/* * linux/arch/arm/mach-pxa/pxa3xx.c * * code specific to pxa3xx aka Monahans * * Copyright (C) 2006 Marvell International Ltd. * * 2007-09-02: eric miao * initial version * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "generic.h" #include "devices.h" #include "clock.h" /* Crystal clock: 13MHz */ #define BASE_CLK 13000000 /* Ring Oscillator Clock: 60MHz */ #define RO_CLK 60000000 #define ACCR_D0CS (1 << 26) #define ACCR_PCCE (1 << 11) /* crystal frequency to static memory controller multiplier (SMCFS) */ static unsigned char smcfs_mult[8] = { 6, 0, 8, 0, 0, 16, }; /* crystal frequency to HSIO bus frequency multiplier (HSS) */ static unsigned char hss_mult[4] = { 8, 12, 16, 0 }; /* * Get the clock frequency as reflected by CCSR and the turbo flag. * We assume these values have been applied via a fcs. * If info is not 0 we also display the current settings. */ unsigned int pxa3xx_get_clk_frequency_khz(int info) { unsigned long acsr, xclkcfg; unsigned int t, xl, xn, hss, ro, XL, XN, CLK, HSS; /* Read XCLKCFG register turbo bit */ __asm__ __volatile__("mrc\tp14, 0, %0, c6, c0, 0" : "=r"(xclkcfg)); t = xclkcfg & 0x1; acsr = ACSR; xl = acsr & 0x1f; xn = (acsr >> 8) & 0x7; hss = (acsr >> 14) & 0x3; XL = xl * BASE_CLK; XN = xn * XL; ro = acsr & ACCR_D0CS; CLK = (ro) ? RO_CLK : ((t) ? XN : XL); HSS = (ro) ? RO_CLK : hss_mult[hss] * BASE_CLK; if (info) { pr_info("RO Mode clock: %d.%02dMHz (%sactive)\n", RO_CLK / 1000000, (RO_CLK % 1000000) / 10000, (ro) ? "" : "in"); pr_info("Run Mode clock: %d.%02dMHz (*%d)\n", XL / 1000000, (XL % 1000000) / 10000, xl); pr_info("Turbo Mode clock: %d.%02dMHz (*%d, %sactive)\n", XN / 1000000, (XN % 1000000) / 10000, xn, (t) ? "" : "in"); pr_info("HSIO bus clock: %d.%02dMHz\n", HSS / 1000000, (HSS % 1000000) / 10000); } return CLK / 1000; } /* * Return the current static memory controller clock frequency * in units of 10kHz */ unsigned int pxa3xx_get_memclk_frequency_10khz(void) { unsigned long acsr; unsigned int smcfs, clk = 0; acsr = ACSR; smcfs = (acsr >> 23) & 0x7; clk = (acsr & ACCR_D0CS) ? RO_CLK : smcfs_mult[smcfs] * BASE_CLK; return (clk / 10000); } void pxa3xx_clear_reset_status(unsigned int mask) { /* RESET_STATUS_* has a 1:1 mapping with ARSR */ ARSR = mask; } /* * Return the current AC97 clock frequency. */ static unsigned long clk_pxa3xx_ac97_getrate(struct clk *clk) { unsigned long rate = 312000000; unsigned long ac97_div; ac97_div = AC97_DIV; /* This may loose precision for some rates but won't for the * standard 24.576MHz. */ rate /= (ac97_div >> 12) & 0x7fff; rate *= (ac97_div & 0xfff); return rate; } /* * Return the current HSIO bus clock frequency */ static unsigned long clk_pxa3xx_hsio_getrate(struct clk *clk) { unsigned long acsr; unsigned int hss, hsio_clk; acsr = ACSR; hss = (acsr >> 14) & 0x3; hsio_clk = (acsr & ACCR_D0CS) ? RO_CLK : hss_mult[hss] * BASE_CLK; return hsio_clk; } void clk_pxa3xx_cken_enable(struct clk *clk) { unsigned long mask = 1ul << (clk->cken & 0x1f); if (clk->cken < 32) CKENA |= mask; else CKENB |= mask; } void clk_pxa3xx_cken_disable(struct clk *clk) { unsigned long mask = 1ul << (clk->cken & 0x1f); if (clk->cken < 32) CKENA &= ~mask; else CKENB &= ~mask; } const struct clkops clk_pxa3xx_cken_ops = { .enable = clk_pxa3xx_cken_enable, .disable = clk_pxa3xx_cken_disable, }; static const struct clkops clk_pxa3xx_hsio_ops = { .enable = clk_pxa3xx_cken_enable, .disable = clk_pxa3xx_cken_disable, .getrate = clk_pxa3xx_hsio_getrate, }; static const struct clkops clk_pxa3xx_ac97_ops = { .enable = clk_pxa3xx_cken_enable, .disable = clk_pxa3xx_cken_disable, .getrate = clk_pxa3xx_ac97_getrate, }; static void clk_pout_enable(struct clk *clk) { OSCC |= OSCC_PEN; } static void clk_pout_disable(struct clk *clk) { OSCC &= ~OSCC_PEN; } static const struct clkops clk_pout_ops = { .enable = clk_pout_enable, .disable = clk_pout_disable, }; static void clk_dummy_enable(struct clk *clk) { } static void clk_dummy_disable(struct clk *clk) { } static const struct clkops clk_dummy_ops = { .enable = clk_dummy_enable, .disable = clk_dummy_disable, }; static struct clk clk_pxa3xx_pout = { .ops = &clk_pout_ops, .rate = 13000000, .delay = 70, }; static struct clk clk_dummy = { .ops = &clk_dummy_ops, }; static DEFINE_PXA3_CK(pxa3xx_lcd, LCD, &clk_pxa3xx_hsio_ops); static DEFINE_PXA3_CK(pxa3xx_camera, CAMERA, &clk_pxa3xx_hsio_ops); static DEFINE_PXA3_CK(pxa3xx_ac97, AC97, &clk_pxa3xx_ac97_ops); static DEFINE_PXA3_CKEN(pxa3xx_ffuart, FFUART, 14857000, 1); static DEFINE_PXA3_CKEN(pxa3xx_btuart, BTUART, 14857000, 1); static DEFINE_PXA3_CKEN(pxa3xx_stuart, STUART, 14857000, 1); static DEFINE_PXA3_CKEN(pxa3xx_i2c, I2C, 32842000, 0); static DEFINE_PXA3_CKEN(pxa3xx_udc, UDC, 48000000, 5); static DEFINE_PXA3_CKEN(pxa3xx_usbh, USBH, 48000000, 0); static DEFINE_PXA3_CKEN(pxa3xx_keypad, KEYPAD, 32768, 0); static DEFINE_PXA3_CKEN(pxa3xx_ssp1, SSP1, 13000000, 0); static DEFINE_PXA3_CKEN(pxa3xx_ssp2, SSP2, 13000000, 0); static DEFINE_PXA3_CKEN(pxa3xx_ssp3, SSP3, 13000000, 0); static DEFINE_PXA3_CKEN(pxa3xx_ssp4, SSP4, 13000000, 0); static DEFINE_PXA3_CKEN(pxa3xx_pwm0, PWM0, 13000000, 0); static DEFINE_PXA3_CKEN(pxa3xx_pwm1, PWM1, 13000000, 0); static DEFINE_PXA3_CKEN(pxa3xx_mmc1, MMC1, 19500000, 0); static DEFINE_PXA3_CKEN(pxa3xx_mmc2, MMC2, 19500000, 0); static struct clk_lookup pxa3xx_clkregs[] = { INIT_CLKREG(&clk_pxa3xx_pout, NULL, "CLK_POUT"), /* Power I2C clock is always on */ INIT_CLKREG(&clk_dummy, "pxa3xx-pwri2c.1", NULL), INIT_CLKREG(&clk_pxa3xx_lcd, "pxa2xx-fb", NULL), INIT_CLKREG(&clk_pxa3xx_camera, NULL, "CAMCLK"), INIT_CLKREG(&clk_pxa3xx_ac97, NULL, "AC97CLK"), INIT_CLKREG(&clk_pxa3xx_ffuart, "pxa2xx-uart.0", NULL), INIT_CLKREG(&clk_pxa3xx_btuart, "pxa2xx-uart.1", NULL), INIT_CLKREG(&clk_pxa3xx_stuart, "pxa2xx-uart.2", NULL), INIT_CLKREG(&clk_pxa3xx_stuart, "pxa2xx-ir", "UARTCLK"), INIT_CLKREG(&clk_pxa3xx_i2c, "pxa2xx-i2c.0", NULL), INIT_CLKREG(&clk_pxa3xx_udc, "pxa27x-udc", NULL), INIT_CLKREG(&clk_pxa3xx_usbh, "pxa27x-ohci", NULL), INIT_CLKREG(&clk_pxa3xx_keypad, "pxa27x-keypad", NULL), INIT_CLKREG(&clk_pxa3xx_ssp1, "pxa27x-ssp.0", NULL), INIT_CLKREG(&clk_pxa3xx_ssp2, "pxa27x-ssp.1", NULL), INIT_CLKREG(&clk_pxa3xx_ssp3, "pxa27x-ssp.2", NULL), INIT_CLKREG(&clk_pxa3xx_ssp4, "pxa27x-ssp.3", NULL), INIT_CLKREG(&clk_pxa3xx_pwm0, "pxa27x-pwm.0", NULL), INIT_CLKREG(&clk_pxa3xx_pwm1, "pxa27x-pwm.1", NULL), INIT_CLKREG(&clk_pxa3xx_mmc1, "pxa2xx-mci.0", NULL), INIT_CLKREG(&clk_pxa3xx_mmc2, "pxa2xx-mci.1", NULL), }; #ifdef CONFIG_PM #define ISRAM_START 