/* * linux/arch/cris/mm/fault.c * * Copyright (C) 2000-2006 Axis Communications AB * * Authors: Bjorn Wesen * */ #include #include #include #include extern int find_fixup_code(struct pt_regs *); extern void die_if_kernel(const char *, struct pt_regs *, long); /* debug of low-level TLB reload */ #undef DEBUG #ifdef DEBUG #define D(x) x #else #define D(x) #endif /* debug of higher-level faults */ #define DPG(x) /* current active page directory */ volatile DEFINE_PER_CPU(pgd_t *,current_pgd); unsigned long cris_signal_return_page; /* * This routine handles page faults. It determines the address, * and the problem, and then passes it off to one of the appropriate * routines. * * Notice that the address we're given is aligned to the page the fault * occurred in, since we only get the PFN in R_MMU_CAUSE not the complete * address. * * error_code: * bit 0 == 0 means no page found, 1 means protection fault * bit 1 == 0 means read, 1 means write * * If this routine detects a bad access, it returns 1, otherwise it * returns 0. */ asmlinkage void do_page_fault(unsigned long address, struct pt_regs *regs, int protection, int writeaccess) { struct task_struct *tsk; struct mm_struct *mm; struct vm_area_struct * vma; siginfo_t info; int fault; D(printk(KERN_DEBUG "Page fault for %lX on %X at %lX, prot %d write %d\n", address, smp_processor_id(), instruction_pointer(regs), protection, writeaccess)); tsk = current; /* * We fault-in kernel-space virtual memory on-demand. The * 'reference' page table is init_mm.pgd. * * NOTE! We MUST NOT take any locks for this case. We may * be in an interrupt or a critical region, and should * only copy the information from the master page table, * nothing more. * * NOTE2: This is done so that, when updating the vmalloc * mappings we don't have to walk all processes pgdirs and * add the high mappings all at once. Instead we do it as they * are used. However vmalloc'ed page entries have the PAGE_GLOBAL * bit set so sometimes the TLB can use a lingering entry. * * This verifies that the fault happens in kernel space * and that the fault was not a protection error (error_code & 1). */ if (address >= VMALLOC_START && !protection && !user_mode(regs)) goto vmalloc_fault; /* When stack execution is not allowed we store the signal * trampolines in the reserved cris_signal_return_page. * Handle this in the exact same way as vmalloc (we know * that the mapping is there and is valid so no need to * call handle_mm_fault). */ if (cris_signal_return_page && address == cris_signal_return_page && !protection && user_mode(regs)) goto vmalloc_fault; /* we can and should enable interrupts at this point */ local_irq_enable(); mm = tsk->mm; info.si_code = SEGV_MAPERR; /* * If we're in an interrupt or have no user * context, we must not take the fault.. */ if (in_interrupt() || !mm) goto no_context; down_read(&mm->mmap_sem); vma = find_vma(mm, address); if (!vma) goto bad_area; if (vma->vm_start <= address) goto good_area; if (!(vma->vm_flags & VM_GROWSDOWN)) goto bad_area; if (user_mode(regs)) { /* * accessing the stack below usp is always a bug. * we get page-aligned addresses so we can only check * if we're within a page from usp, but that might be * enough to catch brutal errors at least. */ if (address + PAGE_SIZE < rdusp()) goto bad_area; } if (expand_stack(vma, address)) goto bad_area; /* * Ok, we have a good vm_area for this memory access, so * we can handle it.. */ good_area: info.si_code = SEGV_ACCERR; /* first do some preliminary protection checks */ if (writeaccess == 2){ if (!(vma->vm_flags & VM_EXEC)) goto bad_area; } else if (writeaccess == 1) { if (!(vma->vm_flags & VM_WRITE)) goto bad_area; } else { if (!