/* * linux/arch/arm64/crypto/aes-glue.c - wrapper code for ARMv8 AES * * Copyright (C) 2013 Linaro Ltd * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include "aes-ce-setkey.h" #ifdef USE_V8_CRYPTO_EXTENSIONS #define MODE "ce" #define PRIO 300 #define aes_setkey ce_aes_setkey #define aes_expandkey ce_aes_expandkey #define aes_ecb_encrypt ce_aes_ecb_encrypt #define aes_ecb_decrypt ce_aes_ecb_decrypt #define aes_cbc_encrypt ce_aes_cbc_encrypt #define aes_cbc_decrypt ce_aes_cbc_decrypt #define aes_ctr_encrypt ce_aes_ctr_encrypt #define aes_xts_encrypt ce_aes_xts_encrypt #define aes_xts_decrypt ce_aes_xts_decrypt MODULE_DESCRIPTION("AES-ECB/CBC/CTR/XTS using ARMv8 Crypto Extensions"); #else #define MODE "neon" #define PRIO 200 #define aes_setkey crypto_aes_set_key #define aes_expandkey crypto_aes_expand_key #define aes_ecb_encrypt neon_aes_ecb_encrypt #define aes_ecb_decrypt neon_aes_ecb_decrypt #define aes_cbc_encrypt neon_aes_cbc_encrypt #define aes_cbc_decrypt neon_aes_cbc_decrypt #define aes_ctr_encrypt neon_aes_ctr_encrypt #define aes_xts_encrypt neon_aes_xts_encrypt #define aes_xts_decrypt neon_aes_xts_decrypt MODULE_DESCRIPTION("AES-ECB/CBC/CTR/XTS using ARMv8 NEON"); MODULE_ALIAS_CRYPTO("ecb(aes)"); MODULE_ALIAS_CRYPTO("cbc(aes)"); MODULE_ALIAS_CRYPTO("ctr(aes)"); MODULE_ALIAS_CRYPTO("xts(aes)"); #endif MODULE_AUTHOR("Ard Biesheuvel "); MODULE_LICENSE("GPL v2"); /* defined in aes-modes.S */ asmlinkage void aes_ecb_encrypt(u8 out[], u8 const in[], u8 const rk[], int rounds, int blocks, int first); asmlinkage void aes_ecb_decrypt(u8 out[], u8 const in[], u8 const rk[], int rounds, int blocks, int first); asmlinkage void aes_cbc_encrypt(u8 out[], u8 const in[], u8 const rk[], int rounds, int blocks, u8 iv[], int first); asmlinkage void aes_cbc_decrypt(u8 out[], u8 const in[], u8 const rk[], int rounds, int blocks, u8 iv[], int first); asmlinkage void aes_ctr_encrypt(u8 out[], u8 const in[], u8 const rk[], int rounds, int blocks, u8 ctr[], int first); asmlinkage void aes_xts_encrypt(u8 out[], u8 const in[], u8 const rk1[], int rounds, int blocks, u8 const rk2[], u8 iv[], int first); asmlinkage void aes_xts_decrypt(u8 out[], u8 const in[], u8 const rk1[], int rounds, int blocks, u8 const rk2[], u8 iv[], int first); struct crypto_aes_xts_ctx { struct crypto_aes_ctx key1; struct crypto_aes_ctx __aligned(8) key2; }; static int skcipher_aes_setkey(struct crypto_skcipher *tfm, const u8 *in_key, unsigned int key_len) { return aes_setkey(crypto_skcipher_tfm(tfm), in_key, key_len); } static int xts_set_key(struct crypto_skcipher *tfm, const u8 *in_key, unsigned int key_len) { struct crypto_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm); int ret; ret = xts_verify_key(tfm, in_key, key_len); if (ret) return ret; ret = aes_expandkey(&ctx->key1, in_key, key_len / 2); if (!ret) ret = aes_expandkey(&ctx->key2, &in_key[key_len / 2], key_len / 2); if (!ret) return 0; crypto_skcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN); return -EINVAL; } static int ecb_encrypt(struct skcipher_request *req) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm); int err, first, rounds = 6 + ctx->key_length / 4; struct skcipher_walk walk; unsigned int blocks; err = skcipher_walk_virt(&walk, req, true); kernel_neon_begin(); for (first = 1; (blocks = (walk.nbytes / AES_BLOCK_SIZE)); first = 0) { aes_ecb_encrypt(walk.dst.virt.addr, walk.src.virt.addr, (u8 *)ctx->key_enc, rounds, blocks, first); err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE); } kernel_neon_end(); return err; } static int ecb_decrypt(struct skcipher_request *req) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm); int err, first, rounds = 6 + ctx->key_length / 4; struct skcipher_walk walk; unsigned int blocks; err = skcipher_walk_virt(&walk, req, true); kernel_neon_begin(); for (first = 1; (blocks = (walk.nbytes / AES_BLOCK_SIZE)); first = 0) { aes_ecb_decrypt(walk.dst.virt.addr, walk.src.virt.addr, (u8 *)ctx->key_dec, rounds, blocks, first); err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE); } kernel_neon_end(); return err; } static int cbc_encrypt(struct skcipher_request *req) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm); int err, first, rounds = 6 + ctx->key_length / 4; struct skcipher_walk walk; unsigned int blocks; err = skcipher_walk_virt(&walk, req, true); kernel_neon_begin(); for (first = 1; (blocks = (walk.nbytes / AES_BLOCK_SIZE)); first = 0) { aes_cbc_encrypt(walk.dst.virt.addr, walk.src.virt.addr, (u8 *)ctx->key_enc, rounds, blocks, walk.iv, first); err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE); } kernel_neon_end(); return err; } static int cbc_decrypt(struct skcipher_request *req) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm); int err, first, rounds = 6 + ctx->key_length / 4; struct skcipher_walk walk; unsigned int blocks; err = skcipher_walk_virt(&walk, req, true); kernel_neon_begin(); for (first = 1; (blocks = (walk.nbytes / AES_BLOCK_SIZE)); first = 0) { aes_cbc_decrypt(walk.dst.virt.addr, walk.src.virt.addr, (u8 *)ctx->key_dec, rounds, blocks, walk.iv, first); err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE); } kernel_neon_end(); return err; } static int ctr_encrypt(struct skcipher_request *req) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm); int err, first, rounds = 6 + ctx->key_length / 4; struct skcipher_walk walk; int blocks; err = skcipher_walk_virt(&walk, req, true); first = 1; kernel_neon_begin(); while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) { aes_ctr_encrypt(walk.dst.virt.addr, walk.src.virt.addr, (u8 *)ctx->key_enc, rounds, blocks, walk.iv, first); err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE); first = 0; } if (walk.nbytes) { u8 __aligned(8) tail[AES_BLOCK_SIZE]; unsigned int nbytes = walk.nbytes; u8 *tdst = walk.dst.virt.addr; u8 *tsrc = walk.src.virt.addr; /* * Minimum alignment is 8 bytes, so if nbytes is <= 8, we need * to tell aes_ctr_encrypt() to only read half a block. */ blocks = (nbytes <= 8) ? -1 : 1; aes_ctr_encrypt(tail, tsrc, (u8 *)ctx->key_enc, rounds, blocks, walk.iv, first); memcpy(tdst, tail, nbytes); err = skcipher_walk_done(&walk, 0); } kernel_neon_end(); return err; } static int xts_encrypt(struct skcipher_request *req) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct crypto_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm); int err, first, rounds = 6 + ctx->key1.key_length / 4; struct skcipher_walk walk; unsigned int blocks; err = skcipher_walk_virt(&walk, req, true); kernel_neon_begin(); for (first = 1; (blocks = (walk.nbytes / AES_BLOCK_SIZE)); first = 0) { aes_xts_encrypt(walk.dst.virt.addr, walk.src.virt.addr, (u8 *)ctx->key1.key_enc, rounds, blocks, (u8 *)ctx->key2.key_enc, walk.iv, first); err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE); } kernel_neon_end(); return