI_DYNAMIC_VOLUME: dynamic volume + * @UBI_STATIC_VOLUME: static volume + */ +enum { + UBI_DYNAMIC_VOLUME = 3, + UBI_STATIC_VOLUME = 4, +}; + +/* + * UBI set volume property ioctl constants. + * + * @UBI_VOL_PROP_DIRECT_WRITE: allow (any non-zero value) or disallow (value 0) + * user to directly write and erase individual + * eraseblocks on dynamic volumes + */ +enum { + UBI_VOL_PROP_DIRECT_WRITE = 1, +}; + +/** + * struct ubi_attach_req - attach MTD device request. + * @ubi_num: UBI device number to create + * @mtd_num: MTD device number to attach + * @vid_hdr_offset: VID header offset (use defaults if %0) + * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs + * @padding: reserved for future, not used, has to be zeroed + * + * This data structure is used to specify MTD device UBI has to attach and the + * parameters it has to use. The number which should be assigned to the new UBI + * device is passed in @ubi_num. UBI may automatically assign the number if + * @UBI_DEV_NUM_AUTO is passed. In this case, the device number is returned in + * @ubi_num. + * + * Most applications should pass %0 in @vid_hdr_offset to make UBI use default + * offset of the VID header within physical eraseblocks. The default offset is + * the next min. I/O unit after the EC header. For example, it will be offset + * 512 in case of a 512 bytes page NAND flash with no sub-page support. Or + * it will be 512 in case of a 2KiB page NAND flash with 4 512-byte sub-pages. + * + * But in rare cases, if this optimizes things, the VID header may be placed to + * a different offset. For example, the boot-loader might do things faster if + * the VID header sits at the end of the first 2KiB NAND page with 4 sub-pages. + * As the boot-loader would not normally need to read EC headers (unless it + * needs UBI in RW mode), it might be faster to calculate ECC. This is weird + * example, but it real-life example. So, in this example, @vid_hdr_offer would + * be 2KiB-64 bytes = 1984. Note, that this position is not even 512-bytes + * aligned, which is OK, as UBI is clever enough to realize this is 4th + * sub-page of the first page and add needed padding. + * + * The @max_beb_per1024 is the maximum amount of bad PEBs UBI expects on the + * UBI device per 1024 eraseblocks. This value is often given in an other form + * in the NAND datasheet (min NVB i.e. minimal number of valid blocks). The + * maximum expected bad eraseblocks per 1024 is then: + * 1024 * (1 - MinNVB / MaxNVB) + * Which gives 20 for most NAND devices. This limit is used in order to derive + * amount of eraseblock UBI reserves for handling new bad blocks. If the device + * has more bad eraseblocks than this limit, UBI does not reserve any physical + * eraseblocks for new bad eraseblocks, but attempts to use available + * eraseblocks (if any). The accepted range is 0-768. If 0 is given, the + * default kernel value of %CONFIG_MTD_UBI_BEB_LIMIT will be used. + */ +struct ubi_attach_req { + __s32 ubi_num; + __s32 mtd_num; + __s32 vid_hdr_offset; + __s16 max_beb_per1024; + __s8 padding[10]; +}; + +/** + * struct ubi_mkvol_req - volume description data structure used in + * volume creation requests. + * @vol_id: volume number + * @alignment: volume alignment + * @bytes: volume size in bytes + * @vol_type: volume type (%UBI_DYNAMIC_VOLUME or %UBI_STATIC_VOLUME) + * @padding1: reserved for future, not used, has to be zeroed + * @name_len: volume name length + * @padding2: reserved for future, not used, has to be zeroed + * @name: volume name + * + * This structure is used by user-space programs when creating new volumes. The + * @used_bytes field is only necessary when creating static volumes. + * + * The @alignment field specifies the required alignment of the volume logical + * eraseblock. This means, that the size of logical eraseblocks will be aligned + * to this number, i.e., + * (UBI device logical eraseblock size) mod (@alignment) = 0. + * + * To put it differently, the logical eraseblock of this volume may be slightly + * shortened in order to make it properly aligned. The alignment has to be + * multiple of the flash minimal input/output unit, or %1 to utilize the entire + * available space of logical eraseblocks. + * + * The @alignment field may be useful, for example, when one wants to maintain + * a block device on top of an UBI volume. In this case, it is desirable to fit + * an integer number of blocks in logical eraseblocks of this UBI volume. With + * alignment it is possible to update this volume using plane UBI volume image + * BLOBs, without caring about how to properly align them. + */ +struct ubi_mkvol_req { + __s32 vol_id; + __s32 alignment; + __s64 bytes; + __s8 vol_type; + __s8 padding1; + __s16 name_len; + __s8 padding2[4]; + char name[UBI_MAX_VOLUME_NAME + 1]; +} __packed; + +/** + * struct ubi_rsvol_req - a data structure used in volume re-size requests. + * @vol_id: ID of the volume to re-size + * @bytes: new size of the volume in bytes + * + * Re-sizing is possible for both dynamic and static volumes. But while dynamic + * volumes may be re-sized arbitrarily, static volumes cannot be made to be + * smaller than the number of bytes they bear. To arbitrarily shrink a static + * volume, it must be wiped out first (by means of volume update operation with + * zero number of bytes). + */ +struct ubi_rsvol_req { + __s64 bytes; + __s32 vol_id; +} __packed; + +/** + * struct ubi_rnvol_req - volumes re-name request. + * @count: count of volumes to re-name + * @padding1: reserved for future, not used, has to be zeroed + * @vol_id: ID of the volume to re-name + * @name_len: name length + * @padding2: reserved for future, not used, has to be zeroed + * @name: new volume name + * + * UBI allows to re-name up to %32 volumes at one go. The count of volumes to + * re-name is specified in the @count field. The ID of the volumes to re-name + * and the new names are specified in the @vol_id and @name fields. + * + * The UBI volume re-name operation is atomic, which means that should power cut + * happen, the volumes will have either old name or new name. So the possible + * use-cases of this command is atomic upgrade. Indeed, to upgrade, say, volumes + * A and B one may create temporary volumes %A1 and %B1 with the new contents, + * then atomically re-name A1->A and B1->B, in which case old %A and %B will + * be removed. + * + * If it is not desirable to remove old A and B, the re-name request has to + * contain 4 entries: A1->A, A->A1, B1->B, B->B1, in which case old A1 and B1 + * become A and B, and old A and B will become A1 and B1. + * + * It is also OK to request: A1->A, A1->X, B1->B, B->Y, in which case old A1 + * and B1 become A and B, and old A and B become X and Y. + * + * In other words, in case of re-naming into an existing volume name, the + * existing volume is removed, unless it is re-named as well at the same + * re-name request. + */ +struct ubi_rnvol_req { + __s32 count; + __s8 padding1[12]; + struct { + __s32 vol_id; + __s16 name_len; + __s8 padding2[2]; + char name[UBI_MAX_VOLUME_NAME + 1]; + } ents[UBI_MAX_RNVOL]; +} __packed; + +/** + * struct ubi_leb_change_req - a data structure used in atomic LEB change + * requests. + * @lnum: logical eraseblock number to change + * @bytes: how many bytes will be written to the logical eraseblock + * @dtype: pass "3" for better compatibility with old kernels + * @padding: reserved for future, not used, has to be zeroed + * + * The @dtype field used to inform UBI about what kind of data will be written + * to the LEB: long term (value 1), short term (value 2), unknown (value 3). + * UBI tried to pick a PEB with lower erase counter for short term data and a + * PEB with higher erase counter for long term data. But this was not really + * used because users usually do not know this and could easily mislead UBI. We + * removed this feature in May 2012. UBI currently just ignores the @dtype + * field. But for better compatibility with older kernels it is recommended to + * set @dtype to 3 (unknown). + */ +struct ubi_leb_change_req { + __s32 lnum; + __s32 bytes; + __s8 dtype; /* obsolete, do not use! */ + __s8 padding[7]; +} __packed; + +/** + * struct ubi_map_req - a data structure used in map LEB requests. + * @dtype: pass "3" for better compatibility with old kernels + * @lnum: logical eraseblock number to unmap + * @padding: reserved for future, not used, has to be zeroed + */ +struct ubi_map_req { + __s32 lnum; + __s8 dtype; /* obsolete, do not use! */ + __s8 padding[3]; +} __packed; + + +/** + * struct ubi_set_vol_prop_req - a data structure used to set an UBI volume + * property. + * @property: property to set (%UBI_VOL_PROP_DIRECT_WRITE) + * @padding: reserved for future, not used, has to be zeroed + * @value: value to set + */ +struct ubi_set_vol_prop_req { + __u8 property; + __u8 padding[7]; + __u64 value; +} __packed; + +#endif /* __UBI_USER_H__ */ -- cgit v1.2.3-59-g8ed1b