#ifndef __ASM_SPINLOCK_H #define __ASM_SPINLOCK_H #if __LINUX_ARM_ARCH__ < 6 #error SMP not supported on pre-ARMv6 CPUs #endif #include /* * sev and wfe are ARMv6K extensions. Uniprocessor ARMv6 may not have the K * extensions, so when running on UP, we have to patch these instructions away. */ #define ALT_SMP(smp, up) \ "9998: " smp "\n" \ " .pushsection \".alt.smp.init\", \"a\"\n" \ " .long 9998b\n" \ " " up "\n" \ " .popsection\n" #ifdef CONFIG_THUMB2_KERNEL #define SEV ALT_SMP("sev.w", "nop.w") /* * For Thumb-2, special care is needed to ensure that the conditional WFE * instruction really does assemble to exactly 4 bytes (as required by * the SMP_ON_UP fixup code). By itself "wfene" might cause the * assembler to insert a extra (16-bit) IT instruction, depending on the * presence or absence of neighbouring conditional instructions. * * To avoid this unpredictableness, an approprite IT is inserted explicitly: * the assembler won't change IT instructions which are explicitly present * in the input. */ #define WFE(cond) ALT_SMP( \ "it " cond "\n\t" \ "wfe" cond ".n", \ \ "nop.w" \ ) #else #define SEV ALT_SMP("sev", "nop") #define WFE(cond) ALT_SMP("wfe" cond, "nop") #endif static inline void dsb_sev(void) { #if __LINUX_ARM_ARCH__ >= 7 __asm__ __volatile__ ( "dsb\n" SEV ); #else __asm__ __volatile__ ( "mcr p15, 0, %0, c7, c10, 4\n" SEV : : "r" (0) ); #endif } /* * ARMv6 ticket-based spin-locking. * * A memory barrier is required after we get a lock, and before we * release it, because V6 CPUs are assumed to have weakly ordered * memory. */ #define arch_spin_unlock_wait(lock) \ do { while (arch_spin_is_locked(lock)) cpu_relax(); } while (0) #define arch_spin_lock_flags(lock, flags) arch_spin_lock(lock) static inline void arch_spin_lock(arch_spinlock_t *lock) { unsigned long tmp; u32 newval; arch_spinlock_t lockval; __asm__ __volatile__( "1: ldrex %0, [%3]\n" " add %1, %0, %4\n" " strex %2, %1, [%3]\n" " teq %2, #0\n" " bne 1b" : "=&r" (lockval), "=&r" (newval), "=&r" (tmp) : "r" (&lock->slock), "I" (1 << TICKET_SHIFT) : "cc"); while (lockval.tickets.next != lockval.tickets.owner) { wfe(); lockval.tickets.owner = ACCESS_ONCE(lock->tickets.owner); } smp_mb(); } static inline int arch_spin_trylock(arch_spinlock_t *lock) { unsigned long tmp; u32 slock; __asm__ __volatile__( " ldrex %0, [%2]\n" " subs %1, %0, %0, ror #16\n" " addeq %0, %0, %3\n" " strexeq %1, %0, [%2]" : "=&r" (slock), "=&r" (tmp) : "r" (&lock->slock), "I" (1 << TICKET_SHIFT) : "cc"); if (tmp == 0) { smp_mb(); return 1; } else { return 0; } } static inline void arch_spin_unlock(arch_spinlock_t *lock) { unsigned long tmp; u32 slock; smp_mb(); __asm__ __volatile__( " mov %1, #1\n" "1: ldrex %0, [%2]\n" " uadd16 %0, %0, %1\n" " strex %1, %0, [%2]\n" " teq %1, #0\n" " bne 1b" : "=&r" (slock), "=&r" (tmp) : "r" (&lock->slock) : "cc"); dsb_sev(); } static inline int arch_spin_is_locked(arch_spinlock_t *lock) { struct __raw_tickets tickets = ACCESS_ONCE(lock->tickets); return tickets.owner != tickets.next; } static inline int arch_spin_is_contended(arch_spinlock_t *lock) { struct __raw_tickets tickets = ACCESS_ONCE(lock->tickets); return (tickets.next - tickets.owner) > 1; } #define arch_spin_is_contended arch_spin_is_contended /* * RWLOCKS * * * Write locks are easy - we just set bit 31. When unlocking, we can * just write zero since the lock is exclusively held. */ static inline void arch_write_lock(arch_rwlock_t *rw) { unsigned long tmp; __asm__ __volatile__( "1: ldrex %0, [%1]\n" " teq %0, #0\n" WFE("ne") " strexeq %0, %2, [%1]\n" " teq %0, #0\n" " bne 1b" : "=&r" (tmp) : "r" (&rw->lock), "r" (0x80000000) : "cc"); smp_mb(); } static inline int arch_write_trylock(arch_rwlock_t *rw) { unsigned long tmp; __asm__ __volatile__( " ldrex %0, [%1]\n" " teq %0, #0\n" " strexeq %0, %2, [%1]" : "=&r" (tmp) : "r" (&rw->lock), "r" (0x80000000) : "cc"); if (tmp == 0) { smp_mb(); return 1; } else { return 0; } } static inline void arch_write_unlock(arch_rwlock_t *rw) { smp_mb(); __asm__ __volatile__( "str %1, [%0]\n" : : "r" (&rw->lock), "r" (0) : "cc"); dsb_sev(); } /* write_can_lock - would write_trylock() succeed? */ #define arch_write_can_lock(x) ((x)->lock == 0) /* * Read locks are a bit more hairy: * - Exclusively load the lock value. * - Increment it. * - Store new lock value if positive, and we still own this location. * If the value is negative, we've already failed. * - If we failed to store the value, we want a negative result. * - If we failed, try again. * Unlocking is similarly hairy. We may have multiple read locks * currently active. However, we know we won't have any write * locks. */ static inline void arch_read_lock(arch_rwlock_t *rw) { unsigned long tmp, tmp2; __asm__ __volatile__( "1: ldrex %0, [%2]\n" " adds %0, %0, #1\n" " strexpl %1, %0, [%2]\n" WFE("mi") " rsbpls %0, %1, #0\n" " bmi 1b" : "=&r" (tmp), "=&r" (tmp2) : "r" (&rw->lock) : "cc"); smp_mb(); } static inline void arch_read_unlock(arch_rwlock_t *rw) { unsigned long tmp, tmp2; smp_mb(); __asm__ __volatile__( "1: ldrex %0, [%2]\n" " sub %0, %0, #1\n" " strex %1, %0, [%2]\n" " teq %1, #0\n" " bne 1b" : "=&r" (tmp), "=&r" (tmp2) : "r" (&rw->lock) : "cc"); if (tmp == 0) dsb_sev(); } static inline int arch_read_trylock(arch_rwlock_t *rw) { unsigned long tmp, tmp2 = 1; __asm__ __volatile__( " ldrex %0, [%2]\n" " adds %0, %0, #1\n" " strexpl %1, %0, [%2]\n" : "=&r" (tmp), "+r" (tmp2) : "r" (&rw->lock) : "cc"); smp_mb(); return tmp2 == 0; } /* read_can_lock - would read_trylock() succeed? */ #define arch_read_can_lock(x) ((x)->lock < 0x80000000) #define arch_read_lock_flags(lock, flags) arch_read_lock(lock) #define arch_write_lock_flags(lock, flags) arch_write_lock(lock) #define arch_spin_relax(lock) cpu_relax() #define arch_read_relax(lock) cpu_relax() #define arch_write_relax(lock) cpu_relax() #endif /* __ASM_SPINLOCK_H */