/* * sys_ia32.c: Conversion between 32bit and 64bit native syscalls. Derived from sys_sparc32.c. * * Copyright (C) 2000 VA Linux Co * Copyright (C) 2000 Don Dugger * Copyright (C) 1999 Arun Sharma * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz) * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu) * Copyright (C) 2000-2003, 2005 Hewlett-Packard Co * David Mosberger-Tang * Copyright (C) 2004 Gordon Jin * * These routines maintain argument size conversion between 32bit and 64bit * environment. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ia32priv.h" #include #include #define DEBUG 0 #if DEBUG # define DBG(fmt...) printk(KERN_DEBUG fmt) #else # define DBG(fmt...) #endif #define ROUND_UP(x,a) ((__typeof__(x))(((unsigned long)(x) + ((a) - 1)) & ~((a) - 1))) #define OFFSET4K(a) ((a) & 0xfff) #define PAGE_START(addr) ((addr) & PAGE_MASK) #define MINSIGSTKSZ_IA32 2048 #define high2lowuid(uid) ((uid) > 65535 ? 65534 : (uid)) #define high2lowgid(gid) ((gid) > 65535 ? 65534 : (gid)) /* * Anything that modifies or inspects ia32 user virtual memory must hold this semaphore * while doing so. */ /* XXX make per-mm: */ static DEFINE_MUTEX(ia32_mmap_mutex); asmlinkage long sys32_execve (char __user *name, compat_uptr_t __user *argv, compat_uptr_t __user *envp, struct pt_regs *regs) { long error; char *filename; unsigned long old_map_base, old_task_size, tssd; filename = getname(name); error = PTR_ERR(filename); if (IS_ERR(filename)) return error; old_map_base = current->thread.map_base; old_task_size = current->thread.task_size; tssd = ia64_get_kr(IA64_KR_TSSD); /* we may be exec'ing a 64-bit process: reset map base, task-size, and io-base: */ current->thread.map_base = DEFAULT_MAP_BASE; current->thread.task_size = DEFAULT_TASK_SIZE; ia64_set_kr(IA64_KR_IO_BASE, current->thread.old_iob); ia64_set_kr(IA64_KR_TSSD, current->thread.old_k1); error = compat_do_execve(filename, argv, envp, regs); putname(filename); if (error < 0) { /* oops, execve failed, switch back to old values... */ ia64_set_kr(IA64_KR_IO_BASE, IA32_IOBASE); ia64_set_kr(IA64_KR_TSSD, tssd); current->thread.map_base = old_map_base; current->thread.task_size = old_task_size; } return error; } #if PAGE_SHIFT > IA32_PAGE_SHIFT static int get_page_prot (struct vm_area_struct *vma, unsigned long addr) { int prot = 0; if (!vma || vma->vm_start > addr) return 0; if (vma->vm_flags & VM_READ) prot |= PROT_READ; if (vma->vm_flags & VM_WRITE) prot |= PROT_WRITE; if (vma->vm_flags & VM_EXEC) prot |= PROT_EXEC; return prot; } /* * Map a subpage by creating an anonymous page that contains the union of the old page and * the subpage. */ static unsigned long mmap_subpage (struct file *file, unsigned long start, unsigned long end, int prot, int flags, loff_t off) { void *page = NULL; struct inode *inode; unsigned long ret = 0; struct vm_area_struct *vma = find_vma(current->mm, start); int old_prot = get_page_prot(vma, start); DBG("mmap_subpage(file=%p,start=0x%lx,end=0x%lx,prot=%x,flags=%x,off=0x%llx)\n", file, start, end, prot, flags, off); /* Optimize the case where the old mmap and the new mmap are both anonymous */ if ((old_prot & PROT_WRITE) && (flags & MAP_ANONYMOUS) && !vma->vm_file) { if (clear_user((void __user *) start, end - start)) { ret = -EFAULT; goto out; } goto skip_mmap; } page = (void *) get_zeroed_page(GFP_KERNEL); if (!page) return -ENOMEM; if (old_prot) copy_from_user(page, (void __user *) PAGE_START(start), PAGE_SIZE); down_write(¤t->mm->mmap_sem); { ret = do_mmap(NULL, PAGE_START(start), PAGE_SIZE, prot | PROT_WRITE, flags | MAP_FIXED | MAP_ANONYMOUS, 0); } up_write(¤t->mm->mmap_sem); if (IS_ERR((void *) ret)) goto out; if (old_prot) { /* copy back the old page contents. */ if (offset_in_page(start)) copy_to_user((void __user *) PAGE_START(start), page, offset_in_page(start)); if (offset_in_page(end)) copy_to_user((void __user *) end, page + offset_in_page(end), PAGE_SIZE - offset_in_page(end)); } if (!(flags & MAP_ANONYMOUS)) { /* read the file contents */ inode = file->f_path.dentry->d_inode; if (!inode->i_fop || !file->f_op->read || ((*file->f_op->read)(file, (char __user *) start, end - start, &off) < 0)) { ret = -EINVAL; goto out; } } skip_mmap: if (!(prot & PROT_WRITE)) ret = sys_mprotect(PAGE_START(start), PAGE_SIZE, prot | old_prot); out: if (page) free_page((unsigned long) page); return ret; } /* SLAB cache for ia64_partial_page structures */ struct kmem_cache *ia64_partial_page_cachep; /* * init ia64_partial_page_list. * return 0 means kmalloc fail. */ struct ia64_partial_page_list* ia32_init_pp_list(void) { struct ia64_partial_page_list *p; if ((p = kmalloc(sizeof(*p), GFP_KERNEL)) == NULL) return p; p->pp_head = NULL; p->ppl_rb = RB_ROOT; p->pp_hint = NULL; atomic_set(&p->pp_count, 1); return p; } /* * Search for the partial page with @start in partial page list @ppl. * If finds the partial page, return the found partial page. * Else, return 0 and provide @pprev, @rb_link, @rb_parent to * be used by later __ia32_insert_pp(). */ static struct ia64_partial_page * __ia32_find_pp(struct ia64_partial_page_list *ppl, unsigned int start, struct ia64_partial_page **pprev, struct rb_node ***rb_link, struct rb_node **rb_parent) { struct ia64_partial_page *pp; struct rb_node **__rb_link, *__rb_parent, *rb_prev; pp = ppl->pp_hint; if (pp && pp->base == start) return pp; __rb_link = &ppl->ppl_rb.rb_node; rb_prev = __rb_parent = NULL; while (*__rb_link) { __rb_parent = *__rb_link; pp = rb_entry(__rb_parent, struct ia64_partial_page, pp_rb); if (pp->base == start) { ppl->pp_hint = pp; return pp; } else if (pp->base < start) { rb_prev = __rb_parent; __rb_link = &__rb_parent->rb_right; } else { __rb_link = &__rb_parent->rb_left; } } *rb_link = __rb_link; *rb_parent = __rb_parent; *pprev = NULL; if (rb_prev) *pprev = rb_entry(rb_prev, struct ia64_partial_page, pp_rb); return NULL; } /* * insert @pp into @ppl. */ static void __ia32_insert_pp(struct ia64_partial_page_list *ppl, struct ia64_partial_page *pp, struct ia64_partial_page *prev, struct rb_node **rb_link, struct rb_node *rb_parent) { /* link list */ if (prev) { pp->next = prev->next; prev->next = pp; } else { ppl->pp_head = pp; if (rb_parent) pp->next = rb_entry(rb_parent, struct ia64_partial_page, pp_rb); else pp->next = NULL; } /* link rb */ rb_link_node(&pp->pp_rb, rb_parent, rb_link); rb_insert_color(&pp->pp_rb, &ppl->ppl_rb); ppl->pp_hint = pp; } /* * delete @pp from partial page list @ppl. */ static void __ia32_delete_pp(struct ia64_partial_page_list *ppl, struct ia64_partial_page *pp, struct ia64_partial_page *prev) { if (prev) { prev->next = pp->next; if (ppl->pp_hint == pp) ppl->pp_hint = prev; } else { ppl->pp_head = pp->next; if (ppl->pp_hint == pp) ppl->pp_hint = pp->next; } rb_erase(&pp->pp_rb, &ppl->ppl_rb); kmem_cache_free(ia64_partial_page_cachep, pp); } static struct ia64_partial_page * __pp_prev(struct ia64_partial_page *pp) { struct rb_node *prev = rb_prev(&pp->pp_rb); if (prev) return rb_entry(prev, struct ia64_partial_page, pp_rb); else return NULL; } /* * Delete partial pages with address between @start and @end. * @start and @end are page aligned. */ static void __ia32_delete_pp_range(unsigned int start, unsigned int end) { struct ia64_partial_page *pp, *prev; struct rb_node **rb_link, *rb_parent; if (start >= end) return; pp = __ia32_find_pp(current->thread.ppl, start, &prev, &rb_link, &rb_parent); if (pp) prev = __pp_prev(pp); else { if (prev) pp = prev->next; else pp = current->thread.ppl->pp_head; } while (pp && pp->base < end) { struct ia64_partial_page *tmp = pp->next; __ia32_delete_pp(current->thread.ppl, pp, prev); pp = tmp; } } /* * Set the range between @start and @end in bitmap. * @start and @end should be IA32 page aligned and in the same IA64 page. */ static int __ia32_set_pp(unsigned int start, unsigned int end, int flags) { struct ia64_partial_page *pp, *prev; struct rb_node ** rb_link, *rb_parent; unsigned int pstart, start_bit, end_bit, i; pstart = PAGE_START(start); start_bit = (start % PAGE_SIZE) / IA32_PAGE_SIZE; end_bit = (end % PAGE_SIZE) / IA32_PAGE_SIZE; if (end_bit == 0) end_bit = PAGE_SIZE / IA32_PAGE_SIZE; pp = __ia32_find_pp(current->thread.ppl, pstart, &prev, &rb_link, &rb_parent); if (pp) { for (i = start_bit; i < end_bit; i++) set_bit(i, &pp->bitmap); /* * Check: if this partial page has been set to a full page, * then delete it. */ if (find_first_zero_bit(&pp->bitmap, sizeof(pp->bitmap)*8) >= PAGE_SIZE/IA32_PAGE_SIZE) { __ia32_delete_pp(current->thread.ppl, pp, __pp_prev(pp)); } return 0; } /* * MAP_FIXED may lead to overlapping mmap. * In this case, the requested mmap area may already mmaped as a full * page. So check vma before adding a new partial page. */ if (flags & MAP_FIXED) { struct vm_area_struct *vma = find_vma(current->mm, pstart); if (vma && vma->vm_start <= pstart) return 0; } /* new a ia64_partial_page */ pp = kmem_cache_alloc(ia64_partial_page_cachep, GFP_KERNEL); if (!pp) return -ENOMEM; pp->base = pstart; pp->bitmap = 0; for (i=start_bit; ibitmap)); pp->next = NULL; __ia32_insert_pp(current->thread.ppl, pp, prev, rb_link, rb_parent); return 0; } /* * @start and @end should be IA32 page aligned, but don't need to be in the * same IA64 page. Split @start and @end to make sure they're in the same IA64 * page, then call __ia32_set_pp(). */ static void ia32_set_pp(unsigned int start, unsigned int end, int flags) { down_write(¤t->mm->mmap_sem); if (flags & MAP_FIXED) { /* * MAP_FIXED may lead to overlapping mmap. When this happens, * a series of complete IA64 pages results in deletion of * old partial pages in that range. */ __ia32_delete_pp_range(PAGE_ALIGN(start), PAGE_START(end)); } if (end < PAGE_ALIGN(start)) { __ia32_set_pp(start, end, flags); } else { if (offset_in_page(start)) __ia32_set_pp(start, PAGE_ALIGN(start), flags); if (offset_in_page(end)) __ia32_set_pp(PAGE_START(end), end, flags); } up_write(¤t->mm->mmap_sem); } /* * Unset the range between @start and @end in bitmap. * @start and @end should be IA32 page aligned and in the same IA64 page. * After doing that, if the bitmap is 0, then free the page and return 1, * else return 0; * If not find the partial page in the list, then * If the vma exists, then the full page is set to a partial page; * Else return -ENOMEM. */ static int __ia32_unset_pp(unsigned int start, unsigned int end) { struct ia64_partial_page *pp, *prev; struct rb_node ** rb_link, *rb_parent; unsigned int pstart, start_bit, end_bit, i; struct vm_area_struct *vma; pstart = PAGE_START(start); start_bit = (start % PAGE_SIZE) / IA32_PAGE_SIZE; end_bit = (end % PAGE_SIZE) / IA32_PAGE_SIZE; if (end_bit == 0) end_bit = PAGE_SIZE / IA32_PAGE_SIZE; pp = __ia32_find_pp(current->thread.ppl, pstart, &prev, &rb_link, &rb_parent); if (pp) { for (i = start_bit; i < end_bit; i++) clear_bit(i, &pp->bitmap); if (pp->bitmap == 0) { __ia32_delete_pp(current->thread.ppl, pp, __pp_prev(pp)); return 1; } return 0; } vma = find_vma(current->mm, pstart); if (!vma || vma->vm_start > pstart) { return -ENOMEM; } /* new a ia64_partial_page */ pp = kmem_cache_alloc(ia64_partial_page_cachep, GFP_KERNEL); if (!pp) return -ENOMEM; pp->base = pstart; pp->bitmap = 0; for (i = 0; i < start_bit; i++) set_bit(i, &(pp->bitmap)); for (i = end_bit; i < PAGE_SIZE / IA32_PAGE_SIZE; i++) set_bit(i, &(pp->bitmap)); pp->next = NULL; __ia32_insert_pp(current->thread.ppl, pp, prev, rb_link, rb_parent); return 0; } /* * Delete pp between PAGE_ALIGN(start) and PAGE_START(end) by calling * __ia32_delete_pp_range(). Unset possible partial pages by calling * __ia32_unset_pp(). * The returned value see __ia32_unset_pp(). */ static int ia32_unset_pp(unsigned int *startp, unsigned int *endp) { unsigned int start = *startp, end = *endp; int ret = 0; down_write(¤t->mm->mmap_sem); __ia32_delete_pp_range(PAGE_ALIGN(start), PAGE_START(end)); if (end < PAGE_ALIGN(start)) { ret = __ia32_unset_pp(start, end); if (ret == 1) { *startp = PAGE_START(start); *endp = PAGE_ALIGN(end); } if (ret == 0) { /* to shortcut sys_munmap() in sys32_munmap() */ *startp = PAGE_START(start); *endp = PAGE_START(end); } } else { if (offset_in_page(start)) { ret = __ia32_unset_pp(start, PAGE_ALIGN(start)); if (ret == 1) *startp = PAGE_START(start); if (ret == 0) *startp = PAGE_ALIGN(start); if (ret < 0) goto out; } if (offset_in_page(end)) { ret = __ia32_unset_pp(PAGE_START(end), end); if (ret == 1) *endp = PAGE_ALIGN(end); if (ret == 0) *endp = PAGE_START(end); } } out: up_write(¤t->mm->mmap_sem); return ret; } /* * Compare the range between @start and @end with bitmap in partial page. * @start and @end should be IA32 page aligned and in the same IA64 page. */ static int __ia32_compare_pp(unsigned int start, unsigned int end) { struct ia64_partial_page *pp, *prev; struct rb_node ** rb_link, *rb_parent; unsigned int pstart, start_bit, end_bit, size; unsigned int first_bit, next_zero_bit; /* the first range in bitmap */ pstart = PAGE_START(start); pp = __ia32_find_pp(current->thread.ppl, pstart, &prev, &rb_link, &rb_parent); if (!pp) return 1; start_bit = (start % PAGE_SIZE) / IA32_PAGE_SIZE; end_bit = (end % PAGE_SIZE) / IA32_PAGE_SIZE; size = sizeof(pp->bitmap) * 8; first_bit = find_first_bit(&pp->bitmap, size); next_zero_bit = find_next_zero_bit(&pp->bitmap, size, first_bit); if ((start_bit < first_bit) || (end_bit > next_zero_bit)) { /* exceeds the first range in bitmap */ return -ENOMEM; } else if ((start_bit == first_bit) && (end_bit == next_zero_bit)) { first_bit = find_next_bit(&pp->bitmap, size, next_zero_bit); if ((next_zero_bit < first_bit) && (first_bit < size)) return 1; /* has next range */ else return 0; /* no next range */ } else return 1; } /* * @start and @end should be IA32 page aligned, but don't need to be in the * same IA64 page. Split @start and @end to make sure they're in the same IA64 * page, then call __ia32_compare_pp(). * * Take this as example: the range is the 1st and 2nd 4K page. * Return 0 if they fit bitmap exactly, i.e. bitmap = 00000011; * Return 1 if the range doesn't cover whole bitmap, e.g. bitmap = 00001111; * Return -ENOMEM if the range exceeds the bitmap, e.g. bitmap = 00000001 or * bitmap = 00000101. */ static int ia32_compare_pp(unsigned int *startp, unsigned int *endp) { unsigned int start = *startp, end = *endp; int retval = 0; down_write(¤t->mm->mmap_sem); if (end < PAGE_ALIGN(start)) { retval = __ia32_compare_pp(start, end); if (retval == 0) { *startp = PAGE_START(start); *endp = PAGE_ALIGN(end); } } else { if (offset_in_page(start)) { retval = __ia32_compare_pp(start, PAGE_ALIGN(start)); if (retval == 0) *startp = PAGE_START(start); if (retval < 0) goto out; } if (offset_in_page(end)) { retval = __ia32_compare_pp(PAGE_START(end), end); if (retval == 0) *endp = PAGE_ALIGN(end); } } out: up_write(¤t->mm->mmap_sem); return retval; } static void __ia32_drop_pp_list(struct ia64_partial_page_list *ppl) { struct ia64_partial_page *pp = ppl->pp_head; while (pp) { struct ia64_partial_page *next = pp->next; kmem_cache_free(ia64_partial_page_cachep, pp); pp = next; } kfree(ppl); } void ia32_drop_ia64_partial_page_list(struct task_struct *task) { struct ia64_partial_page_list* ppl = task->thread.ppl; if (ppl && atomic_dec_and_test(&ppl->pp_count)) __ia32_drop_pp_list(ppl); } /* * Copy current->thread.ppl to ppl (already initialized). */ static int __ia32_copy_pp_list(struct ia64_partial_page_list *ppl) { struct ia64_partial_page *pp, *tmp, *prev; struct rb_node **rb_link, *rb_parent; ppl->pp_head = NULL; ppl->pp_hint = NULL; ppl->ppl_rb = RB_ROOT; rb_link = &ppl->ppl_rb.rb_node; rb_parent = NULL; prev = NULL; for (pp = current->thread.ppl->pp_head; pp; pp = pp->next) { tmp = kmem_cache_alloc(ia64_partial_page_cachep, GFP_KERNEL); if (!tmp) return -ENOMEM; *tmp = *pp; __ia32_insert_pp(ppl, tmp, prev, rb_link, rb_parent); prev = tmp; rb_link = &tmp->pp_rb.rb_right; rb_parent = &tmp->pp_rb; } return 0; } int ia32_copy_ia64_partial_page_list(struct task_struct *p, unsigned long clone_flags) { int retval = 0; if (clone_flags & CLONE_VM) { atomic_inc(¤t->thread.ppl->pp_count); p->thread.ppl = current->thread.ppl; } else { p->thread.ppl = ia32_init_pp_list(); if (!p->thread.ppl) return -ENOMEM; down_write(¤t->mm->mmap_sem); { retval = __ia32_copy_pp_list(p->thread.ppl); } up_write(¤t->mm->mmap_sem); } return retval; } static unsigned long emulate_mmap (struct file *file, unsigned long start, unsigned long len, int prot, int flags, loff_t off) { unsigned long tmp, end, pend, pstart, ret, is_congruent, fudge = 0; struct inode *inode; loff_t poff; end = start + len; pstart = PAGE_START(start); pend = PAGE_ALIGN(end); if (flags & MAP_FIXED) { ia32_set_pp((unsigned int)start, (unsigned int)end, flags); if (start > pstart) { if (flags & MAP_SHARED) printk(KERN_INFO "%s(%d): emulate_mmap() can't share head (addr=0x%lx)\n", current->comm, task_pid_nr(current), start); ret = mmap_subpage(file, start, min(PAGE_ALIGN(start), end), prot, flags, off); if (IS_ERR((void *) ret)) return ret; pstart += PAGE_SIZE; if (pstart >= pend) goto out; /* done */ } if (end < pend) { if (flags & MAP_SHARED) printk(KERN_INFO "%s(%d): emulate_mmap() can't share tail (end=0x%lx)\n", current->comm, task_pid_nr(current), end); ret = mmap_subpage(file, max(start, PAGE_START(end)), end, prot, flags, (off + len) - offset_in_page(end)); if (IS_ERR((void *) ret)) return ret; pend -= PAGE_SIZE; if (pstart >= pend) goto out; /* done */ } } else { /* * If a start address was specified, use it if the entire rounded out area * is available. */ if (start && !pstart) fudge = 1; /* handle case of mapping to range (0,PAGE_SIZE) */ tmp = arch_get_unmapped_area(file, pstart - fudge, pend - pstart, 0, flags); if (tmp != pstart) { pstart = tmp; start = pstart + offset_in_page(off); /* make start congruent with off */ end = start + len; pend = PAGE_ALIGN(end); } } poff = off + (pstart - start); /* note: (pstart - start) may be negative */ is_congruent = (flags & MAP_ANONYMOUS) || (offset_in_page(poff) == 0); if ((flags & MAP_SHARED) && !is_congruent) printk(KERN_INFO "%s(%d): emulate_mmap() can't share contents of incongruent mmap " "(addr=0x%lx,off=0x%llx)\n", current->comm, task_pid_nr(current), start, off); DBG("mmap_body: mapping [0x%lx-0x%lx) %s with poff 0x%llx\n", pstart, pend, is_congruent ? "congruent" : "not congruent", poff); down_write(¤t->mm->mmap_sem); { if (!