/* * Copyright (C) 2014 Linaro Ltd. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #ifndef __ASM_CPUFEATURE_H #define __ASM_CPUFEATURE_H #include #include #include /* * In the arm64 world (as in the ARM world), elf_hwcap is used both internally * in the kernel and for user space to keep track of which optional features * are supported by the current system. So let's map feature 'x' to HWCAP_x. * Note that HWCAP_x constants are bit fields so we need to take the log. */ #define MAX_CPU_FEATURES (8 * sizeof(elf_hwcap)) #define cpu_feature(x) ilog2(HWCAP_ ## x) #ifndef __ASSEMBLY__ #include #include #include /* * CPU feature register tracking * * The safe value of a CPUID feature field is dependent on the implications * of the values assigned to it by the architecture. Based on the relationship * between the values, the features are classified into 3 types - LOWER_SAFE, * HIGHER_SAFE and EXACT. * * The lowest value of all the CPUs is chosen for LOWER_SAFE and highest * for HIGHER_SAFE. It is expected that all CPUs have the same value for * a field when EXACT is specified, failing which, the safe value specified * in the table is chosen. */ enum ftr_type { FTR_EXACT, /* Use a predefined safe value */ FTR_LOWER_SAFE, /* Smaller value is safe */ FTR_HIGHER_SAFE,/* Bigger value is safe */ }; #define FTR_STRICT true /* SANITY check strict matching required */ #define FTR_NONSTRICT false /* SANITY check ignored */ #define FTR_SIGNED true /* Value should be treated as signed */ #define FTR_UNSIGNED false /* Value should be treated as unsigned */ #define FTR_VISIBLE true /* Feature visible to the user space */ #define FTR_HIDDEN false /* Feature is hidden from the user */ struct arm64_ftr_bits { bool sign; /* Value is signed ? */ bool visible; bool strict; /* CPU Sanity check: strict matching required ? */ enum ftr_type type; u8 shift; u8 width; s64 safe_val; /* safe value for FTR_EXACT features */ }; /* * @arm64_ftr_reg - Feature register * @strict_mask Bits which should match across all CPUs for sanity. * @sys_val Safe value across the CPUs (system view) */ struct arm64_ftr_reg { const char *name; u64 strict_mask; u64 user_mask; u64 sys_val; u64 user_val; const struct arm64_ftr_bits *ftr_bits; }; extern struct arm64_ftr_reg arm64_ftr_reg_ctrel0; /* scope of capability check */ enum { SCOPE_SYSTEM, SCOPE_LOCAL_CPU, }; struct arm64_cpu_capabilities { const char *desc; u16 capability; int def_scope; /* default scope */ bool (*matches)(const struct arm64_cpu_capabilities *caps, int scope); int (*enable)(void *); /* Called on all active CPUs */ union { struct { /* To be used for erratum handling only */ u32 midr_model; u32 midr_range_min, midr_range_max; }; struct { /* Feature register checking */ u32 sys_reg; u8 field_pos; u8 min_field_value; u8 hwcap_type; bool sign; unsigned long hwcap; }; }; }; extern DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS); extern struct static_key_false cpu_hwcap_keys[ARM64_NCAPS]; extern struct static_key_false arm64_const_caps_ready; bool this_cpu_has_cap(unsigned int cap); static inline bool cpu_have_feature(unsigned int num) { return elf_hwcap & (1UL << num); } /* System capability check for constant caps */ static inline bool __cpus_have_const_cap(int num) { if (num >= ARM64_NCAPS) return false; return static_branch_unlikely(&cpu_hwcap_keys[num]); } static inline bool cpus_have_cap(unsigned int num) { if (num >= ARM64_NCAPS) return false; return test_bit(num, cpu_hwcaps); } static