/* * i386 semaphore implementation. * * (C) Copyright 1999 Linus Torvalds * * Portions Copyright 1999 Red Hat, Inc. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * * rw semaphores implemented November 1999 by Benjamin LaHaise */ #include #include #include #include #include /* * Semaphores are implemented using a two-way counter: * The "count" variable is decremented for each process * that tries to acquire the semaphore, while the "sleeping" * variable is a count of such acquires. * * Notably, the inline "up()" and "down()" functions can * efficiently test if they need to do any extra work (up * needs to do something only if count was negative before * the increment operation. * * "sleeping" and the contention routine ordering is protected * by the spinlock in the semaphore's waitqueue head. * * Note that these functions are only called when there is * contention on the lock, and as such all this is the * "non-critical" part of the whole semaphore business. The * critical part is the inline stuff in * where we want to avoid any extra jumps and calls. */ /* * Logic: * - only on a boundary condition do we need to care. When we go * from a negative count to a non-negative, we wake people up. * - when we go from a non-negative count to a negative do we * (a) synchronize with the "sleeper" count and (b) make sure * that we're on the wakeup list before we synchronize so that * we cannot lose wakeup events. */ static fastcall void __attribute_used__ __up(struct semaphore *sem) { wake_up(&sem->wait); } static fastcall void __attribute_used__ __sched __down(struct semaphore * sem) { struct task_struct *tsk = current; DECLARE_WAITQUEUE(wait, tsk); unsigned long flags; tsk->state = TASK_UNINTERRUPTIBLE; spin_lock_irqsave(&sem->wait.lock, flags); add_wait_queue_exclusive_locked(&sem->wait, &wait); sem->sleepers++; for (;;) { int sleepers = sem->sleepers; /* * Add "everybody else" into it. They aren't * playing, because we own the spinlock in * the wait_queue_head. */ if (!atomic_add_negative(sleepers - 1, &sem->count)) { sem->sleepers = 0; break; } sem->sleepers = 1; /* us - see -1 above */ spin_unlock_irqrestore(&sem->wait.lock, flags); schedule(); spin_lock_irqsave(&sem->wait.lock, flags); tsk->state = TASK_UNINTERRUPTIBLE; } remove_wait_queue_locked(&sem->wait, &wait); wake_up_locked(&sem->wait); spin_unlock_irqrestore(&sem->wait.lock, flags); tsk->state = TASK_RUNNING; } static fastcall int __attribute_used__ __sched __down_interruptible(struct semaphore * sem) { int retval = 0; struct task_struct *tsk = current; DECLARE_WAITQUEUE(wait, tsk); unsigned long flags; tsk->state = TASK_INTERRUPTIBLE; spin_lock_irqsave(&sem->wait.lock, flags); add_wait_queue_exclusive_locked(&sem->wait, &wait); sem->sleepers++; for (;;) { int sleepers = sem->sleepers; /* * With signals pending, this turns into * the trylock failure case - we won't be * sleeping, and we* can't get the lock as * it has contention. Just correct the count * and exit. */ if (signal_pending(current)) { retval = -EINTR; sem->sleepers = 0; atomic_add(sleepers, &sem->count); break; } /* * Add "everybody else" into it. They aren't * playing, because we own the spinlock in * wait_queue_head. The "-1" is because we're * still hoping to get the semaphore. */ if (!atomic_add_negative(sleepers - 