/* * arch/arm/include/asm/mmu_context.h * * Copyright (C) 1996 Russell King. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * Changelog: * 27-06-1996 RMK Created */ #ifndef __ASM_ARM_MMU_CONTEXT_H #define __ASM_ARM_MMU_CONTEXT_H #include #include #include #include #include #include #include void __check_vmalloc_seq(struct mm_struct *mm); #ifdef CONFIG_CPU_HAS_ASID void check_and_switch_context(struct mm_struct *mm, struct task_struct *tsk); #define init_new_context(tsk,mm) ({ atomic64_set(&mm->context.id, 0); 0; }) #ifdef CONFIG_ARM_ERRATA_798181 void a15_erratum_get_cpumask(int this_cpu, struct mm_struct *mm, cpumask_t *mask); #else /* !CONFIG_ARM_ERRATA_798181 */ static inline void a15_erratum_get_cpumask(int this_cpu, struct mm_struct *mm, cpumask_t *mask) { } #endif /* CONFIG_ARM_ERRATA_798181 */ #else /* !CONFIG_CPU_HAS_ASID */ #ifdef CONFIG_MMU static inline void check_and_switch_context(struct mm_struct *mm, struct task_struct *tsk) { if (unlikely(mm->context.vmalloc_seq != init_mm.context.vmalloc_seq)) __check_vmalloc_seq(mm); if (irqs_disabled()) /* * cpu_switch_mm() needs to flush the VIVT caches. To avoid * high interrupt latencies, defer the call and continue * running with the old mm. Since we only support UP systems * on non-ASID CPUs, the old mm will remain valid until the * finish_arch_post_lock_switch() call. */ mm->context.switch_pending = 1; else cpu_switch_mm(mm->pgd, mm); } #define finish_arch_post_lock_switch \ finish_arch_post_lock_switch static inline void finish_arch_post_lock_switch(void) { struct mm_struct *mm = current->mm; if (mm && mm->context.switch_pending) { /* * Preemption must be disabled during cpu_switch_mm() as we * have some stateful cache flush implementations. Check * switch_pending again in case we were preempted and the * switch to this mm was already done. */ preempt_disable(); if (mm->context.switch_pending) { mm->context.switch_pending = 0; cpu_switch_mm(mm->pgd, mm); } preempt_enable_no_resched(); } } #endif /* CONFIG_MMU */ #define init_new_context(tsk,mm) 0 #endif /* CONFIG_CPU_HAS_ASID */ #define destroy_context(mm) do { } while(0) #define activate_mm(prev,next) switch_mm(prev, next, NULL) /* * This is called when "tsk" is about to enter lazy TLB mode. * * mm: describes the currently active mm context * tsk: task which is entering lazy tlb * cpu: cpu number which is entering lazy tlb * * tsk->mm will be NULL */ static inline void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk) { } /* * This is the actual mm switch as far as the scheduler * is concerned. No registers are touched. We avoid * calling the CPU specific function when the mm hasn't * actually changed. */ static inline void switch_mm(struct mm_struct *prev, struct mm_struct *next, struct task_struct *tsk) { #ifdef CONFIG_MMU unsigned int cpu = smp_processor_id(); /* * __sync_icache_dcache doesn't broadcast the I-cache invalidation, * so check for possible thread migration and invalidate the I-cache * if we're new to this CPU. */ if (cache_ops_need_broadcast() && !cpumask_empty(mm_cpumask(next)) && !cpumask_test_cpu(cpu, mm_cpumask(next))) __flush_icache_all(); if (!cpumask_test_and_set_cpu(cpu, mm_cpumask(next)) || prev != next) { check_and_switch_context(next, tsk); if (cache_is_vivt()) cpumask_clear_cpu(cpu, mm_cpumask(prev)); } #endif } #define deactivate_mm(tsk,mm) do { } while (0) #endif