(flags & MAP_ANONYMOUS) && is_congruent) ret = do_mmap(file, pstart, pend - pstart, prot, flags | MAP_FIXED, poff); else ret = do_mmap(NULL, pstart, pend - pstart, prot | ((flags & MAP_ANONYMOUS) ? 0 : PROT_WRITE), flags | MAP_FIXED | MAP_ANONYMOUS, 0); } up_write(¤t->mm->mmap_sem); if (IS_ERR((void *) ret)) return ret; if (!is_congruent) { /* read the file contents */ inode = file->f_path.dentry->d_inode; if (!inode->i_fop || !file->f_op->read || ((*file->f_op->read)(file, (char __user *) pstart, pend - pstart, &poff) < 0)) { sys_munmap(pstart, pend - pstart); return -EINVAL; } if (!(prot & PROT_WRITE) && sys_mprotect(pstart, pend - pstart, prot) < 0) return -EINVAL; } if (!(flags & MAP_FIXED)) ia32_set_pp((unsigned int)start, (unsigned int)end, flags); out: return start; } #endif /* PAGE_SHIFT > IA32_PAGE_SHIFT */ static inline unsigned int get_prot32 (unsigned int prot) { if (prot & PROT_WRITE) /* on x86, PROT_WRITE implies PROT_READ which implies PROT_EEC */ prot |= PROT_READ | PROT_WRITE | PROT_EXEC; else if (prot & (PROT_READ | PROT_EXEC)) /* on x86, there is no distinction between PROT_READ and PROT_EXEC */ prot |= (PROT_READ | PROT_EXEC); return prot; } unsigned long ia32_do_mmap (struct file *file, unsigned long addr, unsigned long len, int prot, int flags, loff_t offset) { DBG("ia32_do_mmap(file=%p,addr=0x%lx,len=0x%lx,prot=%x,flags=%x,offset=0x%llx)\n", file, addr, len, prot, flags, offset); if (file && (!file->f_op || !file->f_op->mmap)) return -ENODEV; len = IA32_PAGE_ALIGN(len); if (len == 0) return addr; if (len > IA32_PAGE_OFFSET || addr > IA32_PAGE_OFFSET - len) { if (flags & MAP_FIXED) return -ENOMEM; else return -EINVAL; } if (OFFSET4K(offset)) return -EINVAL; prot = get_prot32(prot); #if PAGE_SHIFT > IA32_PAGE_SHIFT mutex_lock(&ia32_mmap_mutex); { addr = emulate_mmap(file, addr, len, prot, flags, offset); } mutex_unlock(&ia32_mmap_mutex); #else down_write(¤t->mm->mmap_sem); { addr = do_mmap(file, addr, len, prot, flags, offset); } up_write(¤t->mm->mmap_sem); #endif DBG("ia32_do_mmap: returning 0x%lx\n", addr); return addr; } /* * Linux/i386 didn't use to be able to handle more than 4 system call parameters, so these * system calls used a memory block for parameter passing.. */ struct mmap_arg_struct { unsigned int addr; unsigned int len; unsigned int prot; unsigned int flags; unsigned int fd; unsigned int offset; }; asmlinkage long sys32_mmap (struct mmap_arg_struct __user *arg) { struct mmap_arg_struct a; struct file *file = NULL; unsigned long addr; int flags; if (copy_from_user(&a, arg, sizeof(a))) return -EFAULT; if (OFFSET4K(a.offset)) return -EINVAL; flags = a.flags; flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE); if (!(flags & MAP_ANONYMOUS)) { file = fget(a.fd); if (!file) return -EBADF; } addr = ia32_do_mmap(file, a.addr, a.len, a.prot, flags, a.offset); if (file) fput(file); return addr; } asmlinkage long sys32_mmap2 (unsigned int addr, unsigned int len, unsigned int prot, unsigned int flags, unsigned int fd, unsigned int pgoff) { struct file *file = NULL; unsigned long retval; flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE); if (!(flags & MAP_ANONYMOUS)) { file = fget(fd); if (!file) return -EBADF; } retval = ia32_do_mmap(file, addr, len, prot, flags, (unsigned long) pgoff << IA32_PAGE_SHIFT); if (file) fput(file); return retval; } asmlinkage long sys32_munmap (unsigned int start, unsigned int len) { unsigned int end = start + len; long ret; #if PAGE_SHIFT <= IA32_PAGE_SHIFT ret = sys_munmap(start, end - start); #else if (OFFSET4K(start)) return -EINVAL; end = IA32_PAGE_ALIGN(end); if (start >= end) return -EINVAL; ret = ia32_unset_pp(&start, &end); if (ret < 0) return ret; if (start >= end) return 0; mutex_lock(&ia32_mmap_mutex); ret = sys_munmap(start, end - start); mutex_unlock(&ia32_mmap_mutex); #endif return ret; } #if PAGE_SHIFT > IA32_PAGE_SHIFT /* * When mprotect()ing a partial page, we set the permission to the union of the old * settings and the new settings. In other words, it's only possible to make access to a * partial page less restrictive. */ static long mprotect_subpage (unsigned long address, int new_prot) { int old_prot; struct vm_area_struct *vma; if (new_prot == PROT_NONE) return 0; /* optimize case where nothing changes... */ vma = find_vma(current->mm, address); old_prot = get_page_prot(vma, address); return sys_mprotect(address, PAGE_SIZE, new_prot | old_prot); } #endif /* PAGE_SHIFT > IA32_PAGE_SHIFT */ asmlinkage long sys32_mprotect (unsigned int start, unsigned int len, int prot) { unsigned int end = start + len; #if PAGE_SHIFT > IA32_PAGE_SHIFT long retval = 0; #endif prot = get_prot32(prot); #if PAGE_SHIFT <= IA32_PAGE_SHIFT return sys_mprotect(start, end - start, prot); #else if (OFFSET4K(start)) return -EINVAL; end = IA32_PAGE_ALIGN(end); if (end < start) return -EINVAL; retval = ia32_compare_pp(&start, &end); if (retval < 0) return retval; mutex_lock(&ia32_mmap_mutex); { if (offset_in_page(start)) { /* start address is 4KB aligned but not page aligned. */ retval = mprotect_subpage(PAGE_START(start), prot); if (retval < 0) goto out; start = PAGE_ALIGN(start); if (start >= end) goto out; /* retval is already zero... */ } if (offset_in_page(end)) { /* end address is 4KB aligned but not page aligned. */ retval = mprotect_subpage(PAGE_START(end), prot); if (retval < 0) goto out; end = PAGE_START(end); } retval = sys_mprotect(start, end - start, prot); } out: mutex_unlock(&ia32_mmap_mutex); return retval; #endif } asmlinkage long sys32_mremap (unsigned int addr, unsigned int old_len, unsigned int new_len, unsigned int flags, unsigned int new_addr) { long ret; #if PAGE_SHIFT <= IA32_PAGE_SHIFT ret = sys_mremap(addr, old_len, new_len, flags, new_addr); #else unsigned int old_end, new_end; if (OFFSET4K(addr)) return -EINVAL; old_len = IA32_PAGE_ALIGN(old_len); new_len = IA32_PAGE_ALIGN(new_len); old_end = addr + old_len; new_end = addr + new_len; if (!new_len) return -EINVAL; if ((flags & MREMAP_FIXED) && (OFFSET4K(new_addr))) return -EINVAL; if (old_len >= new_len) { ret = sys32_munmap(addr + new_len, old_len - new_len); if (ret && old_len != new_len) return ret; ret = addr; if (!