/* * linux/arch/arm/plat-omap/dma.c * * Copyright (C) 2003 Nokia Corporation * Author: Juha Yrjölä * DMA channel linking for 1610 by Samuel Ortiz * Graphics DMA and LCD DMA graphics tranformations * by Imre Deak * OMAP2 support Copyright (C) 2004-2005 Texas Instruments, Inc. * Merged to support both OMAP1 and OMAP2 by Tony Lindgren * Some functions based on earlier dma-omap.c Copyright (C) 2001 RidgeRun, Inc. * * Support functions for the OMAP internal DMA channels. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * */ #include #include #include #include #include #include #include #include #include #include #include #include #define DEBUG_PRINTS #undef DEBUG_PRINTS #ifdef DEBUG_PRINTS #define debug_printk(x) printk x #else #define debug_printk(x) #endif #define OMAP_DMA_ACTIVE 0x01 #define OMAP_DMA_CCR_EN (1 << 7) #define OMAP2_DMA_CSR_CLEAR_MASK 0xffe #define OMAP_FUNC_MUX_ARM_BASE (0xfffe1000 + 0xec) static int enable_1510_mode = 0; struct omap_dma_lch { int next_lch; int dev_id; u16 saved_csr; u16 enabled_irqs; const char *dev_name; void (* callback)(int lch, u16 ch_status, void *data); void *data; long flags; }; static int dma_chan_count; static spinlock_t dma_chan_lock; static struct omap_dma_lch dma_chan[OMAP_LOGICAL_DMA_CH_COUNT]; static const u8 omap1_dma_irq[OMAP_LOGICAL_DMA_CH_COUNT] = { INT_DMA_CH0_6, INT_DMA_CH1_7, INT_DMA_CH2_8, INT_DMA_CH3, INT_DMA_CH4, INT_DMA_CH5, INT_1610_DMA_CH6, INT_1610_DMA_CH7, INT_1610_DMA_CH8, INT_1610_DMA_CH9, INT_1610_DMA_CH10, INT_1610_DMA_CH11, INT_1610_DMA_CH12, INT_1610_DMA_CH13, INT_1610_DMA_CH14, INT_1610_DMA_CH15, INT_DMA_LCD }; #define REVISIT_24XX() printk(KERN_ERR "FIXME: no %s on 24xx\n", \ __FUNCTION__); #ifdef CONFIG_ARCH_OMAP15XX /* Returns 1 if the DMA module is in OMAP1510-compatible mode, 0 otherwise */ int omap_dma_in_1510_mode(void) { return enable_1510_mode; } #else #define omap_dma_in_1510_mode() 0 #endif #ifdef CONFIG_ARCH_OMAP1 static inline int get_gdma_dev(int req) { u32 reg = OMAP_FUNC_MUX_ARM_BASE + ((req - 1) / 5) * 4; int shift = ((req - 1) % 5) * 6; return ((omap_readl(reg) >> shift) & 0x3f) + 1; } static inline void set_gdma_dev(int req, int dev) { u32 reg = OMAP_FUNC_MUX_ARM_BASE + ((req - 1) / 5) * 4; int shift = ((req - 1) % 5) * 6; u32 l; l = omap_readl(reg); l &= ~(0x3f << shift); l |= (dev - 1) << shift; omap_writel(l, reg); } #else #define set_gdma_dev(req, dev) do {} while (0) #endif static void clear_lch_regs(int lch) { int i; u32 lch_base = OMAP_DMA_BASE + lch * 0x40; for (i = 0; i < 0x2c; i += 2) omap_writew(0, lch_base + i); } void omap_set_dma_priority(int lch, int dst_port, int priority) { unsigned long reg; u32 l; if (cpu_class_is_omap1()) { switch (dst_port) { case OMAP_DMA_PORT_OCP_T1: /* FFFECC00 */ reg = OMAP_TC_OCPT1_PRIOR; break; case OMAP_DMA_PORT_OCP_T2: /* FFFECCD0 */ reg = OMAP_TC_OCPT2_PRIOR; break; case OMAP_DMA_PORT_EMIFF: /* FFFECC08 */ reg = OMAP_TC_EMIFF_PRIOR; break; case OMAP_DMA_PORT_EMIFS: /* FFFECC04 */ reg = OMAP_TC_EMIFS_PRIOR; break; default: BUG(); return; } l = omap_readl(reg); l &= ~(0xf << 8); l |= (priority & 0xf) << 8; omap_writel(l, reg); } if (cpu_is_omap24xx()) { if (priority) OMAP_DMA_CCR_REG(lch) |= (1 << 6); else OMAP_DMA_CCR_REG(lch) &= ~(1 << 6); } } void omap_set_dma_transfer_params(int lch, int data_type, int elem_count, int frame_count, int sync_mode, int dma_trigger, int src_or_dst_synch) { OMAP_DMA_CSDP_REG(lch) &= ~0x03; OMAP_DMA_CSDP_REG(lch) |= data_type; if (cpu_class_is_omap1()) { OMAP_DMA_CCR_REG(lch) &= ~(1 << 5); if (sync_mode == OMAP_DMA_SYNC_FRAME) OMAP_DMA_CCR_REG(lch) |= 1 << 5; OMAP1_DMA_CCR2_REG(lch) &= ~(1 << 2); if (sync_mode == OMAP_DMA_SYNC_BLOCK) OMAP1_DMA_CCR2_REG(lch) |= 1 << 2; } if (cpu_is_omap24xx() && dma_trigger) { u32 val = OMAP_DMA_CCR_REG(lch); val &= ~(3 << 19); if (dma_trigger > 63) val |= 1 << 20; if (dma_trigger > 31) val |= 1 << 19; val &= ~(0x1f); val |= (dma_trigger & 0x1f); if (sync_mode & OMAP_DMA_SYNC_FRAME) val |= 1 << 5; else val &= ~(1 << 5); if (sync_mode & OMAP_DMA_SYNC_BLOCK) val |= 1 << 18; else val &= ~(1 << 18); if (src_or_dst_synch) val |= 1 << 24; /* source synch */ else val &= ~(1 << 24); /* dest synch */ OMAP_DMA_CCR_REG(lch) = val; } OMAP_DMA_CEN_REG(lch) = elem_count; OMAP_DMA_CFN_REG(lch) = frame_count; } void