0x5c000000 #define ISRAM_SIZE SZ_256K static void __iomem *sram; static unsigned long wakeup_src; #define SAVE(x) sleep_save[SLEEP_SAVE_##x] = x #define RESTORE(x) x = sleep_save[SLEEP_SAVE_##x] enum { SLEEP_SAVE_CKENA, SLEEP_SAVE_CKENB, SLEEP_SAVE_ACCR, SLEEP_SAVE_COUNT, }; static void pxa3xx_cpu_pm_save(unsigned long *sleep_save) { SAVE(CKENA); SAVE(CKENB); SAVE(ACCR); } static void pxa3xx_cpu_pm_restore(unsigned long *sleep_save) { RESTORE(ACCR); RESTORE(CKENA); RESTORE(CKENB); } /* * Enter a standby mode (S0D1C2 or S0D2C2). Upon wakeup, the dynamic * memory controller has to be reinitialised, so we place some code * in the SRAM to perform this function. * * We disable FIQs across the standby - otherwise, we might receive a * FIQ while the SDRAM is unavailable. */ static void pxa3xx_cpu_standby(unsigned int pwrmode) { extern const char pm_enter_standby_start[], pm_enter_standby_end[]; void (*fn)(unsigned int) = (void __force *)(sram + 0x8000); memcpy_toio(sram + 0x8000, pm_enter_standby_start, pm_enter_standby_end - pm_enter_standby_start); AD2D0SR = ~0; AD2D1SR = ~0; AD2D0ER = wakeup_src; AD2D1ER = 0; ASCR = ASCR; ARSR = ARSR; local_fiq_disable(); fn(pwrmode); local_fiq_enable(); AD2D0ER = 0; AD2D1ER = 0; } /* * NOTE: currently, the OBM (OEM Boot Module) binary comes along with * PXA3xx development kits assumes that the resuming process continues * with the address stored within the first 4 bytes of SDRAM. The PSPR * register is used privately by BootROM and OBM, and _must_ be set to * 0x5c014000 for the moment. */ static void pxa3xx_cpu_pm_suspend(void) { volatile unsigned long *p = (volatile void *)0xc0000000; unsigned long saved_data = *p; extern void pxa3xx_cpu_suspend(void); extern void pxa3xx_cpu_resume(void); /* resuming from D2 requires the HSIO2/BOOT/TPM clocks enabled */ CKENA |= (1 << CKEN_BOOT) | (1 << CKEN_TPM); CKENB |= 1 << (CKEN_HSIO2 & 0x1f); /* clear and setup wakeup source */ AD3SR = ~0; AD3ER = wakeup_src; ASCR = ASCR; ARSR = ARSR; PCFR |= (1u << 13); /* L1_DIS */ PCFR &= ~((1u << 12) | (1u << 1)); /* L0_EN | SL_ROD */ PSPR = 0x5c014000; /* overwrite with the resume address */ *p = virt_to_phys(pxa3xx_cpu_resume); pxa3xx_cpu_suspend(); *p = saved_data; AD3ER = 0; } static void pxa3xx_cpu_pm_enter(suspend_state_t state) { /* * Don't sleep if no wakeup sources are defined */ if (wakeup_src == 0) { printk(KERN_ERR "Not suspending: no wakeup sources\n"); return; } switch (state) { case PM_SUSPEND_STANDBY: pxa3xx_cpu_standby(PXA3xx_PM_S0D2C2); break; case PM_SUSPEND_MEM: pxa3xx_cpu_pm_suspend(); break; } } static int pxa3xx_cpu_pm_valid(suspend_state_t state) { return state == PM_SUSPEND_MEM || state == PM_SUSPEND_STANDBY; } static struct pxa_cpu_pm_fns pxa3xx_cpu_pm_fns = { .save_count = SLEEP_SAVE_COUNT, .save = pxa3xx_cpu_pm_save, .restore = pxa3xx_cpu_pm_restore, .valid = pxa3xx_cpu_pm_valid, .enter = pxa3xx_cpu_pm_enter, }; static void __init pxa3xx_init_pm(void) { sram = ioremap(ISRAM_START, ISRAM_SIZE); if (!sram) { printk(KERN_ERR "Unable to map ISRAM: disabling standby/suspend\n"); return; } /* * Since we copy wakeup code into the SRAM, we need to ensure * that it is preserved over the low power modes. Note: bit 8 * is undocumented in the developer manual, but must be set. */ AD1R |= ADXR_L2 | ADXR_R0; AD2R |= ADXR_L2 | ADXR_R0; AD3R |= ADXR_L2 | ADXR_R0; /* * Clear the resume enable registers. */ AD1D0ER = 0; AD2D0ER = 0; AD2D1ER = 0; AD3ER = 0; pxa_cpu_pm_fns = &pxa3xx_cpu_pm_fns; } static int pxa3xx_set_wake(unsigned int irq, unsigned int on) { unsigned long flags, mask = 0; switch (irq) { case IRQ_SSP3: mask = ADXER_MFP_WSSP3; break; case IRQ_MSL: mask = ADXER_WMSL0; break; case IRQ_USBH2: case IRQ_USBH1: mask = ADXER_WUSBH; break; case IRQ_KEYPAD: mask = ADXER_WKP; break; case IRQ_AC97: mask = ADXER_MFP_WAC97; break; case IRQ_USIM: mask = ADXER_WUSIM0; break; case IRQ_SSP2: mask = ADXER_MFP_WSSP2; break; case IRQ_I2C: mask = ADXER_MFP_WI2C; break; case IRQ_STUART: mask = ADXER_MFP_WUART3; break; case IRQ_BTUART: mask = ADXER_MFP_WUART2; break; case IRQ_FFUART: mask = ADXER_MFP_WUART1; break; case IRQ_MMC: mask = ADXER_MFP_WMMC1; break; case IRQ_SSP: mask = ADXER_MFP_WSSP1; break; case IRQ_RTCAlrm: mask = ADXER_WRTC; break; case IRQ_SSP4: mask = ADXER_MFP_WSSP4; break; case IRQ_TSI: mask = ADXER_WTSI; break; case IRQ_USIM2: mask = ADXER_WUSIM1; break; case IRQ_MMC2: mask = ADXER_MFP_WMMC2; break; case IRQ_NAND: mask = ADXER_MFP_WFLASH; break; case IRQ_USB2: mask = ADXER_WUSB2; break; case IRQ_WAKEUP0: mask = ADXER_WEXTWAKE0; break; case IRQ_WAKEUP1: mask = ADXER_WEXTWAKE1; break; case IRQ_MMC3: mask = ADXER_MFP_GEN12; break; default: return -EINVAL; } local_irq_save(flags); if (on) wakeup_src |= mask; else wakeup_src &= ~mask; local_irq_restore(flags); return 0; } #else static inline void pxa3xx_init_pm(void) {} #define pxa3xx_set_wake NULL #endif void __init pxa3xx_init_irq(void) { /* enable CP6 access */ u32 value; __asm__ __volatile__("mrc p15, 0, %0, c15, c1, 0\n": "=r"(value)); value |= (1 << 6); __asm__ __volatile__("mcr p15, 0, %0, c15, c1, 0\n": :"r"(value)); pxa_init_irq(56, pxa3xx_set_wake); pxa_init_gpio(IRQ_GPIO_2_x, 2, 127, NULL); } /* * device registration specific to PXA3xx. */ void __init pxa3xx_set_i2c_power_info(struct i2c_pxa_platform_data *info) { pxa_register_device(&pxa3xx_device_i2c_power, info); } static struct platform_device *devices[] __initdata = { &pxa27x_device_udc, &pxa_device_ffuart, &pxa_device_btuart, &pxa_device_stuart, &pxa_device_i2s, &sa1100_device_rtc, &pxa_device_rtc, &pxa27x_device_ssp1, &pxa27x_device_ssp2, &pxa27x_device_ssp3, &pxa3xx_device_ssp4, &pxa27x_device_pwm0, &pxa27x_device_pwm1, }; static struct sys_device pxa3xx_sysdev[] = { { .cls = &pxa_irq_sysclass, }, { .cls = &pxa3xx_mfp_sysclass, }, { .cls = &pxa_gpio_sysclass, }, }; static int __init pxa3xx_init(void) { int i, ret = 0; if (cpu_is_pxa3xx()) { reset_status = ARSR; /* * clear RDH bit every time after reset * * Note: the last 3 bits DxS are write-1-to-clear so carefully * preserve them here in case they will be referenced later */ ASCR &= ~(ASCR_RDH | ASCR_D1S | ASCR_D2S | ASCR_D3S); clks_register(pxa3xx_clkregs, ARRAY_SIZE(pxa3xx_clkregs)); if ((ret = pxa_init_dma(IRQ_DMA, 32))) return ret; pxa3xx_init_pm(); for (i = 0; i < ARRAY_SIZE(pxa3xx_sysdev); i++) { ret = sysdev_register(&pxa3xx_sysdev[i]); if (ret) pr_err("failed to register sysdev[%d]\n", i); } ret = platform_add_devices(devices, ARRAY_SIZE(devices)); } return ret; } postcore_initcall(pxa3xx_init);