(vma->vm_flags & (VM_READ | VM_EXEC))) goto bad_area; } /* * If for any reason at all we couldn't handle the fault, * make sure we exit gracefully rather than endlessly redo * the fault. */ fault = handle_mm_fault(mm, vma, address, (writeaccess & 1) ? FAULT_FLAG_WRITE : 0); if (unlikely(fault & VM_FAULT_ERROR)) { if (fault & VM_FAULT_OOM) goto out_of_memory; else if (fault & VM_FAULT_SIGBUS) goto do_sigbus; BUG(); } if (fault & VM_FAULT_MAJOR) tsk->maj_flt++; else tsk->min_flt++; up_read(&mm->mmap_sem); return; /* * Something tried to access memory that isn't in our memory map.. * Fix it, but check if it's kernel or user first.. */ bad_area: up_read(&mm->mmap_sem); bad_area_nosemaphore: DPG(show_registers(regs)); /* User mode accesses just cause a SIGSEGV */ if (user_mode(regs)) { info.si_signo = SIGSEGV; info.si_errno = 0; /* info.si_code has been set above */ info.si_addr = (void *)address; force_sig_info(SIGSEGV, &info, tsk); printk(KERN_NOTICE "%s (pid %d) segfaults for page " "address %08lx at pc %08lx\n", tsk->comm, tsk->pid, address, instruction_pointer(regs)); return; } no_context: /* Are we prepared to handle this kernel fault? * * (The kernel has valid exception-points in the source * when it acesses user-memory. When it fails in one * of those points, we find it in a table and do a jump * to some fixup code that loads an appropriate error * code) */ if (find_fixup_code(regs)) return; /* * Oops. The kernel tried to access some bad page. We'll have to * terminate things with extreme prejudice. */ if (!oops_in_progress) { oops_in_progress = 1; if ((unsigned long) (address) < PAGE_SIZE) printk(KERN_ALERT "Unable to handle kernel NULL " "pointer dereference"); else printk(KERN_ALERT "Unable to handle kernel access" " at virtual address %08lx\n", address); die_if_kernel("Oops", regs, (writeaccess << 1) | protection); oops_in_progress = 0; } do_exit(SIGKILL); /* * We ran out of memory, or some other thing happened to us that made * us unable to handle the page fault gracefully. */ out_of_memory: up_read(&mm->mmap_sem); printk("VM: killing process %s\n", tsk->comm); if (user_mode(regs)) do_exit(SIGKILL); goto no_context; do_sigbus: up_read(&mm->mmap_sem); /* * Send a sigbus, regardless of whether we were in kernel * or user mode. */ info.si_signo = SIGBUS; info.si_errno = 0; info.si_code = BUS_ADRERR; info.si_addr = (void *)address; force_sig_info(SIGBUS, &info, tsk); /* Kernel mode? Handle exceptions or die */ if (!user_mode(regs)) goto no_context; return; vmalloc_fault: { /* * Synchronize this task's top level page-table * with the 'reference' page table. * * Use current_pgd instead of tsk->active_mm->pgd * since the latter might be unavailable if this * code is executed in a misfortunately run irq * (like inside schedule() between switch_mm and * switch_to...). */ int offset = pgd_index(address); pgd_t *pgd, *pgd_k; pud_t *pud, *pud_k; pmd_t *pmd, *pmd_k; pte_t *pte_k; pgd = (pgd_t *)per_cpu(current_pgd, smp_processor_id()) + offset; pgd_k = init_mm.pgd + offset; /* Since we're two-level, we don't need to do both * set_pgd and set_pmd (they do the same thing). If * we go three-level at some point, do the right thing * with pgd_present and set_pgd here. * * Also, since the vmalloc area is global, we don't * need to copy individual PTE's, it is enough to * copy the pgd pointer into the pte page of the * root task. If that is there, we'll find our pte if * it exists. */ pud = pud_offset(pgd, address); pud_k = pud_offset(pgd_k, address); if (!pud_present(*pud_k)) goto no_context; pmd = pmd_offset(pud, address); pmd_k = pmd_offset(pud_k, address); if (!pmd_present(*pmd_k)) goto bad_area_nosemaphore; set_pmd(pmd, *pmd_k); /* Make sure the actual PTE exists as well to * catch kernel vmalloc-area accesses to non-mapped * addresses. If we don't do this, this will just * silently loop forever. */ pte_k = pte_offset_kernel(pmd_k, address); if (!pte_present(*pte_k)) goto no_context; return; } } /* Find fixup code. */ int find_fixup_code(struct pt_regs *regs) { const struct exception_table_entry *fixup; if ((fixup = search_exception_tables(instruction_pointer(regs))) != 0) { /* Adjust the instruction pointer in the stackframe. */ instruction_pointer(regs) = fixup->fixup; arch_fixup(regs); return 1; } return 0; }