/* * arch/alpha/lib/ev6-csum_ipv6_magic.S * 21264 version contributed by Rick Gorton * * unsigned short csum_ipv6_magic(struct in6_addr *saddr, * struct in6_addr *daddr, * __u32 len, * unsigned short proto, * unsigned int csum); * * Much of the information about 21264 scheduling/coding comes from: * Compiler Writer's Guide for the Alpha 21264 * abbreviated as 'CWG' in other comments here * ftp.digital.com/pub/Digital/info/semiconductor/literature/dsc-library.html * Scheduling notation: * E - either cluster * U - upper subcluster; U0 - subcluster U0; U1 - subcluster U1 * L - lower subcluster; L0 - subcluster L0; L1 - subcluster L1 * Try not to change the actual algorithm if possible for consistency. * Determining actual stalls (other than slotting) doesn't appear to be easy to do. * * unsigned short csum_ipv6_magic(struct in6_addr *saddr, * struct in6_addr *daddr, * __u32 len, * unsigned short proto, * unsigned int csum); * * Swap (takes form 0xaabb) * Then shift it left by 48, so result is: * 0xbbaa0000 00000000 * Then turn it back into a sign extended 32-bit item * 0xbbaa0000 * * Swap (an unsigned int) using Mike Burrows' 7-instruction sequence * (we can't hide the 3-cycle latency of the unpkbw in the 6-instruction sequence) * Assume input takes form 0xAABBCCDD * * Finally, original 'folding' approach is to split the long into 4 unsigned shorts * add 4 ushorts, resulting in ushort/carry * add carry bits + ushort --> ushort * add carry bits + ushort --> ushort (in case the carry results in an overflow) * Truncate to a ushort. (took 13 instructions) * From doing some testing, using the approach in checksum.c:from64to16() * results in the same outcome: * split into 2 uints, add those, generating a ulong * add the 3 low ushorts together, generating a uint * a final add of the 2 lower ushorts * truncating the result. */ .globl csum_ipv6_magic .align 4 .ent csum_ipv6_magic .frame $30,0,$26,0 csum_ipv6_magic: .prologue 0 ldq $0,0($16) # L : Latency: 3 inslh $18,7,$4 # U : 0000000000AABBCC ldq $1,8($16) # L : Latency: 3 sll $19,8,$7 # U : U L U L : 0x00000000 00aabb00 zapnot $20,15,$20 # U : zero extend incoming csum ldq $2,0($17) # L : Latency: 3 sll $19,24,$19 # U : U L L U : 0x000000aa bb000000 inswl $18,3,$18 # U : 000000CCDD000000 ldq $3,8($17) # L : Latency: 3 bis $18,$4,$18 # E : 000000CCDDAABBCC addl $19,$7,$19 # E : bbaabb00 nop # E : U L U L addq $20,$0,$20 # E : begin summing the words srl $18,16,$4 # U : 0000000000CCDDAA zap $19,0x3,$19 # U : bbaa0000 nop # E : L U U L cmpult $20,$0,$0 # E : addq $20,$1,$20 # E : zapnot $18,0xa,$18 # U : 00000000DD00BB00 zap $4,0xa,$4 # U : U U L L : 0000000000CC00AA or $18,$4,$18 # E : 00000000DDCCBBAA nop # E : cmpult $20,$1,$1 # E : addq $20,$2,$20 # E : U L U L cmpult $20,$2,$2 # E : addq $20,$3,$20 # E : cmpult $20,$3,$3 # E : (1 cycle stall on $20) addq $20,$18,$20 # E : U L U L (1 cycle stall on $20) cmpult $20,$18,$18 # E : addq $20,$19,$20 # E : (1 cycle stall on $20) addq $0,$1,$0 # E : merge the carries back into the csum addq $2,$3,$2 # E : cmpult $20,$19,$19 # E : addq $18,$19,$18 # E : (1 cycle stall on $19) addq $0,$2,$0 # E : addq $20,$18,$20 # E : U L U L : /* (1 cycle stall on $18, 2 cycles on $20) */ addq $0,$20,$0 # E : zapnot $0,15,$1 # U : Start folding output (1 cycle stall on $0) nop # E : srl $0,32,$0 # U : U L U L : (1 cycle stall on $0) addq $1,$0,$1 # E : Finished generating ulong extwl $1,2,$2 # U : ushort[1] (1 cycle stall on $1) zapnot $1,3,$0 # U : ushort[0] (1 cycle stall on $1) extwl $1,4,$1 # U : ushort[2] (1 cycle stall on $1) addq $0,$2,$0 # E addq $0,$1,$3 # E : Finished generating uint /* (1 cycle stall on $0) */ extwl $3,2,$1 # U : ushort[1] (1 cycle stall on $3) nop # E : L U L U addq $1,$3,$0 # E : Final carry not $0,$4 # E : complement (1 cycle stall on $0) zapnot $4,3,$0 # U : clear upper garbage bits /* (1 cycle stall on $4) */ ret # L0 : L U L U .end csum_ipv6_magic