From 3007098494bec614fb55dee7bc0410bb7db5ad18 Mon Sep 17 00:00:00 2001 From: Daniel Mack Date: Wed, 23 Nov 2016 16:52:26 +0100 Subject: cgroup: add support for eBPF programs This patch adds two sets of eBPF program pointers to struct cgroup. One for such that are directly pinned to a cgroup, and one for such that are effective for it. To illustrate the logic behind that, assume the following example cgroup hierarchy. A - B - C \ D - E If only B has a program attached, it will be effective for B, C, D and E. If D then attaches a program itself, that will be effective for both D and E, and the program in B will only affect B and C. Only one program of a given type is effective for a cgroup. Attaching and detaching programs will be done through the bpf(2) syscall. For now, ingress and egress inet socket filtering are the only supported use-cases. Signed-off-by: Daniel Mack Acked-by: Alexei Starovoitov Signed-off-by: David S. Miller --- kernel/bpf/cgroup.c | 167 ++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 167 insertions(+) create mode 100644 kernel/bpf/cgroup.c (limited to 'kernel/bpf/cgroup.c') diff --git a/kernel/bpf/cgroup.c b/kernel/bpf/cgroup.c new file mode 100644 index 000000000000..a0ab43f264b0 --- /dev/null +++ b/kernel/bpf/cgroup.c @@ -0,0 +1,167 @@ +/* + * Functions to manage eBPF programs attached to cgroups + * + * Copyright (c) 2016 Daniel Mack + * + * This file is subject to the terms and conditions of version 2 of the GNU + * General Public License. See the file COPYING in the main directory of the + * Linux distribution for more details. + */ + +#include +#include +#include +#include +#include +#include +#include + +DEFINE_STATIC_KEY_FALSE(cgroup_bpf_enabled_key); +EXPORT_SYMBOL(cgroup_bpf_enabled_key); + +/** + * cgroup_bpf_put() - put references of all bpf programs + * @cgrp: the cgroup to modify + */ +void cgroup_bpf_put(struct cgroup *cgrp) +{ + unsigned int type; + + for (type = 0; type < ARRAY_SIZE(cgrp->bpf.prog); type++) { + struct bpf_prog *prog = cgrp->bpf.prog[type]; + + if (prog) { + bpf_prog_put(prog); + static_branch_dec(&cgroup_bpf_enabled_key); + } + } +} + +/** + * cgroup_bpf_inherit() - inherit effective programs from parent + * @cgrp: the cgroup to modify + * @parent: the parent to inherit from + */ +void cgroup_bpf_inherit(struct cgroup *cgrp, struct cgroup *parent) +{ + unsigned int type; + + for (type = 0; type < ARRAY_SIZE(cgrp->bpf.effective); type++) { + struct bpf_prog *e; + + e = rcu_dereference_protected(parent->bpf.effective[type], + lockdep_is_held(&cgroup_mutex)); + rcu_assign_pointer(cgrp->bpf.effective[type], e); + } +} + +/** + * __cgroup_bpf_update() - Update the pinned program of a cgroup, and + * propagate the change to descendants + * @cgrp: The cgroup which descendants to traverse + * @parent: The parent of @cgrp, or %NULL if @cgrp is the root + * @prog: A new program to pin + * @type: Type of pinning operation (ingress/egress) + * + * Each cgroup has a set of two pointers for bpf programs; one for eBPF + * programs it owns, and which is effective for execution. + * + * If @prog is %NULL, this function attaches a new program to the cgroup and + * releases the one that is currently attached, if any. @prog is then made + * the effective program of type @type in that cgroup. + * + * If @prog is %NULL, the currently attached program of type @type is released, + * and the effective program of the parent cgroup (if any) is inherited to + * @cgrp. + * + * Then, the descendants of @cgrp are walked and the effective program for + * each of them is set to the effective program of @cgrp unless the + * descendant has its own program attached, in which case the subbranch is + * skipped. This ensures that delegated subcgroups with own programs are left + * untouched. + * + * Must be called with cgroup_mutex held. + */ +void __cgroup_bpf_update(struct cgroup *cgrp, + struct cgroup *parent, + struct bpf_prog *prog, + enum bpf_attach_type type) +{ + struct bpf_prog *old_prog, *effective; + struct cgroup_subsys_state *pos; + + old_prog = xchg(cgrp->bpf.prog + type, prog); + + effective = (!prog && parent) ? + rcu_dereference_protected(parent->bpf.effective[type], + lockdep_is_held(&cgroup_mutex)) : + prog; + + css_for_each_descendant_pre(pos, &cgrp->self) { + struct cgroup *desc = container_of(pos, struct cgroup, self); + + /* skip the subtree if the descendant has its own program */ + if (desc->bpf.prog[type] && desc != cgrp) + pos = css_rightmost_descendant(pos); + else + rcu_assign_pointer(desc->bpf.effective[type], + effective); + } + + if (prog) + static_branch_inc(&cgroup_bpf_enabled_key); + + if (old_prog) { + bpf_prog_put(old_prog); + static_branch_dec(&cgroup_bpf_enabled_key); + } +} + +/** + * __cgroup_bpf_run_filter() - Run a program for packet filtering + * @sk: The socken sending or receiving traffic + * @skb: The skb that is being sent or received + * @type: The type of program to be exectuted + * + * If no socket is passed, or the socket is not of type INET or INET6, + * this function does nothing and returns 0. + * + * The program type passed in via @type must be suitable for network + * filtering. No further check is performed to assert that. + * + * This function will return %-EPERM if any if an attached program was found + * and if it returned != 1 during execution. In all other cases, 0 is returned. + */ +int __cgroup_bpf_run_filter(struct sock *sk, + struct sk_buff *skb, + enum bpf_attach_type type) +{ + struct bpf_prog *prog; + struct cgroup *cgrp; + int ret = 0; + + if (!sk || !sk_fullsock(sk)) + return 0; + + if (sk->sk_family != AF_INET && + sk->sk_family != AF_INET6) + return 0; + + cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data); + + rcu_read_lock(); + + prog = rcu_dereference(cgrp->bpf.effective[type]); + if (prog) { + unsigned int offset = skb->data - skb_network_header(skb); + + __skb_push(skb, offset); + ret = bpf_prog_run_save_cb(prog, skb) == 1 ? 0 : -EPERM; + __skb_pull(skb, offset); + } + + rcu_read_unlock(); + + return ret; +} +EXPORT_SYMBOL(__cgroup_bpf_run_filter); -- cgit v1.2.3-59-g8ed1b