omap_set_dma_color_mode(int lch, enum omap_dma_color_mode mode, u32 color) { u16 w; BUG_ON(omap_dma_in_1510_mode()); if (cpu_is_omap24xx()) { REVISIT_24XX(); return; } w = OMAP1_DMA_CCR2_REG(lch) & ~0x03; switch (mode) { case OMAP_DMA_CONSTANT_FILL: w |= 0x01; break; case OMAP_DMA_TRANSPARENT_COPY: w |= 0x02; break; case OMAP_DMA_COLOR_DIS: break; default: BUG(); } OMAP1_DMA_CCR2_REG(lch) = w; w = OMAP1_DMA_LCH_CTRL_REG(lch) & ~0x0f; /* Default is channel type 2D */ if (mode) { OMAP1_DMA_COLOR_L_REG(lch) = (u16)color; OMAP1_DMA_COLOR_U_REG(lch) = (u16)(color >> 16); w |= 1; /* Channel type G */ } OMAP1_DMA_LCH_CTRL_REG(lch) = w; } void omap_set_dma_write_mode(int lch, enum omap_dma_write_mode mode) { if (cpu_is_omap24xx()) { OMAP_DMA_CSDP_REG(lch) &= ~(0x3 << 16); OMAP_DMA_CSDP_REG(lch) |= (mode << 16); } } /* Note that src_port is only for omap1 */ void omap_set_dma_src_params(int lch, int src_port, int src_amode, unsigned long src_start, int src_ei, int src_fi) { if (cpu_class_is_omap1()) { OMAP_DMA_CSDP_REG(lch) &= ~(0x1f << 2); OMAP_DMA_CSDP_REG(lch) |= src_port << 2; } OMAP_DMA_CCR_REG(lch) &= ~(0x03 << 12); OMAP_DMA_CCR_REG(lch) |= src_amode << 12; if (cpu_class_is_omap1()) { OMAP1_DMA_CSSA_U_REG(lch) = src_start >> 16; OMAP1_DMA_CSSA_L_REG(lch) = src_start; } if (cpu_is_omap24xx()) OMAP2_DMA_CSSA_REG(lch) = src_start; OMAP_DMA_CSEI_REG(lch) = src_ei; OMAP_DMA_CSFI_REG(lch) = src_fi; } void omap_set_dma_params(int lch, struct omap_dma_channel_params * params) { omap_set_dma_transfer_params(lch, params->data_type, params->elem_count, params->frame_count, params->sync_mode, params->trigger, params->src_or_dst_synch); omap_set_dma_src_params(lch, params->src_port, params->src_amode, params->src_start, params->src_ei, params->src_fi); omap_set_dma_dest_params(lch, params->dst_port, params->dst_amode, params->dst_start, params->dst_ei, params->dst_fi); } void omap_set_dma_src_index(int lch, int eidx, int fidx) { if (cpu_is_omap24xx()) { REVISIT_24XX(); return; } OMAP_DMA_CSEI_REG(lch) = eidx; OMAP_DMA_CSFI_REG(lch) = fidx; } void omap_set_dma_src_data_pack(int lch, int enable) { OMAP_DMA_CSDP_REG(lch) &= ~(1 << 6); if (enable) OMAP_DMA_CSDP_REG(lch) |= (1 << 6); } void omap_set_dma_src_burst_mode(int lch, enum omap_dma_burst_mode burst_mode) { unsigned int burst = 0; OMAP_DMA_CSDP_REG(lch) &= ~(0x03 << 7); switch (burst_mode) { case OMAP_DMA_DATA_BURST_DIS: break; case OMAP_DMA_DATA_BURST_4: if (cpu_is_omap24xx()) burst = 0x1; else burst = 0x2; break; case OMAP_DMA_DATA_BURST_8: if (cpu_is_omap24xx()) { burst = 0x2; break; } /* not supported by current hardware on OMAP1 * w |= (0x03 << 7); * fall through */ case OMAP_DMA_DATA_BURST_16: if (cpu_is_omap24xx()) { burst = 0x3; break; } /* OMAP1 don't support burst 16 * fall through */ default: BUG(); } OMAP_DMA_CSDP_REG(lch) |= (burst << 7); } /* Note that dest_port is only for OMAP1 */ void omap_set_dma_dest_params(int lch, int dest_port, int dest_amode, unsigned long dest_start, int dst_ei, int dst_fi) { if (cpu_class_is_omap1()) { OMAP_DMA_CSDP_REG(lch) &= ~(0x1f << 9); OMAP_DMA_CSDP_REG(lch) |= dest_port << 9; } OMAP_DMA_CCR_REG(lch) &= ~(0x03 << 14); OMAP_DMA_CCR_REG(lch) |= dest_amode << 14; if (cpu_class_is_omap1()) { OMAP1_DMA_CDSA_U_REG(lch) = dest_start >> 16; OMAP1_DMA_CDSA_L_REG(lch) = dest_start; } if (cpu_is_omap24xx()) OMAP2_DMA_CDSA_REG(lch) = dest_start; OMAP_DMA_CDEI_REG(lch) = dst_ei; OMAP_DMA_CDFI_REG(lch) = dst_fi; } void omap_set_dma_dest_index(int lch, int eidx, int fidx) { if (cpu_is_omap24xx()) { REVISIT_24XX(); return; } OMAP_DMA_CDEI_REG(lch) = eidx; OMAP_DMA_CDFI_REG(lch) = fidx; } void omap_set_dma_dest_data_pack(int lch, int enable) { OMAP_DMA_CSDP_REG(lch) &= ~(1 << 13); if (enable) OMAP_DMA_CSDP_REG(lch) |= 1 << 13; } void omap_set_dma_dest_burst_mode(int lch, enum omap_dma_burst_mode burst_mode) { unsigned int burst = 0; OMAP_DMA_CSDP_REG(lch) &= ~(0x03 << 14); switch (burst_mode) { case OMAP_DMA_DATA_BURST_DIS: break; case OMAP_DMA_DATA_BURST_4: if (cpu_is_omap24xx()) burst = 0x1; else burst = 0x2; break; case OMAP_DMA_DATA_BURST_8: if (cpu_is_omap24xx()) burst = 0x2; else burst = 0x3; break; case OMAP_DMA_DATA_BURST_16: if (cpu_is_omap24xx()) { burst = 0x3; break; } /* OMAP1 don't support burst 16 * fall through */ default: printk(KERN_ERR "Invalid DMA burst mode\n"); BUG(); return; } OMAP_DMA_CSDP_REG(lch) |= (burst << 14); } static inline void omap_enable_channel_irq(int lch) { u32 status; /* Clear CSR */ if (cpu_class_is_omap1()) status = OMAP_DMA_CSR_REG(lch); else if (cpu_is_omap24xx()) OMAP_DMA_CSR_REG(lch) = OMAP2_DMA_CSR_CLEAR_MASK; /* Enable some nice interrupts. */ OMAP_DMA_CICR_REG(lch) = dma_chan[lch].enabled_irqs; dma_chan[lch].flags |= OMAP_DMA_ACTIVE; } static void omap_disable_channel_irq(int lch) { if (cpu_is_omap24xx()) OMAP_DMA_CICR_REG(lch) = 0; } void omap_enable_dma_irq(int lch, u16 bits) { dma_chan[lch].enabled_irqs |= bits; } void omap_disable_dma_irq(int lch, u16 bits) { dma_chan[lch].enabled_irqs &= ~bits; } static inline void enable_lnk(int lch) { if (cpu_class_is_omap1()) OMAP_DMA_CLNK_CTRL_REG(lch) &= ~(1 << 14); /* Set the ENABLE_LNK bits */ if (dma_chan[lch].next_lch != -1) OMAP_DMA_CLNK_CTRL_REG(lch) = dma_chan[lch].next_lch | (1 << 15); } static inline void disable_lnk(int lch) { /* Disable interrupts */ if (cpu_class_is_omap1()) { OMAP_DMA_CICR_REG(lch) = 0; /* Set the STOP_LNK bit */ OMAP_DMA_CLNK_CTRL_REG(lch) |= 1 << 14; } if (cpu_is_omap24xx()) { omap_disable_channel_irq(lch); /* Clear the ENABLE_LNK bit */ OMAP_DMA_CLNK_CTRL_REG(lch) &= ~(1 << 15); } dma_chan[lch].flags &= ~OMAP_DMA_ACTIVE; } static inline void omap2_enable_irq_lch(int lch) { u32 val; if (!cpu_is_omap24xx()) return; val = omap_readl(OMAP_DMA4_IRQENABLE_L0); val |= 1 << lch; omap_writel(val, OMAP_DMA4_IRQENABLE_L0); } int omap_request_dma(int dev_id, const char *dev_name, void (* callback)(int lch, u16 ch_status, void *data), void *data, int *dma_ch_out) { int ch, free_ch = -1; unsigned long flags; struct omap_dma_lch *chan; spin_lock_irqsave(&dma_chan_lock, flags); for (ch = 0; ch < dma_chan_count; ch++) { if (free_ch == -1 && dma_chan[ch].dev_id == -1) { free_ch = ch; if (dev_id == 0) break; } } if (free_ch == -1) { spin_unlock_irqrestore(&dma_chan_lock, flags); return -EBUSY; } chan = dma_chan + free_ch; chan->dev_id = dev_id; if (cpu_class_is_omap1()) clear_lch_regs(free_ch); if (cpu_is_omap24xx()) omap_clear_dma(free_ch); spin_unlock_irqrestore(&dma_chan_lock, flags); chan->dev_name = dev_name; chan->callback = callback; chan->data = data; chan->enabled_irqs = OMAP_DMA_DROP_IRQ | OMAP_DMA_BLOCK_IRQ; if (cpu_class_is_omap1()) chan->enabled_irqs |= OMAP1_DMA_TOUT_IRQ; else if (cpu_is_omap24xx()) chan->enabled_irqs |= OMAP2_DMA_MISALIGNED_ERR_IRQ | OMAP2_DMA_TRANS_ERR_IRQ; if (cpu_is_omap16xx()) { /* If the sync device is set, configure it dynamically. */ if (dev_id != 0) { set_gdma_dev(free_ch + 1, dev_id); dev_id = free_ch + 1; } /* Disable the 1510 compatibility mode and set the sync device * id. */ OMAP_DMA_CCR_REG(free_ch) = dev_id | (1 << 10); } else if (cpu_is_omap730() || cpu_is_omap15xx()) { OMAP_DMA_CCR_REG(free_ch) = dev_id; } if (cpu_is_omap24xx()) { omap2_enable_irq_lch(free_ch); omap_enable_channel_irq(free_ch); /* Clear the CSR register and IRQ status register */ OMAP_DMA_CSR_REG(free_ch) = OMAP2_DMA_CSR_CLEAR_MASK; omap_writel(1 << free_ch, OMAP_DMA4_IRQSTATUS_L0); } *dma_ch_out = free_ch; return 0; } void omap_free_dma(int lch) { unsigned long flags; spin_lock_irqsave(&dma_chan_lock, flags); if (dma_chan[lch].dev_id == -1) { printk("omap_dma: trying to free nonallocated DMA channel %d\n", lch); spin_unlock_irqrestore(&dma_chan_lock, flags); return; } dma_chan[lch].dev_id = -1; dma_chan[lch].next_lch = -1; dma_chan[lch].callback = NULL; spin_unlock_irqrestore(&dma_chan_lock, flags); if (cpu_class_is_omap1()) { /* Disable all DMA interrupts for the channel. */ OMAP_DMA_CICR_REG(lch) = 0; /* Make sure the DMA transfer is stopped. */ OMAP_DMA_CCR_REG(lch) = 0; } if (cpu_is_omap24xx()) { u32 val; /* Disable interrupts */ val = omap_readl(OMAP_DMA4_IRQENABLE_L0); val &= ~(1 << lch); omap_writel(val, OMAP_DMA4_IRQENABLE_L0); /* Clear the CSR register and IRQ status register */ OMAP_DMA_CSR_REG(lch) = OMAP2_DMA_CSR_CLEAR_MASK; omap_writel(1 << lch, OMAP_DMA4_IRQSTATUS_L0); /* Disable all DMA interrupts for the channel. */ OMAP_DMA_CICR_REG(lch) = 0; /* Make