inline bool cpus_have_const_cap(int num) { if (static_branch_likely(&arm64_const_caps_ready)) return __cpus_have_const_cap(num); else return cpus_have_cap(num); } static inline void cpus_set_cap(unsigned int num) { if (num >= ARM64_NCAPS) { pr_warn("Attempt to set an illegal CPU capability (%d >= %d)\n", num, ARM64_NCAPS); } else { __set_bit(num, cpu_hwcaps); } } static inline int __attribute_const__ cpuid_feature_extract_signed_field_width(u64 features, int field, int width) { return (s64)(features << (64 - width - field)) >> (64 - width); } static inline int __attribute_const__ cpuid_feature_extract_signed_field(u64 features, int field) { return cpuid_feature_extract_signed_field_width(features, field, 4); } static inline unsigned int __attribute_const__ cpuid_feature_extract_unsigned_field_width(u64 features, int field, int width) { return (u64)(features << (64 - width - field)) >> (64 - width); } static inline unsigned int __attribute_const__ cpuid_feature_extract_unsigned_field(u64 features, int field) { return cpuid_feature_extract_unsigned_field_width(features, field, 4); } static inline u64 arm64_ftr_mask(const struct arm64_ftr_bits *ftrp) { return (u64)GENMASK(ftrp->shift + ftrp->width - 1, ftrp->shift); } static inline u64 arm64_ftr_reg_user_value(const struct arm64_ftr_reg *reg) { return (reg->user_val | (reg->sys_val & reg->user_mask)); } static inline int __attribute_const__ cpuid_feature_extract_field_width(u64 features, int field, int width, bool sign) { return (sign) ? cpuid_feature_extract_signed_field_width(features, field, width) : cpuid_feature_extract_unsigned_field_width(features, field, width); } static inline int __attribute_const__ cpuid_feature_extract_field(u64 features, int field, bool sign) { return cpuid_feature_extract_field_width(features, field, 4, sign); } static inline s64 arm64_ftr_value(const struct arm64_ftr_bits *ftrp, u64 val) { return (s64)cpuid_feature_extract_field_width(val, ftrp->shift, ftrp->width, ftrp->sign); } static inline bool id_aa64mmfr0_mixed_endian_el0(u64 mmfr0) { return cpuid_feature_extract_unsigned_field(mmfr0, ID_AA64MMFR0_BIGENDEL_SHIFT) == 0x1 || cpuid_feature_extract_unsigned_field(mmfr0, ID_AA64MMFR0_BIGENDEL0_SHIFT) == 0x1; } static inline bool id_aa64pfr0_32bit_el0(u64 pfr0) { u32 val = cpuid_feature_extract_unsigned_field(pfr0, ID_AA64PFR0_EL0_SHIFT); return val == ID_AA64PFR0_EL0_32BIT_64BIT; } void __init setup_cpu_features(void); void update_cpu_capabilities(const struct arm64_cpu_capabilities *caps, const char *info); void enable_cpu_capabilities(const struct arm64_cpu_capabilities *caps); void check_local_cpu_capabilities(void); void update_cpu_errata_workarounds(void); void __init enable_errata_workarounds(void); void verify_local_cpu_errata_workarounds(void); u64 read_sanitised_ftr_reg(u32 id); static inline bool cpu_supports_mixed_endian_el0(void) { return id_aa64mmfr0_mixed_endian_el0(read_cpuid(ID_AA64MMFR0_EL1)); } static inline bool system_supports_32bit_el0(void) { return cpus_have_const_cap(ARM64_HAS_32BIT_EL0); } static inline bool system_supports_mixed_endian_el0(void) { return id_aa64mmfr0_mixed_endian_el0(read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1)); } static inline bool system_supports_fpsimd(void) { return !cpus_have_const_cap(ARM64_HAS_NO_FPSIMD); } static inline bool system_uses_ttbr0_pan(void) { return IS_ENABLED(CONFIG_ARM64_SW_TTBR0_PAN) && !cpus_have_const_cap(ARM64_HAS_PAN); } #endif /* __ASSEMBLY__ */ #endif