/* * linux/arch/arm/mach-integrator/integrator_ap.c * * Copyright (C) 2000-2003 Deep Blue Solutions Ltd * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* HZ */ #include #include #include #include #include #include #include #include "common.h" #include "pci_v3.h" /* Base address to the AP system controller */ void __iomem *ap_syscon_base; /* * All IO addresses are mapped onto VA 0xFFFx.xxxx, where x.xxxx * is the (PA >> 12). * * Setup a VA for the Integrator interrupt controller (for header #0, * just for now). */ #define VA_IC_BASE __io_address(INTEGRATOR_IC_BASE) #define VA_EBI_BASE __io_address(INTEGRATOR_EBI_BASE) #define VA_CMIC_BASE __io_address(INTEGRATOR_HDR_IC) /* * Logical Physical * ef000000 Cache flush * f1000000 10000000 Core module registers * f1100000 11000000 System controller registers * f1200000 12000000 EBI registers * f1300000 13000000 Counter/Timer * f1400000 14000000 Interrupt controller * f1600000 16000000 UART 0 * f1700000 17000000 UART 1 * f1a00000 1a000000 Debug LEDs * f1b00000 1b000000 GPIO */ static struct map_desc ap_io_desc[] __initdata __maybe_unused = { { .virtual = IO_ADDRESS(INTEGRATOR_HDR_BASE), .pfn = __phys_to_pfn(INTEGRATOR_HDR_BASE), .length = SZ_4K, .type = MT_DEVICE }, { .virtual = IO_ADDRESS(INTEGRATOR_EBI_BASE), .pfn = __phys_to_pfn(INTEGRATOR_EBI_BASE), .length = SZ_4K, .type = MT_DEVICE }, { .virtual = IO_ADDRESS(INTEGRATOR_CT_BASE), .pfn = __phys_to_pfn(INTEGRATOR_CT_BASE), .length = SZ_4K, .type = MT_DEVICE }, { .virtual = IO_ADDRESS(INTEGRATOR_IC_BASE), .pfn = __phys_to_pfn(INTEGRATOR_IC_BASE), .length = SZ_4K, .type = MT_DEVICE }, { .virtual = IO_ADDRESS(INTEGRATOR_UART0_BASE), .pfn = __phys_to_pfn(INTEGRATOR_UART0_BASE), .length = SZ_4K, .type = MT_DEVICE }, { .virtual = IO_ADDRESS(INTEGRATOR_DBG_BASE), .pfn = __phys_to_pfn(INTEGRATOR_DBG_BASE), .length = SZ_4K, .type = MT_DEVICE }, { .virtual = IO_ADDRESS(INTEGRATOR_AP_GPIO_BASE), .pfn = __phys_to_pfn(INTEGRATOR_AP_GPIO_BASE), .length = SZ_4K, .type = MT_DEVICE } }; static void __init ap_map_io(void) { iotable_init(ap_io_desc, ARRAY_SIZE(ap_io_desc)); pci_v3_early_init(); } #ifdef CONFIG_PM static unsigned long ic_irq_enable; static int irq_suspend(void) { ic_irq_enable = readl(VA_IC_BASE + IRQ_ENABLE); return 0; } static void irq_resume(void) { /* disable all irq sources */ writel(-1, VA_CMIC_BASE + IRQ_ENABLE_CLEAR); writel(-1, VA_IC_BASE + IRQ_ENABLE_CLEAR); writel(-1, VA_IC_BASE + FIQ_ENABLE_CLEAR); writel(ic_irq_enable, VA_IC_BASE + IRQ_ENABLE_SET); } #else #define irq_suspend NULL #define irq_resume NULL #endif static struct syscore_ops irq_syscore_ops = { .suspend = irq_suspend, .resume = irq_resume, }; static int __init irq_syscore_init(void) { register_syscore_ops(&irq_syscore_ops); return 0; } device_initcall(irq_syscore_init); /* * Flash handling. */ #define EBI_CSR1 (VA_EBI_BASE + INTEGRATOR_EBI_CSR1_OFFSET) #define EBI_LOCK (VA_EBI_BASE + INTEGRATOR_EBI_LOCK_OFFSET) static int ap_flash_init(struct platform_device *dev) { u32 tmp; writel(INTEGRATOR_SC_CTRL_nFLVPPEN | INTEGRATOR_SC_CTRL_nFLWP, ap_syscon_base + INTEGRATOR_SC_CTRLC_OFFSET); tmp = readl(EBI_CSR1) | INTEGRATOR_EBI_WRITE_ENABLE; writel(tmp, EBI_CSR1); if (!