sure the DMA transfer is stopped. */ OMAP_DMA_CCR_REG(lch) = 0; omap_clear_dma(lch); } } /* * Clears any DMA state so the DMA engine is ready to restart with new buffers * through omap_start_dma(). Any buffers in flight are discarded. */ void omap_clear_dma(int lch) { unsigned long flags; local_irq_save(flags); if (cpu_class_is_omap1()) { int status; OMAP_DMA_CCR_REG(lch) &= ~OMAP_DMA_CCR_EN; /* Clear pending interrupts */ status = OMAP_DMA_CSR_REG(lch); } if (cpu_is_omap24xx()) { int i; u32 lch_base = OMAP24XX_DMA_BASE + lch * 0x60 + 0x80; for (i = 0; i < 0x44; i += 4) omap_writel(0, lch_base + i); } local_irq_restore(flags); } void omap_start_dma(int lch) { if (!omap_dma_in_1510_mode() && dma_chan[lch].next_lch != -1) { int next_lch, cur_lch; char dma_chan_link_map[OMAP_LOGICAL_DMA_CH_COUNT]; dma_chan_link_map[lch] = 1; /* Set the link register of the first channel */ enable_lnk(lch); memset(dma_chan_link_map, 0, sizeof(dma_chan_link_map)); cur_lch = dma_chan[lch].next_lch; do { next_lch = dma_chan[cur_lch].next_lch; /* The loop case: we've been here already */ if (dma_chan_link_map[cur_lch]) break; /* Mark the current channel */ dma_chan_link_map[cur_lch] = 1; enable_lnk(cur_lch); omap_enable_channel_irq(cur_lch); cur_lch = next_lch; } while (next_lch != -1); } else if (cpu_is_omap24xx()) { /* Errata: Need to write lch even if not using chaining */ OMAP_DMA_CLNK_CTRL_REG(lch) = lch; } omap_enable_channel_irq(lch); /* Errata: On ES2.0 BUFFERING disable must be set. * This will always fail on ES1.0 */ if (cpu_is_omap24xx()) { OMAP_DMA_CCR_REG(lch) |= OMAP_DMA_CCR_EN; } OMAP_DMA_CCR_REG(lch) |= OMAP_DMA_CCR_EN; dma_chan[lch].flags |= OMAP_DMA_ACTIVE; } void omap_stop_dma(int lch) { if (!omap_dma_in_1510_mode() && dma_chan[lch].next_lch != -1) { int next_lch, cur_lch = lch; char dma_chan_link_map[OMAP_LOGICAL_DMA_CH_COUNT]; memset(dma_chan_link_map, 0, sizeof(dma_chan_link_map)); do { /* The loop case: we've been here already */ if (dma_chan_link_map[cur_lch]) break; /* Mark the current channel */ dma_chan_link_map[cur_lch] = 1; disable_lnk(cur_lch); next_lch = dma_chan[cur_lch].next_lch; cur_lch = next_lch; } while (next_lch != -1); return; } /* Disable all interrupts on the channel */ if (cpu_class_is_omap1()) OMAP_DMA_CICR_REG(lch) = 0; OMAP_DMA_CCR_REG(lch) &= ~OMAP_DMA_CCR_EN; dma_chan[lch].flags &= ~OMAP_DMA_ACTIVE; } /* * Allows changing the DMA callback function or data. This may be needed if * the driver shares a single DMA channel for multiple dma triggers. */ int omap_set_dma_callback(int lch, void (* callback)(int lch, u16 ch_status, void *data), void *data) { unsigned long flags; if (lch < 0) return -ENODEV; spin_lock_irqsave(&dma_chan_lock, flags); if (dma_chan[lch].dev_id == -1) { printk(KERN_ERR "DMA callback for not set for free channel\n"); spin_unlock_irqrestore(&dma_chan_lock, flags); return -EINVAL; } dma_chan[lch].callback = callback; dma_chan[lch].data = data; spin_unlock_irqrestore(&dma_chan_lock, flags); return 0; } /* * Returns current physical source address for the given DMA channel. * If the channel is running the caller must disable interrupts prior calling * this function and process the returned value before re-enabling interrupt to * prevent races with the interrupt handler. Note that in continuous mode there * is a chance for CSSA_L register overflow inbetween the two reads resulting * in incorrect return value. */ dma_addr_t omap_get_dma_src_pos(int lch) { dma_addr_t offset = 0; if (cpu_class_is_omap1()) offset = (dma_addr_t) (OMAP1_DMA_CSSA_L_REG(lch) | (OMAP1_DMA_CSSA_U_REG(lch) << 16)); if (cpu_is_omap24xx()) offset = OMAP_DMA_CSAC_REG(lch); return offset; } /* * Returns current physical destination address for the given DMA channel. * If the channel is running the caller must disable interrupts prior calling * this function and process the returned value before re-enabling interrupt to * prevent races with the interrupt handler. Note that in continuous mode there * is a chance for CDSA_L register overflow inbetween the two reads resulting * in incorrect return value. */ dma_addr_t omap_get_dma_dst_pos(int lch) { dma_addr_t offset = 0; if (cpu_class_is_omap1()) offset = (dma_addr_t) (OMAP1_DMA_CDSA_L_REG(lch) | (OMAP1_DMA_CDSA_U_REG(lch) << 