(flags & MREMAP_FIXED) || (new_addr == addr)) return ret; old_len = new_len; } addr = PAGE_START(addr); old_len = PAGE_ALIGN(old_end) - addr; new_len = PAGE_ALIGN(new_end) - addr; mutex_lock(&ia32_mmap_mutex); ret = sys_mremap(addr, old_len, new_len, flags, new_addr); mutex_unlock(&ia32_mmap_mutex); if ((ret >= 0) && (old_len < new_len)) { /* mremap expanded successfully */ ia32_set_pp(old_end, new_end, flags); } #endif return ret; } asmlinkage unsigned long sys32_alarm (unsigned int seconds) { return alarm_setitimer(seconds); } struct sel_arg_struct { unsigned int n; unsigned int inp; unsigned int outp; unsigned int exp; unsigned int tvp; }; asmlinkage long sys32_old_select (struct sel_arg_struct __user *arg) { struct sel_arg_struct a; if (copy_from_user(&a, arg, sizeof(a))) return -EFAULT; return compat_sys_select(a.n, compat_ptr(a.inp), compat_ptr(a.outp), compat_ptr(a.exp), compat_ptr(a.tvp)); } #define SEMOP 1 #define SEMGET 2 #define SEMCTL 3 #define SEMTIMEDOP 4 #define MSGSND 11 #define MSGRCV 12 #define MSGGET 13 #define MSGCTL 14 #define SHMAT 21 #define SHMDT 22 #define SHMGET 23 #define SHMCTL 24 asmlinkage long sys32_ipc(u32 call, int first, int second, int third, u32 ptr, u32 fifth) { int version; version = call >> 16; /* hack for backward compatibility */ call &= 0xffff; switch (call) { case SEMTIMEDOP: if (fifth) return compat_sys_semtimedop(first, compat_ptr(ptr), second, compat_ptr(fifth)); /* else fall through for normal semop() */ case SEMOP: /* struct sembuf is the same on 32 and 64bit :)) */ return sys_semtimedop(first, compat_ptr(ptr), second, NULL); case SEMGET: return sys_semget(first, second, third); case SEMCTL: return compat_sys_semctl(first, second, third, compat_ptr(ptr)); case MSGSND: return compat_sys_msgsnd(first, second, third, compat_ptr(ptr)); case MSGRCV: return compat_sys_msgrcv(first, second, fifth, third, version, compat_ptr(ptr)); case MSGGET: return sys_msgget((key_t) first, second); case MSGCTL: return compat_sys_msgctl(first, second, compat_ptr(ptr)); case SHMAT: return compat_sys_shmat(first, second, third, version, compat_ptr(ptr)); break; case SHMDT: return sys_shmdt(compat_ptr(ptr)); case SHMGET: return sys_shmget(first, (unsigned)second, third); case SHMCTL: return compat_sys_shmctl(first, second, compat_ptr(ptr)); default: return -ENOSYS; } return -EINVAL; } asmlinkage long compat_sys_wait4 (compat_pid_t pid, compat_uint_t * stat_addr, int options, struct compat_rusage *ru); asmlinkage long sys32_waitpid (int pid, unsigned int *stat_addr, int options) { return compat_sys_wait4(pid, stat_addr, options, NULL); } /* * The order in which registers are stored in the ptrace regs structure */ #define PT_EBX 0 #define PT_ECX 1 #define PT_EDX 2 #define PT_ESI 3 #define PT_EDI 4 #define PT_EBP 5 #define PT_EAX 6 #define PT_DS 7 #define PT_ES 8 #define PT_FS 9 #define PT_GS 10 #define PT_ORIG_EAX 11 #define PT_EIP 12 #define PT_CS 13 #define PT_EFL 14 #define PT_UESP 15 #define PT_SS 16 static unsigned int getreg (struct task_struct *child, int regno) { struct pt_regs *child_regs; child_regs = task_pt_regs(child); switch (regno / sizeof(int)) { case PT_EBX: return child_regs->r11; case PT_ECX: return child_regs->r9; case PT_EDX: return child_regs->r10; case PT_ESI: return child_regs->r14; case PT_EDI: return child_regs->r15; case PT_EBP: return child_regs->r13; case PT_EAX: return child_regs->r8; case PT_ORIG_EAX: return child_regs->r1; /* see dispatch_to_ia32_handler() */ case PT_EIP: return child_regs->cr_iip; case PT_UESP: return child_regs->r12; case PT_EFL: return child->thread.eflag; case PT_DS: case PT_ES: case PT_FS: case PT_GS: case PT_SS: return __USER_DS; case PT_CS: return __USER_CS; default: printk(KERN_ERR "ia32.getreg(): unknown register %d\n", regno); break; } return 0; } static void putreg (struct task_struct *child, int regno, unsigned int value) { struct pt_regs *child_regs; child_regs = task_pt_regs(child); switch (regno / sizeof(int)) { case PT_EBX: child_regs->r11 = value; break; case PT_ECX: child_regs->r9 = value; break; case PT_EDX: child_regs->r10 = value; break; case PT_ESI: child_regs->r14 = value; break; case PT_EDI: child_regs->r15 = value; break; case PT_EBP: child_regs->r13 = value; break; case PT_EAX: child_regs->r8 = value; break; case PT_ORIG_EAX: child_regs->r1 = value; break; case PT_EIP: child_regs->cr_iip = value; break; case PT_UESP: child_regs->r12 = value; break; case PT_EFL: child->thread.eflag = value; break; case PT_DS: case PT_ES: case PT_FS: case PT_GS: case PT_SS: if (value != __USER_DS) printk(KERN_ERR "ia32.putreg: attempt to set invalid segment register %d = %x\n", regno, value); break; case PT_CS: if (value != __USER_CS) printk(KERN_ERR "ia32.putreg: attempt to set invalid segment register %d = %x\n", regno, value); break; default: printk(KERN_ERR "ia32.putreg: unknown register %d\n", regno); break; } } static void put_fpreg (int regno, struct _fpreg_ia32 __user *reg, struct pt_regs *ptp, struct switch_stack *swp, int tos) { struct _fpreg_ia32 *f; char buf[32]; f = (struct _fpreg_ia32 *)(((unsigned long)buf + 15) & ~15); if ((regno += tos) >= 8) regno -= 8; switch (regno) { case 0: ia64f2ia32f(f, &ptp->f8); break; case 1: ia64f2ia32f(f, &ptp->f9); break; case 2: ia64f2ia32f(f, &ptp->f10); break; case 3: ia64f2ia32f(f, &ptp->f11); break; case 4: case 5: case 6: case 7: ia64f2ia32f(f, &swp->f12 + (regno - 4)); break; } copy_to_user(reg, f, sizeof(*reg)); } static void get_fpreg (int regno, struct _fpreg_ia32 __user *reg, struct pt_regs *ptp, struct switch_stack *swp, int tos) { if ((regno += tos) >= 8) regno -= 8; switch (regno) { case 0: copy_from_user(&ptp->f8, reg, sizeof(*reg)); break; case 1: copy_from_user(&ptp->f9, reg, sizeof(*reg)); break; case 2: copy_from_user(&ptp->f10, reg, sizeof(*reg)); break; case 3: copy_from_user(&ptp->f11, reg, sizeof(*reg)); break; case 4: case 5: case 6: case 7: copy_from_user(&swp->f12 + (regno - 4), reg, sizeof(*reg)); break; } return; } int save_ia32_fpstate (struct task_struct *tsk, struct ia32_user_i387_struct __user *save) { struct switch_stack *swp; struct pt_regs *ptp; int i, tos; if (!access_ok(VERIFY_WRITE, save, sizeof(*save))) return -EFAULT; __put_user(tsk->thread.fcr & 0xffff, &save->cwd); __put_user(tsk->thread.fsr & 0xffff, &save->swd); __put_user((tsk->thread.fsr>>16) & 0xffff, &save->twd); __put_user(tsk->thread.fir, &save->fip); __put_user((tsk->thread.fir>>32) & 0xffff, &save->fcs); __put_user(tsk->thread.fdr, &save->foo); __put_user((tsk->thread.fdr>>32) & 0xffff, &save->fos); /* * Stack frames start with 16-bytes of temp space */ swp = (struct switch_stack *)(tsk->thread.ksp + 16); ptp = task_pt_regs(tsk); tos = (tsk->thread.fsr >> 11) & 7; for (i = 0; i < 8; i++) put_fpreg(i, &save->st_space[i], ptp, swp, tos); return 0; } static int restore_ia32_fpstate (struct task_struct *tsk, struct ia32_user_i387_struct __user *save) { struct switch_stack *swp; struct pt_regs *ptp; int i, tos; unsigned int fsrlo, fsrhi, num32; if (!access_ok(VERIFY_READ, save, sizeof(*save))) return(-EFAULT); __get_user(num32, (unsigned int __user *)&save->cwd); tsk->thread.fcr = (tsk->thread.fcr & (~0x1f3f)) | (num32 & 0x1f3f); __get_user(fsrlo, (unsigned int __user *)&save->swd); __get_user(fsrhi, (unsigned int __user *)&save->twd); num32 = (fsrhi << 16) | fsrlo; tsk->thread.fsr = (tsk->thread.fsr & (~0xffffffff)) | num32; __get_user(num32, (unsigned int __user *)&save->fip); tsk->thread.fir = (tsk->thread.fir & (~0xffffffff)) | num32; __get_user(num32, (unsigned int __user *)&save->foo); tsk->thread.fdr = (tsk->thread.fdr & (~0xffffffff)) | num32; /* * Stack frames start with 16-bytes of temp space */ swp = (struct switch_stack *)(tsk->thread.ksp + 16); ptp = task_pt_regs(tsk); tos = (tsk->thread.fsr >> 11) & 7; for (i = 0; i < 8; i++) get_fpreg(i, &save->st_space[i], ptp, swp, tos); return 0; } int save_ia32_fpxstate (struct task_struct *tsk, struct ia32_user_fxsr_struct __user *save) { struct switch_stack *swp; struct pt_regs *ptp; int i, tos; unsigned long mxcsr=0; unsigned long num128[2]; if (!access_ok(VERIFY_WRITE, save, sizeof(*save))) return -EFAULT; __put_user(tsk->thread.fcr & 0xffff, &save->cwd); __put_user(tsk->thread.fsr & 0xffff, &save->swd); __put_user((tsk->thread.fsr>>16) & 0xffff, &save->twd); __put_user(tsk->thread.fir, &save->fip); __put_user((tsk->thread.fir>>32) & 0xffff, &save->fcs); __put_user(tsk->thread.fdr, &save->foo); __put_user((tsk->thread.fdr>>32) & 0xffff, &save->fos); /* * Stack frames start with 16-bytes of temp space */ swp = (struct switch_stack *)(tsk->thread.ksp + 16); ptp = task_pt_regs(tsk); tos = (tsk->thread.fsr >> 11) & 7; for (i = 0; i < 8; i++) put_fpreg(i, (struct _fpreg_ia32 __user *)&save->st_space[4*i], ptp, swp, tos); mxcsr = ((tsk->thread.fcr>>32) & 0xff80) | ((tsk->thread.fsr>>32) & 0x3f); __put_user(mxcsr & 0xffff, &save->mxcsr); for (i = 0; i < 8; i++) { memcpy(&(num128[0]), &(swp->f16) + i*2, sizeof(unsigned long)); memcpy(&(num128[1]), &(swp->f17) + i*2, sizeof(unsigned long)); copy_to_user(&save->xmm_space[0] + 4*i, num128, sizeof(struct _xmmreg_ia32)); } return 0; } static int restore_ia32_fpxstate (struct task_struct *tsk, struct ia32_user_fxsr_struct __user *save) { struct switch_stack *swp; struct pt_regs *ptp; int i, tos; unsigned int fsrlo, fsrhi, num32; int mxcsr; unsigned long num64; unsigned long num128[2]; if (!access_ok(VERIFY_READ, save, sizeof(*save))) return(-EFAULT); __get_user(num32, (unsigned int __user *)&save->cwd); tsk->thread.fcr = (tsk->thread.fcr & (~0x1f3f)) | (num32 & 0x1f3f); __get_user(fsrlo, (unsigned int __user *)&save->swd); __get_user(fsrhi, (unsigned int __user *)&save->twd); num32 = (fsrhi << 16) | fsrlo; tsk->thread.fsr = (tsk->thread.fsr & (~0xffffffff)) | num32; __get_user(num32, (unsigned int __user *)&save->fip); tsk->thread.fir = (tsk->thread.fir & (~0xffffffff)) | num32; __get_user(num32, (unsigned int __user *)&save->foo); tsk->thread.fdr = (tsk->thread.fdr & (~0xffffffff)) | num32; /* * Stack frames start with 16-bytes of temp space */ swp = (struct switch_stack *)(tsk->thread.ksp + 16); ptp = task_pt_regs(tsk); tos = (tsk->thread.fsr >> 11) & 7; for (i = 0; i < 8; i++) get_fpreg(i, (struct _fpreg_ia32 __user *)&save->st_space[4*i], ptp, swp, tos); __get_user(mxcsr, (unsigned int __user *)&save->mxcsr); num64 = mxcsr & 0xff10; tsk->thread.fcr = (tsk->thread.fcr & (~0xff1000000000UL)) | (num64<<32); num64 = mxcsr & 0x3f; tsk->thread.fsr = (tsk->thread.fsr & (~0x3f00000000UL)) | (num64<<32); for (i = 0; i < 8; i++) { copy_from_user(num128, &save->xmm_space[0] + 4*i, sizeof(struct _xmmreg_ia32)); memcpy(&(swp->f16) + i*2, &(num128[0]), sizeof(unsigned long)); memcpy(&(swp->f17) + i*2, &(num128[1]), sizeof(unsigned long)); } return 0; } long compat_arch_ptrace(struct task_struct *child, compat_long_t request, compat_ulong_t caddr, compat_ulong_t cdata) { unsigned long addr = caddr; unsigned long data = cdata; unsigned int tmp; long i, ret; switch (request) { case PTRACE_PEEKUSR: /* read word at addr in USER area */ ret = -EIO; if ((addr & 3) || addr > 17*sizeof(int)) break; tmp = getreg(child, addr); if (!put_user(tmp, (unsigned int __user *) compat_ptr(data))) ret = 0; break; case PTRACE_POKEUSR: /* write word at addr in USER area */ ret = -EIO; if ((addr & 3) || addr > 17*sizeof(int)) break; putreg(child, addr, data); ret = 0; break; case IA32_PTRACE_GETREGS: if (!access_ok(VERIFY_WRITE, compat_ptr(data), 17*sizeof(int))) { ret = -EIO; break; } for (i = 0; i < (int) (17*sizeof(int)); i += sizeof(int) ) { put_user(getreg(child, i), (unsigned int __user *) compat_ptr(data)); data += sizeof(int); } ret = 0; break; case IA32_PTRACE_SETREGS: if (!access_ok(VERIFY_READ, compat_ptr(data), 17*sizeof(int))) { ret = -EIO; break; } for (i = 0; i < (int) (17*sizeof(int)); i += sizeof(int) ) { get_user(tmp, (unsigned int __user *) compat_ptr(data)); putreg(child, i, tmp); data += sizeof(int); } ret = 0; break; case IA32_PTRACE_GETFPREGS: ret = save_ia32_fpstate(child, (struct