/* * Blackfin CPLB initialization * * Copyright 2004-2007 Analog Devices Inc. * * Bugs: Enter bugs at http://blackfin.uclinux.org/ * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see the file COPYING, or write * to the Free Software Foundation, Inc., * 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include #include #include #include u_long icplb_table[MAX_CPLBS+1]; u_long dcplb_table[MAX_CPLBS+1]; #ifdef CONFIG_CPLB_SWITCH_TAB_L1 u_long ipdt_table[MAX_SWITCH_I_CPLBS+1]__attribute__((l1_data)); u_long dpdt_table[MAX_SWITCH_D_CPLBS+1]__attribute__((l1_data)); #ifdef CONFIG_CPLB_INFO u_long ipdt_swapcount_table[MAX_SWITCH_I_CPLBS]__attribute__((l1_data)); u_long dpdt_swapcount_table[MAX_SWITCH_D_CPLBS]__attribute__((l1_data)); #endif /* CONFIG_CPLB_INFO */ #else u_long ipdt_table[MAX_SWITCH_I_CPLBS+1]; u_long dpdt_table[MAX_SWITCH_D_CPLBS+1]; #ifdef CONFIG_CPLB_INFO u_long ipdt_swapcount_table[MAX_SWITCH_I_CPLBS]; u_long dpdt_swapcount_table[MAX_SWITCH_D_CPLBS]; #endif /* CONFIG_CPLB_INFO */ #endif /*CONFIG_CPLB_SWITCH_TAB_L1*/ struct s_cplb { struct cplb_tab init_i; struct cplb_tab init_d; struct cplb_tab switch_i; struct cplb_tab switch_d; }; #if defined(CONFIG_BFIN_DCACHE) || defined(CONFIG_BFIN_ICACHE) static struct cplb_desc cplb_data[] = { { .start = 0, .end = SIZE_1K, .psize = SIZE_1K, .attr = INITIAL_T | SWITCH_T | I_CPLB | D_CPLB, .i_conf = SDRAM_OOPS, .d_conf = SDRAM_OOPS, #if defined(CONFIG_DEBUG_HUNT_FOR_ZERO) .valid = 1, #else .valid = 0, #endif .name = "ZERO Pointer Saveguard", }, { .start = L1_CODE_START, .end = L1_CODE_START + L1_CODE_LENGTH, .psize = SIZE_4M, .attr = INITIAL_T | SWITCH_T | I_CPLB, .i_conf = L1_IMEMORY, .d_conf = 0, .valid = 1, .name = "L1 I-Memory", }, { .start = L1_DATA_A_START, .end = L1_DATA_B_START + L1_DATA_B_LENGTH, .psize = SIZE_4M, .attr = INITIAL_T | SWITCH_T | D_CPLB, .i_conf = 0, .d_conf = L1_DMEMORY, #if ((L1_DATA_A_LENGTH > 0) || (L1_DATA_B_LENGTH > 0)) .valid = 1, #else .valid = 0, #endif .name = "L1 D-Memory", }, { .start = 0, .end = 0, /* dynamic */ .psize = 0, .attr = INITIAL_T | SWITCH_T | I_CPLB | D_CPLB, .i_conf = SDRAM_IGENERIC, .d_conf = SDRAM_DGENERIC, .valid = 1, .name = "SDRAM Kernel", }, { .start = 0, /* dynamic */ .end = 0, /* dynamic */ .psize = 0, .attr = INITIAL_T | SWITCH_T | D_CPLB, .i_conf = SDRAM_IGENERIC, .d_conf = SDRAM_DNON_CHBL, .valid = 1, .name = "SDRAM RAM MTD", }, { .start = 0, /* dynamic */ .end = 0, /* dynamic */ .psize = SIZE_1M, .attr = INITIAL_T | SWITCH_T | D_CPLB, .d_conf = SDRAM_DNON_CHBL, .valid = 1, .name = "SDRAM Uncached DMA ZONE", }, { .start = 0, /* dynamic */ .end = 0, /* dynamic */ .psize = 0, .attr = SWITCH_T | D_CPLB, .i_conf = 0, /* dynamic */ .d_conf = 0, /* dynamic */ .valid = 1, .name = "SDRAM Reserved Memory", }, { .start = ASYNC_BANK0_BASE, .end = ASYNC_BANK3_BASE + ASYNC_BANK3_SIZE, .psize = 0, .attr = SWITCH_T | D_CPLB, .d_conf = SDRAM_EBIU, .valid = 1, .name = "ASYNC Memory", }, { #if defined(CONFIG_BF561) .start = L2_SRAM, .end = L2_SRAM_END, .psize = SIZE_1M, .attr = SWITCH_T | D_CPLB, .i_conf = L2_MEMORY, .d_conf = L2_MEMORY, .valid = 1, #else .valid = 0, #endif .name = "L2 Memory", } }; static u16 __init lock_kernel_check(u32 start, u32 end) { if ((start <= (u32) _stext && end >= (u32) _end) || (start >= (u32) _stext && end <= (u32) _end)) return IN_KERNEL; return 0; } static unsigned short __init fill_cplbtab(struct cplb_tab *table, unsigned long start, unsigned long end, unsigned long block_size, unsigned long cplb_data) { int i; switch (block_size) { case SIZE_4M: i = 3; break; case SIZE_1M: i = 2; break; case SIZE_4K: i = 1; break; case SIZE_1K: default: i = 0; break; } cplb_data = (cplb_data & ~(3 << 16)) | (i << 16); while ((start < end) && (table->pos < table->size)) { table->tab[table->pos++] = start; if (lock_kernel_check(start, start + block_size) == IN_KERNEL) table->tab[table->pos++] = cplb_data | CPLB_LOCK | CPLB_DIRTY; else table->tab[table->pos++] = cplb_data; start += block_size; } return 0; } static unsigned short __init close_cplbtab(struct cplb_tab *table) { while (table->pos < table->size) { table->tab[table->pos++] = 0; table->tab[table->pos++] = 0; /* !CPLB_VALID */ } return 0; } /* helper function */ static void __fill_code_cplbtab(struct cplb_tab *t, int i, u32 a_start, u32 a_end) { if (cplb_data[i].psize) { fill_cplbtab(t, cplb_data[i].start, cplb_data[i].end, cplb_data[i].psize, cplb_data[i].i_conf); } else { #if defined(CONFIG_BFIN_ICACHE) if (ANOMALY_05000263 && i == SDRAM_KERN) { fill_cplbtab(t, cplb_data[i].start, cplb_data[i].end, SIZE_4M, cplb_data[i].i_conf); } else #endif { fill_cplbtab(t, cplb_data[i].start, a_start, SIZE_1M, cplb_data[i].i_conf); fill_cplbtab(t, a_start, a_end, SIZE_4M, cplb_data[i].i_conf); fill_cplbtab(t, a_end, cplb_data[i].end, SIZE_1M, cplb_data[i].i_conf); } } } static void __fill_data_cplbtab(struct cplb_tab *t, int i, u32 a_start, u32 a_end) { if (cplb_data[i].psize) { fill_cplbtab(t, cplb_data[i].start, cplb_data[i].end, cplb_data[i].psize, cplb_data[i].d_conf); } else { fill_cplbtab(t, cplb_data[i].start, a_start, SIZE_1M, cplb_data[i].d_conf); fill_cplbtab(t, a_start, a_end, SIZE_4M, cplb_data[i].d_conf); fill_cplbtab(t, a_end, cplb_data[i].end, SIZE_1M, cplb_data[i].d_conf); } } void __init generate_cpl_tables(void) { u16 i, j, process; u32 a_start, a_end, as, ae, as_1m; struct cplb_tab *t_i = NULL; struct cplb_tab *t_d = NULL; struct s_cplb cplb; cplb.init_i.size = MAX_CPLBS; cplb.init_d.size = MAX_CPLBS; cplb.switch_i.size = MAX_SWITCH_I_CPLBS; cplb.switch_d.size = MAX_SWITCH_D_CPLBS; cplb.init_i.pos = 0; cplb.init_d.pos = 0; cplb.switch_i.pos = 0; cplb.switch_d.pos = 0; cplb.init_i.tab = icplb_table; cplb.init_d.tab = dcplb_table; cplb.switch_i.tab = ipdt_table; cplb.switch_d.tab = dpdt_table; cplb_data[SDRAM_KERN].end = memory_end; #ifdef CONFIG_MTD_UCLINUX