1, &sem->count)) { sem->sleepers = 0; break; } sem->sleepers = 1; /* us - see -1 above */ spin_unlock_irqrestore(&sem->wait.lock, flags); schedule(); spin_lock_irqsave(&sem->wait.lock, flags); tsk->state = TASK_INTERRUPTIBLE; } remove_wait_queue_locked(&sem->wait, &wait); wake_up_locked(&sem->wait); spin_unlock_irqrestore(&sem->wait.lock, flags); tsk->state = TASK_RUNNING; return retval; } /* * Trylock failed - make sure we correct for * having decremented the count. * * We could have done the trylock with a * single "cmpxchg" without failure cases, * but then it wouldn't work on a 386. */ static fastcall int __attribute_used__ __down_trylock(struct semaphore * sem) { int sleepers; unsigned long flags; spin_lock_irqsave(&sem->wait.lock, flags); sleepers = sem->sleepers + 1; sem->sleepers = 0; /* * Add "everybody else" and us into it. They aren't * playing, because we own the spinlock in the * wait_queue_head. */ if (!atomic_add_negative(sleepers, &sem->count)) { wake_up_locked(&sem->wait); } spin_unlock_irqrestore(&sem->wait.lock, flags); return 1; } /* * The semaphore operations have a special calling sequence that * allow us to do a simpler in-line version of them. These routines * need to convert that sequence back into the C sequence when * there is contention on the semaphore. * * %eax contains the semaphore pointer on entry. Save the C-clobbered * registers (%eax, %edx and %ecx) except %eax whish is either a return * value or just clobbered.. */ asm( ".section .sched.text\n" ".align 4\n" ".globl __down_failed\n" "__down_failed:\n\t" #if defined(CONFIG_FRAME_POINTER) "pushl %ebp\n\t" "movl %esp,%ebp\n\t" #endif "pushl %edx\n\t" "pushl %ecx\n\t" "call __down\n\t" "popl %ecx\n\t" "popl %edx\n\t" #if defined(CONFIG_FRAME_POINTER) "movl %ebp,%esp\n\t" "popl %ebp\n\t" #endif "ret" ); asm( ".section .sched.text\n" ".align 4\n" ".globl __down_failed_interruptible\n" "__down_failed_interruptible:\n\t" #if defined(CONFIG_FRAME_POINTER) "pushl %ebp\n\t" "movl %esp,%ebp\n\t" #endif "pushl %edx\n\t" "pushl %ecx\n\t" "call __down_interruptible\n\t" "popl %ecx\n\t" "popl %edx\n\t" #if defined(CONFIG_FRAME_POINTER) "movl %ebp,%esp\n\t" "popl %ebp\n\t" #endif "ret" ); asm( ".section .sched.text\n" ".align 4\n" ".globl __down_failed_trylock\n" "__down_failed_trylock:\n\t" #if defined(CONFIG_FRAME_POINTER) "pushl %ebp\n\t" "movl %esp,%ebp\n\t" #endif "pushl %edx\n\t" "pushl %ecx\n\t" "call __down_trylock\n\t" "popl %ecx\n\t" "popl %edx\n\t" #if defined(CONFIG_FRAME_POINTER) "movl %ebp,%esp\n\t" "popl %ebp\n\t" #endif "ret" ); asm( ".section .sched.text\n" ".align 4\n" ".globl __up_wakeup\n" "__up_wakeup:\n\t" "pushl %edx\n\t" "pushl %ecx\n\t" "call __up\n\t" "popl %ecx\n\t" "popl %edx\n\t" "ret" ); /* * rw spinlock fallbacks */ #if defined(CONFIG_SMP) asm( ".section .sched.text\n" ".align 4\n" ".globl __write_lock_failed\n" "__write_lock_failed:\n\t" LOCK "addl $" RW_LOCK_BIAS_STR ",(%eax)\n" "1: rep; nop\n\t" "cmpl $" RW_LOCK_BIAS_STR ",(%eax)\n\t" "jne 1b\n\t" LOCK "subl $" RW_LOCK_BIAS_STR ",(%eax)\n\t" "jnz __write_lock_failed\n\t" "ret" ); asm( ".section .sched.text\n" ".align 4\n" ".globl __read_lock_failed\n" "__read_lock_failed:\n\t" LOCK "incl (%eax)\n" "1: rep; nop\n\t" "cmpl $1,(%eax)\n\t" "js 1b\n\t" LOCK "decl (%eax)\n\t" "js __read_lock_failed\n\t" "ret" ); #endif