16)); if (cpu_is_omap24xx()) offset = OMAP2_DMA_CDSA_REG(lch); return offset; } /* * Returns current source transfer counting for the given DMA channel. * Can be used to monitor the progress of a transfer inside a block. * It must be called with disabled interrupts. */ int omap_get_dma_src_addr_counter(int lch) { return (dma_addr_t) OMAP_DMA_CSAC_REG(lch); } int omap_dma_running(void) { int lch; /* Check if LCD DMA is running */ if (cpu_is_omap16xx()) if (omap_readw(OMAP1610_DMA_LCD_CCR) & OMAP_DMA_CCR_EN) return 1; for (lch = 0; lch < dma_chan_count; lch++) if (OMAP_DMA_CCR_REG(lch) & OMAP_DMA_CCR_EN) return 1; return 0; } /* * lch_queue DMA will start right after lch_head one is finished. * For this DMA link to start, you still need to start (see omap_start_dma) * the first one. That will fire up the entire queue. */ void omap_dma_link_lch (int lch_head, int lch_queue) { if (omap_dma_in_1510_mode()) { printk(KERN_ERR "DMA linking is not supported in 1510 mode\n"); BUG(); return; } if ((dma_chan[lch_head].dev_id == -1) || (dma_chan[lch_queue].dev_id == -1)) { printk(KERN_ERR "omap_dma: trying to link " "non requested channels\n"); dump_stack(); } dma_chan[lch_head].next_lch = lch_queue; } /* * Once the DMA queue is stopped, we can destroy it. */ void omap_dma_unlink_lch (int lch_head, int lch_queue) { if (omap_dma_in_1510_mode()) { printk(KERN_ERR "DMA linking is not supported in 1510 mode\n"); BUG(); return; } if (dma_chan[lch_head].next_lch != lch_queue || dma_chan[lch_head].next_lch == -1) { printk(KERN_ERR "omap_dma: trying to unlink " "non linked channels\n"); dump_stack(); } if ((dma_chan[lch_head].flags & OMAP_DMA_ACTIVE) || (dma_chan[lch_head].flags & OMAP_DMA_ACTIVE)) { printk(KERN_ERR "omap_dma: You need to stop the DMA channels " "before unlinking\n"); dump_stack(); } dma_chan[lch_head].next_lch = -1; } /*----------------------------------------------------------------------------*/ #ifdef CONFIG_ARCH_OMAP1 static int omap1_dma_handle_ch(int ch) { u16 csr; if (enable_1510_mode && ch >= 6) { csr = dma_chan[ch].saved_csr; dma_chan[ch].saved_csr = 0; } else csr = OMAP_DMA_CSR_REG(ch); if (enable_1510_mode && ch <= 2 && (csr >> 7) != 0) { dma_chan[ch + 6].saved_csr = csr >> 7; csr &= 0x7f; } if ((csr & 0x3f) == 0) return 0; if (unlikely(dma_chan[ch].dev_id == -1)) { printk(KERN_WARNING "Spurious interrupt from DMA channel " "%d (CSR %04x)\n", ch, csr); return 0; } if (unlikely(csr & OMAP1_DMA_TOUT_IRQ)) printk(KERN_WARNING "DMA timeout with device %d\n", dma_chan[ch].dev_id); if (unlikely(csr & OMAP_DMA_DROP_IRQ)) printk(KERN_WARNING "DMA synchronization event drop occurred " "with device %d\n", dma_chan[ch].dev_id); if (likely(csr & OMAP_DMA_BLOCK_IRQ)) dma_chan[ch].flags &= ~OMAP_DMA_ACTIVE; if (likely(dma_chan[ch].callback != NULL)) dma_chan[ch].callback(ch, csr, dma_chan[ch].data); return 1; } static irqreturn_t omap1_dma_irq_handler(int irq, void *dev_id) { int ch = ((int) dev_id) - 1; int handled = 0; for (;;) { int handled_now = 0; handled_now += omap1_dma_handle_ch(ch); if (enable_1510_mode && dma_chan[ch + 6].saved_csr) handled_now += omap1_dma_handle_ch(ch + 6); if (!handled_now) break; handled += handled_now; } return handled ? IRQ_HANDLED : IRQ_NONE; } #else #define omap1_dma_irq_handler NULL #endif #ifdef CONFIG_ARCH_OMAP2 static int omap2_dma_handle_ch(int ch) { u32 status = OMAP_DMA_CSR_REG(ch); if (!status) { if (printk_ratelimit()) printk(KERN_WARNING "Spurious DMA IRQ for lch %d\n", ch); return 0; } if (unlikely(dma_chan[ch].dev_id == -1)) { if (printk_ratelimit()) printk(KERN_WARNING "IRQ %04x for non-allocated DMA" "channel %d\n", status, ch); return 0; } if (unlikely(status & OMAP_DMA_DROP_IRQ)) printk(KERN_INFO "DMA synchronization event drop occurred with device " "%d\n", dma_chan[ch].dev_id); if (unlikely(status & OMAP2_DMA_TRANS_ERR_IRQ)) printk(KERN_INFO "DMA transaction error with device %d\n", dma_chan[ch].dev_id); if (unlikely(status & OMAP2_DMA_SECURE_ERR_IRQ)) printk(KERN_INFO "DMA secure error with device %d\n", dma_chan[ch].dev_id); if (unlikely(status & OMAP2_DMA_MISALIGNED_ERR_IRQ)) printk(KERN_INFO "DMA misaligned error with device %d\n", dma_chan[ch].dev_id); OMAP_DMA_CSR_REG(ch) = OMAP2_DMA_CSR_CLEAR_MASK; omap_writel(1 << ch, OMAP_DMA4_IRQSTATUS_L0); if (likely(dma_chan[ch].callback != NULL)) dma_chan[ch].callback(ch, status, dma_chan[ch].data); return 0; } /* STATUS register count is from 1-32 while our is 0-31 */ static irqreturn_t omap2_dma_irq_handler(int irq, void *dev_id) { u32 val; int i; val = omap_readl(OMAP_DMA4_IRQSTATUS_L0); if (val == 0) { if (printk_ratelimit()) printk(KERN_WARNING "Spurious DMA IRQ\n"); return IRQ_HANDLED; } for (i = 0; i < OMAP_LOGICAL_DMA_CH_COUNT && val != 0; i++) { if (val & 1) omap2_dma_handle_ch(i); val >>= 1; } return IRQ_HANDLED; } static struct irqaction omap24xx_dma_irq = { .name = "DMA", .handler = omap2_dma_irq_handler, .flags = IRQF_DISABLED }; #else static struct irqaction omap24xx_dma_irq; #endif /*----------------------------------------------------------------------------*/ static struct lcd_dma_info { spinlock_t lock; int reserved; void (* callback)(u16 status, void *data); void *cb_data; int active; unsigned long addr, size; int rotate, data_type, xres, yres; int vxres; int mirror; int xscale, yscale; int ext_ctrl; int src_port; int single_transfer; } lcd_dma; void omap_set_lcd_dma_b1(unsigned long addr, u16 fb_xres, u16 fb_yres, int data_type) { lcd_dma.addr = addr; lcd_dma.data_type = data_type; lcd_dma.xres = fb_xres; lcd_dma.yres = fb_yres; } void omap_set_lcd_dma_src_port(int port) { lcd_dma.src_port = port; } void omap_set_lcd_dma_ext_controller(int external) { lcd_dma.ext_ctrl = external; } void omap_set_lcd_dma_single_transfer(int single) { lcd_dma.single_transfer = single; } void omap_set_lcd_dma_b1_rotation(int rotate) { if (omap_dma_in_1510_mode()) { printk(KERN_ERR "DMA rotation is not supported in 1510 mode\n"); BUG(); return; } lcd_dma.rotate = rotate; } void omap_set_lcd_dma_b1_mirror(int mirror) { if (omap_dma_in_1510_mode()) { printk(KERN_ERR "DMA mirror is not supported in 1510 mode\n"); BUG(); } lcd_dma.mirror = mirror; } void omap_set_lcd_dma_b1_vxres(unsigned long vxres) { if (omap_dma_in_1510_mode()) { printk(KERN_ERR "DMA virtual resulotion is not supported " "in 1510 mode\n"); BUG(); } lcd_dma.vxres = vxres; } void omap_set_lcd_dma_b1_scale(unsigned int xscale, unsigned int yscale) { if (omap_dma_in_1510_mode()) { printk(KERN_ERR "DMA scale is not supported in 1510 mode\n"); BUG(); } lcd_dma.xscale = xscale; lcd_dma.yscale = yscale; } static void set_b1_regs(void) { unsigned long top, bottom; int es; u16 w; unsigned long en, fn; long ei, fi; unsigned long vxres; unsigned int xscale, yscale; switch (lcd_dma.data_type) { case OMAP_DMA_DATA_TYPE_S8: es = 1; break; case OMAP_DMA_DATA_TYPE_S16: es = 2; break; case OMAP_DMA_DATA_TYPE_S32: es = 4; break; default: BUG(); return; } vxres = lcd_dma.vxres ? lcd_dma.vxres : lcd_dma.xres; xscale = lcd_dma.xscale ? lcd_dma.xscale : 1; yscale = lcd_dma.yscale ? lcd_dma.yscale : 1; BUG_ON(vxres < lcd_dma.xres); #define PIXADDR(x,y) (lcd_dma.addr + ((y) * vxres * yscale + (x) * xscale) * es) #define PIXSTEP(sx, sy, dx, dy) (PIXADDR(dx, dy) - PIXADDR(sx, sy) - es + 1) switch (lcd_dma.rotate) { case 0: if (!lcd_dma.mirror) { top = PIXADDR(0, 0); bottom = PIXADDR(lcd_dma.xres - 1, lcd_dma.yres - 1); /* 1510 DMA requires the bottom address to be 2 more * than the actual last memory access location. */ if (omap_dma_in_1510_mode() && lcd_dma.data_type == OMAP_DMA_DATA_TYPE_S32) bottom += 2; ei = PIXSTEP(0, 0, 1, 0); fi = PIXSTEP(lcd_dma.xres - 1, 0, 0, 1); } else { top = PIXADDR(lcd_dma.xres - 1, 0); bottom = PIXADDR(0, lcd_dma.yres - 1); ei = PIXSTEP(1, 0, 0, 0); fi = PIXSTEP(0, 0, lcd_dma.xres - 1, 1); } en = lcd_dma.xres; fn = lcd_dma.yres; break; case 90: if (!lcd_dma.mirror) { top = PIXADDR(0, lcd_dma.yres - 1); bottom = PIXADDR(lcd_dma.xres - 1, 0); ei = PIXSTEP(0, 1, 0, 0); fi = PIXSTEP(0, 0, 1, lcd_dma.yres - 1); } else { top = PIXADDR(lcd_dma.xres - 1, lcd_dma.yres - 1); bottom = PIXADDR(0, 0); ei = PIXSTEP(0, 1, 0, 0); fi = PIXSTEP(1, 0, 0, lcd_dma.yres - 1); } en = lcd_dma.yres; fn = lcd_dma.xres; break; case 180: if (!lcd_dma.mirror) { top = PIXADDR(lcd_dma.xres - 1, lcd_dma.yres - 1); bottom = PIXADDR(0, 0); ei = PIXSTEP(1, 0, 0, 0); fi = PIXSTEP(0, 1, lcd_dma.xres - 1, 0); } else { top = PIXADDR(0, lcd_dma.yres - 1); bottom = PIXADDR(lcd_dma.xres - 1, 0); ei = PIXSTEP(0, 0, 1, 0); fi = PIXSTEP(lcd_dma.xres - 1, 1, 0, 0); } en = lcd_dma.xres; fn = lcd_dma.yres; break; case 270: if (!lcd_dma.mirror) { top = PIXADDR(lcd_dma.xres - 1, 0); bottom = PIXADDR(0, lcd_dma.yres - 1); ei = PIXSTEP(0, 0, 0, 1); fi = PIXSTEP(1, lcd_dma.yres - 1, 0, 0); } else { top = PIXADDR(0, 0); bottom = PIXADDR(lcd_dma.xres - 1, lcd_dma.yres - 1); ei = PIXSTEP(0, 0, 0, 1); fi = PIXSTEP(0, lcd_dma.yres - 1, 1, 0); } en = lcd_dma.yres; fn = lcd_dma.xres; break; default: BUG(); return; /* Suppress warning about uninitialized vars */ } if (omap_dma_in_1510_mode()) { omap_writew(top >> 16, OMAP1510_DMA_LCD_TOP_F1_U); omap_writew(top, OMAP1510_DMA_LCD_TOP_F1_L); omap_writew(bottom >> 16, OMAP1510_DMA_LCD_BOT_F1_U); omap_writew(bottom, OMAP1510_DMA_LCD_BOT_F1_L); return; } /* 1610 regs */ omap_writew(top >> 16, OMAP1610_DMA_LCD_TOP_B1_U); omap_writew(top, OMAP1610_DMA_LCD_TOP_B1_L); omap_writew(bottom >> 16, OMAP1610_DMA_LCD_BOT_B1_U); omap_writew(bottom, OMAP1610_DMA_LCD_BOT_B1_L); omap_writew(en, OMAP1610_DMA_LCD_SRC_EN_B1); omap_writew(fn, OMAP1610_DMA_LCD_SRC_FN_B1); w = omap_readw(OMAP1610_DMA_LCD_CSDP); w &= ~0x03; w |= lcd_dma.data_type; omap_writew(w, OMAP1610_DMA_LCD_CSDP); w = omap_readw(OMAP1610_DMA_LCD_CTRL); /* Always set the source port as SDRAM for now*/ w &= ~(0x03 << 6); if (lcd_dma.callback != NULL) w |= 1 << 1; /* Block interrupt enable */ else w &= ~(1 << 1); omap_writew(w, OMAP1610_DMA_LCD_CTRL); if (!(lcd_dma.rotate || lcd_dma.mirror || lcd_dma.vxres || lcd_dma.xscale || lcd_dma.yscale)) return; w = omap_readw(OMAP1610_DMA_LCD_CCR); /* Set the double-indexed addressing mode */ w |= (0x03 << 12); omap_writew(w, OMAP1610_DMA_LCD_CCR); omap_writew(ei, OMAP1610_DMA_LCD_SRC_EI_B1); omap_writew(fi >> 16, OMAP1610_DMA_LCD_SRC_FI_B1_U); omap_writew(fi, OMAP1610_DMA_LCD_SRC_FI_B1_L); } static irqreturn_t lcd_dma_irq_handler(int irq, void *dev_id) { u16 w; w = omap_readw(OMAP1610_DMA_LCD_CTRL); if (unlikely(!(w & (1 << 3)))) { printk(KERN_WARNING "Spurious LCD DMA IRQ\n"); return IRQ_NONE; } /* Ack the IRQ */ w |= (1 << 3); omap_writew(w, OMAP1610_DMA_LCD_CTRL); lcd_dma.active = 0; if (lcd_dma.callback != NULL) lcd_dma.callback(w, lcd_dma.cb_data); return IRQ_HANDLED; } int omap_request_lcd_dma(void (* callback)(u16 status, void *data), void *data) { spin_lock_irq(&lcd_dma.lock); if (lcd_dma.reserved) { spin_unlock_irq(&lcd_dma.lock); printk(KERN_ERR "LCD DMA channel already reserved\n"); BUG(); return -EBUSY; } lcd_dma.reserved = 1; spin_unlock_irq(&lcd_dma.lock); lcd_dma.callback = callback; lcd_dma.cb_data = data; lcd_dma.active = 0; lcd_dma.single_transfer = 0; lcd_dma.rotate = 0; lcd_dma.vxres = 0; lcd_dma.mirror = 0; lcd_dma.xscale = 0; lcd_dma.yscale = 0; lcd_dma.ext_ctrl = 0; lcd_dma.src_port = 0; return 0; } void omap_free_lcd_dma(void) { spin_lock(&lcd_dma.lock); if (!lcd_dma.reserved) { spin_unlock(&lcd_dma.lock); printk(KERN_ERR "LCD DMA is not reserved\n"); BUG(); return; } if (!enable_1510_mode) omap_writew(omap_readw(OMAP1610_DMA_LCD_CCR) & ~1, OMAP1610_DMA_LCD_CCR); lcd_dma.reserved = 0; spin_unlock(&lcd_dma.lock); } void omap_enable_lcd_dma(void) { u16 w; /* Set the Enable bit only if an external controller is * connected. Otherwise the OMAP internal controller will * start the transfer when it gets enabled. */ if (enable_1510_mode || !lcd_dma.ext_ctrl) return; w = omap_readw(OMAP1610_DMA_LCD_CTRL); w |= 1 << 8; omap_writew(w, OMAP1610_DMA_LCD_CTRL); lcd_dma.active = 1; w = omap_readw(OMAP1610_DMA_LCD_CCR); w |= 1 << 7; omap_writew(w, OMAP1610_DMA_LCD_CCR); } void omap_setup_lcd_dma(void) { BUG_ON(lcd_dma.active); if (!enable_1510_mode) { /* Set some reasonable defaults */ omap_writew(0x5440, OMAP1610_DMA_LCD_CCR); omap_writew(0x9102, OMAP1610_DMA_LCD_CSDP); omap_writew(0x0004, OMAP1610_DMA_LCD_LCH_CTRL); } set_b1_regs(); if (!enable_1510_mode) { u16 w; w = omap_readw(OMAP1610_DMA_LCD_CCR); /* If DMA was already active set the end_prog bit to have * the programmed register set loaded into the active * register set. */ w |= 1 << 11; /* End_prog */ if (!lcd_dma.single_transfer) w |= (3 << 8); /* Auto_init, repeat */ omap_writew(w, OMAP1610_DMA_LCD_CCR); } } void