/* * Copyright (C) 2004-2006 Atmel Corporation * * Based on MIPS implementation arch/mips/kernel/time.c * Copyright 2001 MontaVista Software Inc. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static cycle_t read_cycle_count(void) { return (cycle_t)sysreg_read(COUNT); } static struct clocksource clocksource_avr32 = { .name = "avr32", .rating = 350, .read = read_cycle_count, .mask = CLOCKSOURCE_MASK(32), .shift = 16, .is_continuous = 1, }; /* * By default we provide the null RTC ops */ static unsigned long null_rtc_get_time(void) { return mktime(2004, 1, 1, 0, 0, 0); } static int null_rtc_set_time(unsigned long sec) { return 0; } static unsigned long (*rtc_get_time)(void) = null_rtc_get_time; static int (*rtc_set_time)(unsigned long) = null_rtc_set_time; /* how many counter cycles in a jiffy? */ static unsigned long cycles_per_jiffy; /* cycle counter value at the previous timer interrupt */ static unsigned int timerhi, timerlo; /* the count value for the next timer interrupt */ static unsigned int expirelo; static void avr32_timer_ack(void) { unsigned int count; /* Ack this timer interrupt and set the next one */ expirelo += cycles_per_jiffy; if (expirelo == 0) { printk(KERN_DEBUG "expirelo == 0\n"); sysreg_write(COMPARE, expirelo + 1); } else { sysreg_write(COMPARE, expirelo); } /* Check to see if we have missed any timer interrupts */ count = sysreg_read(COUNT); if ((count - expirelo) < 0x7fffffff) { expirelo = count + cycles_per_jiffy; sysreg_write(COMPARE, expirelo); } } static unsigned int avr32_hpt_read(void) { return sysreg_read(COUNT); } /* * Taken from MIPS c0_hpt_timer_init(). * * Why is it so complicated, and what is "count"? My assumption is * that `count' specifies the "reference cycle", i.e. the cycle since * reset that should mean "zero". The reason COUNT is written twice is * probably to make sure we don't get any timer interrupts while we * are messing with the counter. */ static void avr32_hpt_init(unsigned int count) { count = sysreg_read(COUNT) - count; expirelo = (count / cycles_per_jiffy + 1) * cycles_per_jiffy; sysreg_write(COUNT, expirelo - cycles_per_jiffy); sysreg_write(COMPARE, expirelo); sysreg_write(COUNT, count); } /* * local_timer_interrupt() does profiling and process accounting on a * per-CPU basis. * * In UP mode, it is invoked from the (global) timer_interrupt. */ static void local_timer_interrupt(int irq, void *dev_id) { if (current->pid) profile_tick(CPU_PROFILING); update_process_times(user_mode(get_irq_regs())); } static irqreturn_t timer_interrupt(int irq, void *dev_id) { unsigned int count; /* ack timer interrupt and try to set next interrupt */ count = avr32_hpt_read(); avr32_timer_ack(); /* Update timerhi/timerlo for intra-jiffy calibration */ timerhi += count < timerlo; /* Wrap around */ timerlo = count; /* * Call the generic timer interrupt handler */ write_seqlock(&xtime_lock); do_timer(1); write_sequnlock(&xtime_lock); /* * In UP mode, we call local_timer_interrupt() to do profiling * and process accounting. * * SMP is not supported yet. */ local_timer_interrupt(irq, dev_id); return IRQ_HANDLED; } static struct irqaction timer_irqaction = { .handler = timer_interrupt, .flags = IRQF_DISABLED, .name = "timer", }; void __init time_init(void) { unsigned long mult, shift, count_hz; int ret; xtime.tv_sec = rtc_get_time(); xtime.tv_nsec = 0; set_normalized_timespec(&wall_to_monotonic, -xtime.tv_sec, -xtime.tv_nsec); printk("Before time_init: count=%08lx, compare=%08lx\n", (unsigned long)sysreg_read(COUNT), (unsigned long)sysreg_read(COMPARE)); count_hz = clk_get_rate(boot_cpu_data.clk); shift = clocksource_avr32.shift; mult = clocksource_hz2mult(count_hz, shift); clocksource_avr32.mult = mult; printk("Cycle counter: mult=%lu, shift=%lu\n", mult, shift); { u64 tmp; tmp = TICK_NSEC; tmp <<= shift; tmp += mult / 2; do_div(tmp, mult); cycles_per_jiffy = tmp; } /* This sets up the high precision timer for the first interrupt. */ avr32_hpt_init(avr32_hpt_read()); printk("After time_init: count=%08lx, compare=%08lx\n", (unsigned long)sysreg_read(COUNT), (unsigned long)sysreg_read(COMPARE)); ret = clocksource_register(&clocksource_avr32); if (ret) printk(KERN_ERR "timer: could not register clocksource: %d\n", ret); ret = setup_irq(0, &timer_irqaction); if (ret) printk("timer: could not request IRQ 0: %d\n", ret); } static struct sysdev_class timer_class = { set_kset_name("timer"), }; static struct sys_device timer_device = { .id = 0, .cls = &timer_class, }; static int __init init_timer_sysfs(void) { int err = sysdev_class_register(&timer_class); if (!err) err = sysdev_register(&timer_device); return err; } device_initcall(init_timer_sysfs);