ia32_user_i387_struct __user *) compat_ptr(data)); break; case IA32_PTRACE_GETFPXREGS: ret = save_ia32_fpxstate(child, (struct ia32_user_fxsr_struct __user *) compat_ptr(data)); break; case IA32_PTRACE_SETFPREGS: ret = restore_ia32_fpstate(child, (struct ia32_user_i387_struct __user *) compat_ptr(data)); break; case IA32_PTRACE_SETFPXREGS: ret = restore_ia32_fpxstate(child, (struct ia32_user_fxsr_struct __user *) compat_ptr(data)); break; default: return compat_ptrace_request(child, request, caddr, cdata); } return ret; } typedef struct { unsigned int ss_sp; unsigned int ss_flags; unsigned int ss_size; } ia32_stack_t; asmlinkage long sys32_sigaltstack (ia32_stack_t __user *uss32, ia32_stack_t __user *uoss32, long arg2, long arg3, long arg4, long arg5, long arg6, long arg7, struct pt_regs pt) { stack_t uss, uoss; ia32_stack_t buf32; int ret; mm_segment_t old_fs = get_fs(); if (uss32) { if (copy_from_user(&buf32, uss32, sizeof(ia32_stack_t))) return -EFAULT; uss.ss_sp = (void __user *) (long) buf32.ss_sp; uss.ss_flags = buf32.ss_flags; /* MINSIGSTKSZ is different for ia32 vs ia64. We lie here to pass the check and set it to the user requested value later */ if ((buf32.ss_flags != SS_DISABLE) && (buf32.ss_size < MINSIGSTKSZ_IA32)) { ret = -ENOMEM; goto out; } uss.ss_size = MINSIGSTKSZ; } set_fs(KERNEL_DS); ret = do_sigaltstack(uss32 ? (stack_t __user *) &uss : NULL, (stack_t __user *) &uoss, pt.r12); current->sas_ss_size = buf32.ss_size; set_fs(old_fs); out: if (ret < 0) return(ret); if (uoss32) { buf32.ss_sp = (long __user) uoss.ss_sp; buf32.ss_flags = uoss.ss_flags; buf32.ss_size = uoss.ss_size; if (copy_to_user(uoss32, &buf32, sizeof(ia32_stack_t))) return -EFAULT; } return ret; } asmlinkage int sys32_msync (unsigned int start, unsigned int len, int flags) { unsigned int addr; if (OFFSET4K(start)) return -EINVAL; addr = PAGE_START(start); return sys_msync(addr, len + (start - addr), flags); } struct sysctl32 { unsigned int name; int nlen; unsigned int oldval; unsigned int oldlenp; unsigned int newval; unsigned int newlen; unsigned int __unused[4]; }; #ifdef CONFIG_SYSCTL_SYSCALL asmlinkage long sys32_sysctl (struct sysctl32 __user *args) { struct sysctl32 a32; mm_segment_t old_fs = get_fs (); void __user *oldvalp, *newvalp; size_t oldlen; int __user *namep; long ret; if (copy_from_user(&a32, args, sizeof(a32))) return -EFAULT; /* * We need to pre-validate these because we have to disable address checking * before calling do_sysctl() because of OLDLEN but we can't run the risk of the * user specifying bad addresses here. Well, since we're dealing with 32 bit * addresses, we KNOW that access_ok() will always succeed, so this is an * expensive NOP, but so what... */ namep = (int __user *) compat_ptr(a32.name); oldvalp = compat_ptr(a32.oldval); newvalp = compat_ptr(a32.newval); if ((oldvalp && get_user(oldlen, (int __user *) compat_ptr(a32.oldlenp))) || !access_ok(VERIFY_WRITE, namep, 0) || !access_ok(VERIFY_WRITE, oldvalp, 0) || !access_ok(VERIFY_WRITE, newvalp, 0)) return -EFAULT; set_fs(KERNEL_DS); lock_kernel(); ret = do_sysctl(namep, a32.nlen, oldvalp, (size_t __user *) &oldlen, newvalp, (size_t) a32.newlen); unlock_kernel(); set_fs(old_fs); if (oldvalp && put_user (oldlen, (int __user *) compat_ptr(a32.oldlenp))) return -EFAULT; return ret; } #endif asmlinkage long sys32_newuname (struct new_utsname __user *name) { int ret = sys_newuname(name); if (!ret) if (copy_to_user(name->machine, "i686\0\0\0", 8)) ret = -EFAULT; return ret; } asmlinkage long sys32_getresuid16 (u16 __user *ruid, u16 __user *euid, u16 __user *suid) { uid_t a, b, c; int ret; mm_segment_t old_fs = get_fs(); set_fs(KERNEL_DS); ret = sys_getresuid((uid_t __user *) &a, (uid_t __user *) &b, (uid_t __user *) &c); set_fs(old_fs); if (put_user(a, ruid) || put_user(b, euid) || put_user(c, suid)) return -EFAULT; return ret; } asmlinkage long sys32_getresgid16 (u16 __user *rgid, u16 __user *egid, u16 __user *sgid) { gid_t a, b, c; int ret; mm_segment_t old_fs = get_fs(); set_fs(KERNEL_DS); ret = sys_getresgid((gid_t __user *) &a, (gid_t __user *) &b, (gid_t __user *) &c); set_fs(old_fs); if (ret) return ret; return put_user(a, rgid) | put_user(b, egid) | put_user(c, sgid); } asmlinkage long sys32_lseek (unsigned int fd, int offset, unsigned int whence) { /* Sign-extension of "offset" is important here... */ return sys_lseek(fd, offset, whence); } static int groups16_to_user(short __user *grouplist, struct group_info *group_info) { int i; short group; for (i = 0; i < group_info->ngroups; i++) { group = (short)GROUP_AT(group_info, i); if (put_user(group, grouplist+i)) return -EFAULT; } return 0; } static int groups16_from_user(struct group_info *group_info, short __user *grouplist) { int i; short group; for (i = 0; i < group_info->ngroups; i++) { if (get_user(group, grouplist+i)) return -EFAULT; GROUP_AT(group_info, i) = (gid_t)group; } return 0; } asmlinkage long sys32_getgroups16 (int gidsetsize, short __user *grouplist) { const struct cred *cred = current_cred(); int i; if (gidsetsize < 0) return -EINVAL; i = cred->group_info->ngroups; if (gidsetsize) { if (i > gidsetsize) { i = -EINVAL; goto out; } if (groups16_to_user(grouplist, cred->group_info)) { i = -EFAULT; goto out; } } out: return i; } asmlinkage long sys32_setgroups16 (int gidsetsize, short __user *grouplist) { struct group_info *group_info; int retval; if (!capable(CAP_SETGID)) return -EPERM; if ((unsigned)gidsetsize > NGROUPS_MAX) return -EINVAL; group_info = groups_alloc(gidsetsize); if (!group_info) return -ENOMEM; retval = groups16_from_user(group_info, grouplist); if (retval) { put_group_info(group_info); return retval; } retval = set_current_groups(group_info); put_group_info(group_info); return retval; } asmlinkage long sys32_truncate64 (unsigned int path, unsigned int len_lo, unsigned int len_hi) { return sys_truncate(compat_ptr(path), ((unsigned long) len_hi << 32) | len_lo); } asmlinkage long sys32_ftruncate64 (int fd, unsigned int len_lo, unsigned int len_hi) { return sys_ftruncate(fd, ((unsigned long) len_hi << 32) | len_lo); } static