err; } static int xts_decrypt(struct skcipher_request *req) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct crypto_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm); int err, first, rounds = 6 + ctx->key1.key_length / 4; struct skcipher_walk walk; unsigned int blocks; err = skcipher_walk_virt(&walk, req, true); kernel_neon_begin(); for (first = 1; (blocks = (walk.nbytes / AES_BLOCK_SIZE)); first = 0) { aes_xts_decrypt(walk.dst.virt.addr, walk.src.virt.addr, (u8 *)ctx->key1.key_dec, rounds, blocks, (u8 *)ctx->key2.key_enc, walk.iv, first); err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE); } kernel_neon_end(); return err; } static struct skcipher_alg aes_algs[] = { { .base = { .cra_name = "__ecb(aes)", .cra_driver_name = "__ecb-aes-" MODE, .cra_priority = PRIO, .cra_flags = CRYPTO_ALG_INTERNAL, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct crypto_aes_ctx), .cra_alignmask = 7, .cra_module = THIS_MODULE, }, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .setkey = skcipher_aes_setkey, .encrypt = ecb_encrypt, .decrypt = ecb_decrypt, }, { .base = { .cra_name = "__cbc(aes)", .cra_driver_name = "__cbc-aes-" MODE, .cra_priority = PRIO, .cra_flags = CRYPTO_ALG_INTERNAL, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct crypto_aes_ctx), .cra_alignmask = 7, .cra_module = THIS_MODULE, }, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, .setkey = skcipher_aes_setkey, .encrypt = cbc_encrypt, .decrypt = cbc_decrypt, }, { .base = { .cra_name = "__ctr(aes)", .cra_driver_name = "__ctr-aes-" MODE, .cra_priority = PRIO, .cra_flags = CRYPTO_ALG_INTERNAL, .cra_blocksize = 1, .cra_ctxsize = sizeof(struct crypto_aes_ctx), .cra_alignmask = 7, .cra_module = THIS_MODULE, }, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, .chunksize = AES_BLOCK_SIZE, .setkey = skcipher_aes_setkey, .encrypt = ctr_encrypt, .decrypt = ctr_encrypt, }, { .base = { .cra_name = "__xts(aes)", .cra_driver_name = "__xts-aes-" MODE, .cra_priority = PRIO, .cra_flags = CRYPTO_ALG_INTERNAL, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct crypto_aes_xts_ctx), .cra_alignmask = 7, .cra_module = THIS_MODULE, }, .min_keysize = 2 * AES_MIN_KEY_SIZE, .max_keysize = 2 * AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, .setkey = xts_set_key, .encrypt = xts_encrypt, .decrypt = xts_decrypt, } }; static struct simd_skcipher_alg *aes_simd_algs[ARRAY_SIZE(aes_algs)]; static void aes_exit(void) { int i; for (i = 0; i < ARRAY_SIZE(aes_simd_algs) && aes_simd_algs[i]; i++) simd_skcipher_free(aes_simd_algs[i]); crypto_unregister_skciphers(aes_algs, ARRAY_SIZE(aes_algs)); } static int __init aes_init(void) { struct simd_skcipher_alg *simd; const char *basename; const char *algname; const char *drvname; int err; int i; err = crypto_register_skciphers(aes_algs, ARRAY_SIZE(aes_algs)); if (err) return err; for (i = 0; i < ARRAY_SIZE(aes_algs); i++) { algname = aes_algs[i].base.cra_name + 2; drvname = aes_algs[i].base.cra_driver_name + 2; basename = aes_algs[i].base.cra_driver_name; simd = simd_skcipher_create_compat(algname, drvname, basename); err = PTR_ERR(simd); if (IS_ERR(simd)) goto unregister_simds; aes_simd_algs[i] = simd; } return 0; unregister_simds: aes_exit(); return err; } #ifdef USE_V8_CRYPTO_EXTENSIONS module_cpu_feature_match(AES, aes_init); #else module_init(aes_init); #endif module_exit(aes_exit);