/* * File: arch/blackfin/kernel/process.c * Based on: * Author: * * Created: * Description: Blackfin architecture-dependent process handling. * * Modified: * Copyright 2004-2006 Analog Devices Inc. * * Bugs: Enter bugs at http://blackfin.uclinux.org/ * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see the file COPYING, or write * to the Free Software Foundation, Inc., * 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include #include #include #include #include #include #include #include #include #include #define LED_ON 0 #define LED_OFF 1 asmlinkage void ret_from_fork(void); /* Points to the SDRAM backup memory for the stack that is currently in * L1 scratchpad memory. */ void *current_l1_stack_save; /* The number of tasks currently using a L1 stack area. The SRAM is * allocated/deallocated whenever this changes from/to zero. */ int nr_l1stack_tasks; /* Start and length of the area in L1 scratchpad memory which we've allocated * for process stacks. */ void *l1_stack_base; unsigned long l1_stack_len; /* * Powermanagement idle function, if any.. */ void (*pm_idle)(void) = NULL; EXPORT_SYMBOL(pm_idle); void (*pm_power_off)(void) = NULL; EXPORT_SYMBOL(pm_power_off); /* * We are using a different LED from the one used to indicate timer interrupt. */ #if defined(CONFIG_BFIN_IDLE_LED) static inline void leds_switch(int flag) { unsigned short tmp = 0; tmp = bfin_read_CONFIG_BFIN_IDLE_LED_PORT(); SSYNC(); if (flag == LED_ON) tmp &= ~CONFIG_BFIN_IDLE_LED_PIN; /* light on */ else tmp |= CONFIG_BFIN_IDLE_LED_PIN; /* light off */ bfin_write_CONFIG_BFIN_IDLE_LED_PORT(tmp); SSYNC(); } #else static inline void leds_switch(int flag) { } #endif /* * The idle loop on BFIN */ #ifdef CONFIG_IDLE_L1 void default_idle(void)__attribute__((l1_text)); void cpu_idle(void)__attribute__((l1_text)); #endif void default_idle(void) { while (!need_resched()) { leds_switch(LED_OFF); local_irq_disable(); if (likely(!need_resched())) idle_with_irq_disabled(); local_irq_enable(); leds_switch(LED_ON); } } void (*idle)(void) = default_idle; /* * The idle thread. There's no useful work to be * done, so just try to conserve power and have a * low exit latency (ie sit in a loop waiting for * somebody to say that they'd like to reschedule) */ void cpu_idle(void) { /* endless idle loop with no priority at all */ while (1) { idle(); preempt_enable_no_resched(); schedule(); preempt_disable(); } } void show_regs(struct pt_regs *regs) { printk(KERN_NOTICE "\n"); printk(KERN_NOTICE "PC: %08lu Status: %04lu SysStatus: %04lu RETS: %08lu\n", regs->pc, regs->astat, regs->seqstat, regs->rets); printk(KERN_NOTICE "A0.x: %08lx A0.w: %08lx A1.x: %08lx A1.w: %08lx\n", regs->a0x, regs->a0w, regs->a1x, regs->a1w); printk(KERN_NOTICE "P0: %08lx P1: %08lx P2: %08lx P3: %08lx\n", regs->p0, regs->p1, regs->p2, regs->p3); printk(KERN_NOTICE "P4: %08lx P5: %08lx\n", regs->p4, regs->p5); printk(KERN_NOTICE "R0: %08lx R1: %08lx R2: %08lx R3: %08lx\n", regs->r0, regs->r1, regs->r2, regs->r3); printk(KERN_NOTICE "R4: %08lx R5: %08lx R6: %08lx R7: %08lx\n", regs->r4, regs->r5, regs->r6, regs->r7); if (!regs->ipend) printk(KERN_NOTICE "USP: %08lx\n", rdusp()); } /* Fill