cplb_data[SDRAM_RAM_MTD].start = memory_mtd_start; cplb_data[SDRAM_RAM_MTD].end = memory_mtd_start + mtd_size; cplb_data[SDRAM_RAM_MTD].valid = mtd_size > 0; # if defined(CONFIG_ROMFS_FS) cplb_data[SDRAM_RAM_MTD].attr |= I_CPLB; /* * The ROMFS_FS size is often not multiple of 1MB. * This can cause multiple CPLB sets covering the same memory area. * This will then cause multiple CPLB hit exceptions. * Workaround: We ensure a contiguous memory area by extending the kernel * memory section over the mtd section. * For ROMFS_FS memory must be covered with ICPLBs anyways. * So there is no difference between kernel and mtd memory setup. */ cplb_data[SDRAM_KERN].end = memory_mtd_start + mtd_size;; cplb_data[SDRAM_RAM_MTD].valid = 0; # endif #else cplb_data[SDRAM_RAM_MTD].valid = 0; #endif cplb_data[SDRAM_DMAZ].start = _ramend - DMA_UNCACHED_REGION; cplb_data[SDRAM_DMAZ].end = _ramend; cplb_data[RES_MEM].start = _ramend; cplb_data[RES_MEM].end = physical_mem_end; if (reserved_mem_dcache_on) cplb_data[RES_MEM].d_conf = SDRAM_DGENERIC; else cplb_data[RES_MEM].d_conf = SDRAM_DNON_CHBL; if (reserved_mem_icache_on) cplb_data[RES_MEM].i_conf = SDRAM_IGENERIC; else cplb_data[RES_MEM].i_conf = SDRAM_INON_CHBL; for (i = ZERO_P; i <= L2_MEM; i++) { if (!cplb_data[i].valid) continue; as_1m = cplb_data[i].start % SIZE_1M; /* We need to make sure all sections are properly 1M aligned * However between Kernel Memory and the Kernel mtd section, depending on the * rootfs size, there can be overlapping memory areas. */ if (as_1m && i != L1I_MEM && i != L1D_MEM) { #ifdef CONFIG_MTD_UCLINUX if (i == SDRAM_RAM_MTD) { if ((cplb_data[SDRAM_KERN].end + 1) > cplb_data[SDRAM_RAM_MTD].start) cplb_data[SDRAM_RAM_MTD].start = (cplb_data[i].start & (-2*SIZE_1M)) + SIZE_1M; else cplb_data[SDRAM_RAM_MTD].start = (cplb_data[i].start & (-2*SIZE_1M)); } else #endif printk(KERN_WARNING "Unaligned Start of %s at 0x%X\n", cplb_data[i].name, cplb_data[i].start); } as = cplb_data[i].start % SIZE_4M; ae = cplb_data[i].end % SIZE_4M; if (as) a_start = cplb_data[i].start + (SIZE_4M - (as)); else a_start = cplb_data[i].start; a_end = cplb_data[i].end - ae; for (j = INITIAL_T; j <= SWITCH_T; j++) { switch (j) { case INITIAL_T: if (cplb_data[i].attr & INITIAL_T) { t_i = &cplb.init_i; t_d = &cplb.init_d; process = 1; } else process = 0; break; case SWITCH_T: if (cplb_data[i].attr & SWITCH_T) { t_i = &cplb.switch_i; t_d = &cplb.switch_d; process = 1; } else process = 0; break; default: process = 0; break; } if (!process) continue; if (cplb_data[i].attr & I_CPLB) __fill_code_cplbtab(t_i, i, a_start, a_end); if (cplb_data[i].attr & D_CPLB) __fill_data_cplbtab(t_d, i, a_start, a_end); } } /* close tables */ close_cplbtab(&cplb.init_i); close_cplbtab(&cplb.init_d); cplb.init_i.tab[cplb.init_i.pos] = -1; cplb.init_d.tab[cplb.init_d.pos] = -1; cplb.switch_i.tab[cplb.switch_i.pos] = -1; cplb.switch_d.tab[cplb.switch_d.pos] = -1; } #endif