omap_stop_lcd_dma(void) { u16 w; lcd_dma.active = 0; if (enable_1510_mode || !lcd_dma.ext_ctrl) return; w = omap_readw(OMAP1610_DMA_LCD_CCR); w &= ~(1 << 7); omap_writew(w, OMAP1610_DMA_LCD_CCR); w = omap_readw(OMAP1610_DMA_LCD_CTRL); w &= ~(1 << 8); omap_writew(w, OMAP1610_DMA_LCD_CTRL); } /*----------------------------------------------------------------------------*/ static int __init omap_init_dma(void) { int ch, r; if (cpu_is_omap15xx()) { printk(KERN_INFO "DMA support for OMAP15xx initialized\n"); dma_chan_count = 9; enable_1510_mode = 1; } else if (cpu_is_omap16xx() || cpu_is_omap730()) { printk(KERN_INFO "OMAP DMA hardware version %d\n", omap_readw(OMAP_DMA_HW_ID)); printk(KERN_INFO "DMA capabilities: %08x:%08x:%04x:%04x:%04x\n", (omap_readw(OMAP_DMA_CAPS_0_U) << 16) | omap_readw(OMAP_DMA_CAPS_0_L), (omap_readw(OMAP_DMA_CAPS_1_U) << 16) | omap_readw(OMAP_DMA_CAPS_1_L), omap_readw(OMAP_DMA_CAPS_2), omap_readw(OMAP_DMA_CAPS_3), omap_readw(OMAP_DMA_CAPS_4)); if (!enable_1510_mode) { u16 w; /* Disable OMAP 3.0/3.1 compatibility mode. */ w = omap_readw(OMAP_DMA_GSCR); w |= 1 << 3; omap_writew(w, OMAP_DMA_GSCR); dma_chan_count = 16; } else dma_chan_count = 9; if (cpu_is_omap16xx()) { u16 w; /* this would prevent OMAP sleep */ w = omap_readw(OMAP1610_DMA_LCD_CTRL); w &= ~(1 << 8); omap_writew(w, OMAP1610_DMA_LCD_CTRL); } } else if (cpu_is_omap24xx()) { u8 revision = omap_readb(OMAP_DMA4_REVISION); printk(KERN_INFO "OMAP DMA hardware revision %d.%d\n", revision >> 4, revision & 0xf); dma_chan_count = OMAP_LOGICAL_DMA_CH_COUNT; } else { dma_chan_count = 0; return 0; } memset(&lcd_dma, 0, sizeof(lcd_dma)); spin_lock_init(&lcd_dma.lock); spin_lock_init(&dma_chan_lock); memset(&dma_chan, 0, sizeof(dma_chan)); for (ch = 0; ch < dma_chan_count; ch++) { omap_clear_dma(ch); dma_chan[ch].dev_id = -1; dma_chan[ch].next_lch = -1; if (ch >= 6 && enable_1510_mode) continue; if (cpu_class_is_omap1()) { /* request_irq() doesn't like dev_id (ie. ch) being * zero, so we have to kludge around this. */ r = request_irq(omap1_dma_irq[ch], omap1_dma_irq_handler, 0, "DMA", (void *) (ch + 1)); if (r != 0) { int i; printk(KERN_ERR "unable to request IRQ %d " "for DMA (error %d)\n", omap1_dma_irq[ch], r); for (i = 0; i < ch; i++) free_irq(omap1_dma_irq[i], (void *) (i + 1)); return r; } } } if (cpu_is_omap24xx()) setup_irq(INT_24XX_SDMA_IRQ0, &omap24xx_dma_irq); /* FIXME: Update LCD DMA to work on 24xx */ if (cpu_class_is_omap1()) { r = request_irq(INT_DMA_LCD, lcd_dma_irq_handler, 0, "LCD DMA", NULL); if (r != 0) { int i; printk(KERN_ERR "unable to request IRQ for LCD DMA " "(error %d)\n", r); for (i = 0; i < dma_chan_count; i++) free_irq(omap1_dma_irq[i], (void *) (i + 1)); return r; } } return 0; } arch_initcall(omap_init_dma); EXPORT_SYMBOL(omap_get_dma_src_pos); EXPORT_SYMBOL(omap_get_dma_dst_pos); EXPORT_SYMBOL(omap_get_dma_src_addr_counter); EXPORT_SYMBOL(omap_clear_dma); EXPORT_SYMBOL(omap_set_dma_priority); EXPORT_SYMBOL(omap_request_dma); EXPORT_SYMBOL(omap_free_dma); EXPORT_SYMBOL(omap_start_dma); EXPORT_SYMBOL(omap_stop_dma); EXPORT_SYMBOL(omap_set_dma_callback); EXPORT_SYMBOL(omap_enable_dma_irq); EXPORT_SYMBOL(omap_disable_dma_irq); EXPORT_SYMBOL(omap_set_dma_transfer_params); EXPORT_SYMBOL(omap_set_dma_color_mode); EXPORT_SYMBOL(omap_set_dma_write_mode); EXPORT_SYMBOL(omap_set_dma_src_params); EXPORT_SYMBOL(omap_set_dma_src_index); EXPORT_SYMBOL(omap_set_dma_src_data_pack); EXPORT_SYMBOL(omap_set_dma_src_burst_mode); EXPORT_SYMBOL(omap_set_dma_dest_params); EXPORT_SYMBOL(omap_set_dma_dest_index); EXPORT_SYMBOL(omap_set_dma_dest_data_pack); EXPORT_SYMBOL(omap_set_dma_dest_burst_mode); EXPORT_SYMBOL(omap_set_dma_params); EXPORT_SYMBOL(omap_dma_link_lch); EXPORT_SYMBOL(omap_dma_unlink_lch); EXPORT_SYMBOL(omap_request_lcd_dma); EXPORT_SYMBOL(omap_free_lcd_dma); EXPORT_SYMBOL(omap_enable_lcd_dma); EXPORT_SYMBOL(omap_setup_lcd_dma); EXPORT_SYMBOL(omap_stop_lcd_dma); EXPORT_SYMBOL(omap_set_lcd_dma_b1); EXPORT_SYMBOL(omap_set_lcd_dma_single_transfer); EXPORT_SYMBOL(omap_set_lcd_dma_ext_controller); EXPORT_SYMBOL(omap_set_lcd_dma_b1_rotation); EXPORT_SYMBOL(omap_set_lcd_dma_b1_vxres); EXPORT_SYMBOL(omap_set_lcd_dma_b1_scale); EXPORT_SYMBOL(omap_set_lcd_dma_b1_mirror);