in the fpu structure for a core dump. */ int dump_fpu(struct pt_regs *regs, elf_fpregset_t * fpregs) { return 1; } /* * This gets run with P1 containing the * function to call, and R1 containing * the "args". Note P0 is clobbered on the way here. */ void kernel_thread_helper(void); __asm__(".section .text\n" ".align 4\n" "_kernel_thread_helper:\n\t" "\tsp += -12;\n\t" "\tr0 = r1;\n\t" "\tcall (p1);\n\t" "\tcall _do_exit;\n" ".previous"); /* * Create a kernel thread. */ pid_t kernel_thread(int (*fn) (void *), void *arg, unsigned long flags) { struct pt_regs regs; memset(®s, 0, sizeof(regs)); regs.r1 = (unsigned long)arg; regs.p1 = (unsigned long)fn; regs.pc = (unsigned long)kernel_thread_helper; regs.orig_p0 = -1; /* Set bit 2 to tell ret_from_fork we should be returning to kernel mode. */ regs.ipend = 0x8002; __asm__ __volatile__("%0 = syscfg;":"=da"(regs.syscfg):); return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, ®s, 0, NULL, NULL); } void flush_thread(void) { } asmlinkage int bfin_vfork(struct pt_regs *regs) { return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, rdusp(), regs, 0, NULL, NULL); } asmlinkage int bfin_clone(struct pt_regs *regs) { unsigned long clone_flags; unsigned long newsp; /* syscall2 puts clone_flags in r0 and usp in r1 */ clone_flags = regs->r0; newsp = regs->r1; if (!newsp) newsp = rdusp(); else newsp -= 12; return do_fork(clone_flags, newsp, regs, 0, NULL, NULL); } int copy_thread(int nr, unsigned long clone_flags, unsigned long usp, unsigned long topstk, struct task_struct *p, struct pt_regs *regs) { struct pt_regs *childregs; childregs = (struct pt_regs *) (task_stack_page(p) + THREAD_SIZE) - 1; *childregs = *regs; childregs->r0 = 0; p->thread.usp = usp; p->thread.ksp = (unsigned long)childregs; p->thread.pc = (unsigned long)ret_from_fork; return 0; } /* * fill in the user structure for a core dump.. */ void dump_thread(struct pt_regs *regs, struct user *dump) { dump->magic = CMAGIC; dump->start_code = 0; dump->start_stack = rdusp() & ~(PAGE_SIZE - 1); dump->u_tsize = ((unsigned long)current->mm->end_code) >> PAGE_SHIFT; dump->u_dsize = ((unsigned long)(current->mm->brk + (PAGE_SIZE - 1))) >> PAGE_SHIFT; dump->u_dsize -= dump->u_tsize; dump->u_ssize = 0; if (dump->start_stack < TASK_SIZE) dump->u_ssize = ((unsigned long)(TASK_SIZE - dump->start_stack)) >> PAGE_SHIFT; dump->u_ar0 = (struct user_regs_struct *)((int)&dump->regs - (int)dump); dump->regs.r0 = regs->r0; dump->regs.r1 = regs->r1; dump->regs.r2 = regs->r2; dump->regs.r3 = regs->r3; dump->regs.r4 = regs->r4; dump->regs.r5 = regs->r5; dump->regs.r6 = regs->r6; dump->regs.r7 = regs->r7; dump->regs.p0 = regs->p0; dump->regs.p1 = regs->p1; dump->regs.p2 = regs->p2; dump->regs.p3 = regs->p3; dump->regs.p4 = regs->p4; dump->regs.p5 = regs->p5; dump->regs.orig_p0 = regs->orig_p0; dump->regs.a0w = regs->a0w; dump->regs.a1w = regs->a1w; dump->regs.a0x = regs->a0x; dump->regs.a1x = regs->a1x; dump->regs.rets = regs->rets; dump->regs.astat = regs->astat; dump->regs.pc = regs->pc; } /* * sys_execve() executes a new program. */ asmlinkage int sys_execve(char *name, char **argv, char **envp) { int