(readl(EBI_CSR1) & INTEGRATOR_EBI_WRITE_ENABLE)) { writel(0xa05f, EBI_LOCK); writel(tmp, EBI_CSR1); writel(0, EBI_LOCK); } return 0; } static void ap_flash_exit(struct platform_device *dev) { u32 tmp; writel(INTEGRATOR_SC_CTRL_nFLVPPEN | INTEGRATOR_SC_CTRL_nFLWP, ap_syscon_base + INTEGRATOR_SC_CTRLC_OFFSET); tmp = readl(EBI_CSR1) & ~INTEGRATOR_EBI_WRITE_ENABLE; writel(tmp, EBI_CSR1); if (readl(EBI_CSR1) & INTEGRATOR_EBI_WRITE_ENABLE) { writel(0xa05f, EBI_LOCK); writel(tmp, EBI_CSR1); writel(0, EBI_LOCK); } } static void ap_flash_set_vpp(struct platform_device *pdev, int on) { if (on) writel(INTEGRATOR_SC_CTRL_nFLVPPEN, ap_syscon_base + INTEGRATOR_SC_CTRLS_OFFSET); else writel(INTEGRATOR_SC_CTRL_nFLVPPEN, ap_syscon_base + INTEGRATOR_SC_CTRLC_OFFSET); } static struct physmap_flash_data ap_flash_data = { .width = 4, .init = ap_flash_init, .exit = ap_flash_exit, .set_vpp = ap_flash_set_vpp, }; /* * For the PL010 found in the Integrator/AP some of the UART control is * implemented in the system controller and accessed using a callback * from the driver. */ static void integrator_uart_set_mctrl(struct amba_device *dev, void __iomem *base, unsigned int mctrl) { unsigned int ctrls = 0, ctrlc = 0, rts_mask, dtr_mask; u32 phybase = dev->res.start; if (phybase == INTEGRATOR_UART0_BASE) { /* UART0 */ rts_mask = 1 << 4; dtr_mask = 1 << 5; } else { /* UART1 */ rts_mask = 1 << 6; dtr_mask = 1 << 7; } if (mctrl & TIOCM_RTS) ctrlc |= rts_mask; else ctrls |= rts_mask; if (mctrl & TIOCM_DTR) ctrlc |= dtr_mask; else ctrls |= dtr_mask; __raw_writel(ctrls, ap_syscon_base + INTEGRATOR_SC_CTRLS_OFFSET); __raw_writel(ctrlc, ap_syscon_base + INTEGRATOR_SC_CTRLC_OFFSET); } struct amba_pl010_data ap_uart_data = { .set_mctrl = integrator_uart_set_mctrl, }; /* * Where is the timer (VA)? */ #define TIMER0_VA_BASE __io_address(INTEGRATOR_TIMER0_BASE) #define TIMER1_VA_BASE __io_address(INTEGRATOR_TIMER1_BASE) #define TIMER2_VA_BASE __io_address(INTEGRATOR_TIMER2_BASE) static unsigned long timer_reload; static u32 notrace integrator_read_sched_clock(void) { return -readl((void __iomem *) TIMER2_VA_BASE + TIMER_VALUE); } static void integrator_clocksource_init(unsigned long inrate, void __iomem *base) { u32 ctrl = TIMER_CTRL_ENABLE | TIMER_CTRL_PERIODIC; unsigned long rate = inrate; if (rate >= 1500000) { rate /= 16; ctrl |= TIMER_CTRL_DIV16; } writel(0xffff, base + TIMER_LOAD); writel(ctrl, base + TIMER_CTRL); clocksource_mmio_init(base + TIMER_VALUE, "timer2", rate, 200, 16, clocksource_mmio_readl_down); setup_sched_clock(integrator_read_sched_clock, 16, rate); } static void __iomem * clkevt_base; /* * IRQ handler for the timer */ static irqreturn_t integrator_timer_interrupt(int irq, void *dev_id) { struct clock_event_device *evt = dev_id; /* clear the interrupt */ writel(1, clkevt_base + TIMER_INTCLR); evt->event_handler(evt); return IRQ_HANDLED; } static void clkevt_set_mode(enum clock_event_mode mode, struct clock_event_device *evt) { u32 ctrl = readl(clkevt_base + TIMER_CTRL) & ~TIMER_CTRL_ENABLE; /* Disable timer */ writel(ctrl, clkevt_base + TIMER_CTRL); switch (mode) { case CLOCK_EVT_MODE_PERIODIC: /* Enable the timer and start the periodic tick */ writel(timer_reload, clkevt_base + TIMER_LOAD); ctrl |= TIMER_CTRL_PERIODIC | TIMER_CTRL_ENABLE; writel(ctrl, clkevt_base + TIMER_CTRL); break; case CLOCK_EVT_MODE_ONESHOT: /* Leave the timer disabled, .set_next_event will enable it */ ctrl &= ~TIMER_CTRL_PERIODIC; writel(ctrl, clkevt_base + TIMER_CTRL); break; case CLOCK_EVT_MODE_UNUSED: case CLOCK_EVT_MODE_SHUTDOWN: case CLOCK_EVT_MODE_RESUME: default: /* Just leave in disabled state */ break; } } static int clkevt_set_next_event(unsigned long next, struct clock_event_device *evt) { unsigned long ctrl = readl(clkevt_base + TIMER_CTRL); writel(ctrl & ~TIMER_CTRL_ENABLE, clkevt_base + TIMER_CTRL); writel(next, clkevt_base + TIMER_LOAD); writel(ctrl | TIMER_CTRL_ENABLE, clkevt_base + TIMER_CTRL); return 0; } static struct clock_event_device integrator_clockevent = { .name = "timer1", .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT, .set_mode = clkevt_set_mode, .set_next_event = clkevt_set_next_event, .rating = 300, }; static struct irqaction integrator_timer_irq = { .name = "timer", .flags = IRQF_DISABLED | IRQF_TIMER | IRQF_IRQPOLL, .handler = integrator_timer_interrupt, .dev_id = &integrator_clockevent, }; static void integrator_clockevent_init(unsigned long inrate, void __iomem *base, int irq) { unsigned long rate = inrate; unsigned int ctrl = 0; clkevt_base = base; /* Calculate and program a divisor */ if (rate > 0x100000 * HZ) { rate /= 256; ctrl |= TIMER_CTRL_DIV256; } else if (rate > 0x10000 * HZ) { rate /= 16; ctrl |= TIMER_CTRL_DIV16; } timer_reload = rate / HZ; writel(ctrl, clkevt_base + TIMER_CTRL); setup_irq(irq, &integrator_timer_irq); clockevents_config_and_register(&integrator_clockevent, rate, 1, 0xffffU); } void __init ap_init_early(void) { } #ifdef CONFIG_OF static void __init ap_of_timer_init(void) { struct device_node *node; const char *path; void __iomem *base; int err; int irq; struct clk *clk; unsigned long rate; clk = clk_get_sys("ap_timer", NULL); BUG_ON(IS_ERR(clk)); clk_prepare_enable(clk); rate = clk_get_rate(clk); err = of_property_read_string(of_aliases, "arm,timer-primary", &path); if (WARN_ON(err)) return; node = of_find_node_by_path(path); base = of_iomap(node, 0); if (WARN_ON(!base)) return; writel(0, base + TIMER_CTRL); integrator_clocksource_init(rate, base); err = of_property_read_string(of_aliases, "arm,timer-secondary", &path); if (WARN_ON(err)) return; node = of_find_node_by_path(path); base = of_iomap(node, 0); if (WARN_ON(!base)) return; irq = irq_of_parse_and_map(node, 0); writel(0, base + TIMER_CTRL); integrator_clockevent_init(rate, base, irq); } static const struct of_device_id fpga_irq_of_match[] __initconst = { { .compatible = "arm,versatile-fpga-irq", .data = fpga_irq_of_init, }, { /* Sentinel */ } }; static void __init ap_init_irq_of(void) { /* disable core module IRQs */ writel(0xffffffffU, VA_CMIC_BASE + IRQ_ENABLE_CLEAR); of_irq_init(fpga_irq_of_match); integrator_clk_init(false); } /* For the Device Tree, add in the UART callbacks as AUXDATA */ static struct of_dev_auxdata ap_auxdata_lookup[] __initdata = { OF_DEV_AUXDATA("arm,primecell", INTEGRATOR_RTC_BASE, "rtc", NULL), OF_DEV_AUXDATA("arm,primecell", INTEGRATOR_UART0_BASE, "uart0", &ap_uart_data), OF_DEV_AUXDATA("arm,primecell", INTEGRATOR_UART1_BASE, "uart1", &ap_uart_data), OF_DEV_AUXDATA("arm,primecell", KMI0_BASE, "kmi0", NULL), OF_DEV_AUXDATA("arm,primecell", KMI1_BASE, "kmi1", NULL), OF_DEV_AUXDATA("cfi-flash", INTEGRATOR_FLASH_BASE, "physmap-flash", &ap_flash_data), { /* sentinel */ }, }; static void __init ap_init_of(void) { unsigned long sc_dec; struct device_node *root; struct device_node *syscon; struct device *parent; struct soc_device *soc_dev; struct soc_device_attribute *soc_dev_attr; u32 ap_sc_id; int err; int i; /* Here we create an SoC device for the root node */ root = of_find_node_by_path("/"); if (!root) return; syscon = of_find_node_by_path("/syscon"); if (!syscon) return; ap_syscon_base = of_iomap(syscon, 0); if (!ap_syscon_base) return; ap_sc_id = readl(ap_syscon_base); soc_dev_attr = kzalloc(sizeof(*soc_dev_attr), GFP_KERNEL); if (!soc_dev_attr) return; err = of_property_read_string(root, "compatible", &soc_dev_attr->soc_id); if (err) return; err = of_property_read_string(root, "model", &soc_dev_attr->machine); if (err) return; soc_dev_attr->family = "Integrator"; soc_dev_attr->revision = kasprintf(GFP_KERNEL, "%c", 'A' + (ap_sc_id & 0x0f)); soc_dev = soc_device_register(soc_dev_attr); if (IS_ERR(soc_dev)) { kfree(soc_dev_attr->revision); kfree(soc_dev_attr); return; } parent = soc_device_to_device(soc_dev); integrator_init_sysfs(parent, ap_sc_id); of_platform_populate(root, of_default_bus_match_table, ap_auxdata_lookup, parent); sc_dec = readl(ap_syscon_base + INTEGRATOR_SC_DEC_OFFSET); for (i = 0; i < 4; i++) { struct lm_device *lmdev; if ((sc_dec & (16 << i)) == 0) continue; lmdev = kzalloc(sizeof(struct lm_device), GFP_KERNEL); if (!lmdev) continue; lmdev->resource.start = 0xc0000000 + 0x10000000 * i; lmdev->resource.end = lmdev->resource.start + 0x0fffffff; lmdev->resource.flags = IORESOURCE_MEM; lmdev->irq = IRQ_AP_EXPINT0 + i; lmdev->id = i; lm_device_register(lmdev); } } static const char * ap_dt_board_compat[] = { "arm,integrator-ap", NULL, }; DT_MACHINE_START(INTEGRATOR_AP_DT, "ARM Integrator/AP (Device Tree)") .reserve = integrator_reserve, .map_io = ap_map_io, .init_early = ap_init_early, .init_irq = ap_init_irq_of, .handle_irq = fpga_handle_irq, .init_time = ap_of_timer_init, .init_machine = ap_init_of, .restart = integrator_restart, .dt_compat = ap_dt_board_compat, MACHINE_END #endif #ifdef CONFIG_ATAGS /* * For the ATAG boot some static mappings are needed. This will * go away with the ATAG support down the road. */ static struct map_desc ap_io_desc_atag[] __initdata = { { .virtual = IO_ADDRESS(INTEGRATOR_SC_BASE), .pfn = __phys_to_pfn(INTEGRATOR_SC_BASE), .length = SZ_4K, .type = MT_DEVICE }, }; static void __init ap_map_io_atag(void) { iotable_init(ap_io_desc_atag, ARRAY_SIZE(ap_io_desc_atag)); ap_map_io(); } /* * This is where non-devicetree initialization code is collected and stashed * for eventual deletion. */ static struct platform_device pci_v3_device = { .name = "pci-v3", .id = 0, }; static struct resource cfi_flash_resource = { .start = INTEGRATOR_FLASH_BASE, .end = INTEGRATOR_FLASH_BASE + INTEGRATOR_FLASH_SIZE - 1, .flags = IORESOURCE_MEM, }; static struct platform_device cfi_flash_device = { .name = "physmap-flash", .id = 0, .dev = { .platform_data = &ap_flash_data, }, .num_resources = 1, .resource = &cfi_flash_resource, }; static void __init ap_timer_init(void) { struct clk *clk; unsigned long rate; clk = clk_get_sys("ap_timer", NULL); BUG_ON(IS_ERR(clk)); clk_prepare_enable(clk); rate = clk_get_rate(clk); writel(0, TIMER0_VA_BASE + TIMER_CTRL); writel(0, TIMER1_VA_BASE + TIMER_CTRL); writel(0, TIMER2_VA_BASE + TIMER_CTRL); integrator_clocksource_init(rate, (void __iomem *)TIMER2_VA_BASE); integrator_clockevent_init(rate, (void __iomem *)TIMER1_VA_BASE, IRQ_TIMERINT1); } #define INTEGRATOR_SC_VALID_INT 0x003fffff static void __init ap_init_irq(void) { /* Disable all interrupts initially. */ /* Do the core module ones */ writel(-1, VA_CMIC_BASE + IRQ_ENABLE_CLEAR); /* do the header card stuff next */ writel(-1, VA_IC_BASE + IRQ_ENABLE_CLEAR); writel(-1, VA_IC_BASE + FIQ_ENABLE_CLEAR); fpga_irq_init(VA_IC_BASE, "SC", IRQ_PIC_START, -1, INTEGRATOR_SC_VALID_INT, NULL); integrator_clk_init(false); } static void __init ap_init(void) { unsigned long sc_dec; int i; platform_device_register(&pci_v3_device); platform_device_register(&cfi_flash_device); ap_syscon_base = __io_address(INTEGRATOR_SC_BASE); sc_dec = readl(ap_syscon_base + INTEGRATOR_SC_DEC_OFFSET); for (i = 0; i < 4; i++) { struct lm_device *lmdev; if ((sc_dec & (16 << i)) == 0) continue; lmdev = kzalloc(sizeof(struct lm_device), GFP_KERNEL); if (!lmdev) continue; lmdev->resource.start = 0xc0000000 + 0x10000000 * i; lmdev->resource.end = lmdev->resource.start + 0x0fffffff; lmdev->resource.flags = IORESOURCE_MEM; lmdev->irq = IRQ_AP_EXPINT0 + i; lmdev->id = i; lm_device_register(lmdev); } integrator_init(false); } MACHINE_START(INTEGRATOR, "ARM-Integrator") /* Maintainer: ARM Ltd/Deep Blue Solutions Ltd */ .atag_offset = 0x100, .reserve = integrator_reserve, .map_io = ap_map_io_atag, .init_early = ap_init_early, .init_irq = ap_init_irq, .handle_irq = fpga_handle_irq, .init_time = ap_timer_init, .init_machine = ap_init, .restart = integrator_restart, MACHINE_END #endif