error; char *filename; struct pt_regs *regs = (struct pt_regs *)((&name) + 6); lock_kernel(); filename = getname(name); error = PTR_ERR(filename); if (IS_ERR(filename)) goto out; error = do_execve(filename, argv, envp, regs); putname(filename); out: unlock_kernel(); return error; } unsigned long get_wchan(struct task_struct *p) { unsigned long fp, pc; unsigned long stack_page; int count = 0; if (!p || p == current || p->state == TASK_RUNNING) return 0; stack_page = (unsigned long)p; fp = p->thread.usp; do { if (fp < stack_page + sizeof(struct thread_info) || fp >= 8184 + stack_page) return 0; pc = ((unsigned long *)fp)[1]; if (!in_sched_functions(pc)) return pc; fp = *(unsigned long *)fp; } while (count++ < 16); return 0; } void finish_atomic_sections (struct pt_regs *regs) { if (regs->pc < ATOMIC_SEQS_START || regs->pc >= ATOMIC_SEQS_END) return; switch (regs->pc) { case ATOMIC_XCHG32 + 2: put_user(regs->r1, (int *)regs->p0); regs->pc += 2; break; case ATOMIC_CAS32 + 2: case ATOMIC_CAS32 + 4: if (regs->r0 == regs->r1) put_user(regs->r2, (int *)regs->p0); regs->pc = ATOMIC_CAS32 + 8; break; case ATOMIC_CAS32 + 6: put_user(regs->r2, (int *)regs->p0); regs->pc += 2; break; case ATOMIC_ADD32 + 2: regs->r0 = regs->r1 + regs->r0; /* fall through */ case ATOMIC_ADD32 + 4: put_user(regs->r0, (int *)regs->p0); regs->pc = ATOMIC_ADD32 + 6; break; case ATOMIC_SUB32 + 2: regs->r0 = regs->r1 - regs->r0; /* fall through */ case ATOMIC_SUB32 + 4: put_user(regs->r0, (int *)regs->p0); regs->pc = ATOMIC_SUB32 + 6; break; case ATOMIC_IOR32 + 2: regs->r0 = regs->r1 | regs->r0; /* fall through */ case ATOMIC_IOR32 + 4: put_user(regs->r0, (int *)regs->p0); regs->pc = ATOMIC_IOR32 + 6; break; case ATOMIC_AND32 + 2: regs->r0 = regs->r1 & regs->r0; /* fall through */ case ATOMIC_AND32 + 4: put_user(regs->r0, (int *)regs->p0); regs->pc = ATOMIC_AND32 + 6; break; case ATOMIC_XOR32 + 2: regs->r0 = regs->r1 ^ regs->r0; /* fall through */ case ATOMIC_XOR32 + 4: put_user(regs->r0, (int *)regs->p0); regs->pc = ATOMIC_XOR32 + 6; break; } } #if defined(CONFIG_ACCESS_CHECK) int _access_ok(unsigned long addr, unsigned long size) { if (addr > (addr + size)) return 0; if (segment_eq(get_fs(), KERNEL_DS)) return 1; #ifdef CONFIG_MTD_UCLINUX if (addr >= memory_start && (addr + size) <= memory_end) return 1; if (addr >= memory_mtd_end && (addr + size) <= physical_mem_end) return 1; #else if (addr >= memory_start && (addr + size) <= physical_mem_end) return 1; #endif if (addr >= (unsigned long)__init_begin && addr + size <= (unsigned long)__init_end) return 1; if (addr >= L1_SCRATCH_START && addr + size <= L1_SCRATCH_START + L1_SCRATCH_LENGTH) return 1; #if L1_CODE_LENGTH != 0 if (addr >= L1_CODE_START + (_etext_l1 - _stext_l1) && addr + size <= L1_CODE_START + L1_CODE_LENGTH) return 1; #endif #if L1_DATA_A_LENGTH != 0 if (addr >= L1_DATA_A_START + (_ebss_l1 - _sdata_l1) && addr + size <= L1_DATA_A_START + L1_DATA_A_LENGTH) return 1; #endif #if L1_DATA_B_LENGTH != 0 if (addr >= L1_DATA_B_START && addr + size <= L1_DATA_B_START + L1_DATA_B_LENGTH) return 1; #endif return 0; } EXPORT_SYMBOL(_access_ok); #endif /* CONFIG_ACCESS_CHECK */