int putstat64 (struct stat64 __user *ubuf, struct kstat *kbuf) { int err; u64 hdev; if (clear_user(ubuf, sizeof(*ubuf))) return -EFAULT; hdev = huge_encode_dev(kbuf->dev); err = __put_user(hdev, (u32 __user*)&ubuf->st_dev); err |= __put_user(hdev >> 32, ((u32 __user*)&ubuf->st_dev) + 1); err |= __put_user(kbuf->ino, &ubuf->__st_ino); err |= __put_user(kbuf->ino, &ubuf->st_ino_lo); err |= __put_user(kbuf->ino >> 32, &ubuf->st_ino_hi); err |= __put_user(kbuf->mode, &ubuf->st_mode); err |= __put_user(kbuf->nlink, &ubuf->st_nlink); err |= __put_user(kbuf->uid, &ubuf->st_uid); err |= __put_user(kbuf->gid, &ubuf->st_gid); hdev = huge_encode_dev(kbuf->rdev); err = __put_user(hdev, (u32 __user*)&ubuf->st_rdev); err |= __put_user(hdev >> 32, ((u32 __user*)&ubuf->st_rdev) + 1); err |= __put_user(kbuf->size, &ubuf->st_size_lo); err |= __put_user((kbuf->size >> 32), &ubuf->st_size_hi); err |= __put_user(kbuf->atime.tv_sec, &ubuf->st_atime); err |= __put_user(kbuf->atime.tv_nsec, &ubuf->st_atime_nsec); err |= __put_user(kbuf->mtime.tv_sec, &ubuf->st_mtime); err |= __put_user(kbuf->mtime.tv_nsec, &ubuf->st_mtime_nsec); err |= __put_user(kbuf->ctime.tv_sec, &ubuf->st_ctime); err |= __put_user(kbuf->ctime.tv_nsec, &ubuf->st_ctime_nsec); err |= __put_user(kbuf->blksize, &ubuf->st_blksize); err |= __put_user(kbuf->blocks, &ubuf->st_blocks); return err; } asmlinkage long sys32_stat64 (char __user *filename, struct stat64 __user *statbuf) { struct kstat s; long ret = vfs_stat(filename, &s); if (!ret) ret = putstat64(statbuf, &s); return ret; } asmlinkage long sys32_lstat64 (char __user *filename, struct stat64 __user *statbuf) { struct kstat s; long ret = vfs_lstat(filename, &s); if (!ret) ret = putstat64(statbuf, &s); return ret; } asmlinkage long sys32_fstat64 (unsigned int fd, struct stat64 __user *statbuf) { struct kstat s; long ret = vfs_fstat(fd, &s); if (!ret) ret = putstat64(statbuf, &s); return ret; } asmlinkage long sys32_sched_rr_get_interval (pid_t pid, struct compat_timespec __user *interval) { mm_segment_t old_fs = get_fs(); struct timespec t; long ret; set_fs(KERNEL_DS); ret = sys_sched_rr_get_interval(pid, (struct timespec __user *) &t); set_fs(old_fs); if (put_compat_timespec(&t, interval)) return -EFAULT; return ret; } asmlinkage long sys32_pread (unsigned int fd, void __user *buf, unsigned int count, u32 pos_lo, u32 pos_hi) { return sys_pread64(fd, buf, count, ((unsigned long) pos_hi << 32) | pos_lo); } asmlinkage long sys32_pwrite (unsigned int fd, void __user *buf, unsigned int count, u32 pos_lo, u32 pos_hi) { return sys_pwrite64(fd, buf, count, ((unsigned long) pos_hi << 32) | pos_lo); } asmlinkage long sys32_sendfile (int out_fd, int in_fd, int __user *offset, unsigned int count) { mm_segment_t old_fs = get_fs(); long ret; off_t of; if (offset && get_user(of, offset)) return -EFAULT; set_fs(KERNEL_DS); ret = sys_sendfile(out_fd, in_fd, offset ? (off_t __user *) &of : NULL, count); set_fs(old_fs); if (offset && put_user(of, offset)) return -EFAULT; return ret; } asmlinkage long sys32_personality (unsigned int personality) { long ret; if (current->personality == PER_LINUX32 && personality == PER_LINUX) personality = PER_LINUX32; ret = sys_personality(personality); if (ret == PER_LINUX32) ret = PER_LINUX; return ret; } asmlinkage unsigned long sys32_brk (unsigned int brk) { unsigned long ret, obrk; struct mm_struct *mm = current->mm; obrk = mm->brk; ret = sys_brk(brk); if (ret < obrk) clear_user(compat_ptr(ret), PAGE_ALIGN(ret) - ret); return ret; } /* Structure for ia32 emulation on ia64 */ struct epoll_event32 { u32 events; u32 data[2]; }; asmlinkage long sys32_epoll_ctl(int epfd, int op, int fd, struct epoll_event32 __user *event) { mm_segment_t old_fs = get_fs(); struct epoll_event event64; int error; u32 data_halfword; if (!access_ok(VERIFY_READ, event, sizeof(struct epoll_event32))) return -EFAULT; __get_user(event64.events, &event->events); __get_user(data_halfword, &event->data[0]); event64.data = data_halfword; __get_user(data_halfword, &event->data[1]); event64.data |= (u64)data_halfword << 32; set_fs(KERNEL_DS); error = sys_epoll_ctl(epfd, op, fd, (struct epoll_event __user *) &event64); set_fs(old_fs); return error; } asmlinkage long sys32_epoll_wait(int epfd, struct epoll_event32 __user * events, int maxevents, int timeout) { struct epoll_event *events64 = NULL; mm_segment_t old_fs = get_fs(); int numevents, size; int evt_idx; int do_free_pages = 0; if (maxevents <= 0) { return -EINVAL; } /* Verify that the area passed by the user is writeable */ if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event32))) return -EFAULT; /* * Allocate space for the intermediate copy. If the space needed * is large enough to cause kmalloc to fail, then try again with * __get_free_pages. */ size = maxevents * sizeof(struct epoll_event); events64 = kmalloc(size, GFP_KERNEL); if (events64 == NULL) { events64 = (struct epoll_event *) __get_free_pages(GFP_KERNEL, get_order(size)); if (events64 == NULL) return -ENOMEM; do_free_pages = 1; } /* Do the system call */ set_fs(KERNEL_DS); /* copy_to/from_user should work on kernel mem*/ numevents = sys_epoll_wait(epfd, (struct epoll_event __user *) events64, maxevents, timeout); set_fs(old_fs); /* Don't modify userspace memory if we're returning an error */ if (numevents > 0) { /* Translate the 64-bit structures back into the 32-bit structures */ for (evt_idx = 0; evt_idx < numevents; evt_idx++) { __put_user(events64[evt_idx].events, &events[evt_idx].events); __put_user((u32)events64[evt_idx].data, &events[evt_idx].data[0]); __put_user((u32)(events64[evt_idx].data >> 32), &events[evt_idx].data[1]); } } if (do_free_pages) free_pages((unsigned long) events64, get_order(size)); else kfree(events64); return numevents; } /* * Get a yet unused TLS descriptor index. */ static int get_free_idx (void) { struct thread_struct *t = ¤t->thread; int idx; for (idx = 0; idx < GDT_ENTRY_TLS_ENTRIES; idx++) if (desc_empty(t->tls_array + idx)) return idx + GDT_ENTRY_TLS_MIN; return -ESRCH; } static void set_tls_desc(struct task_struct *p, int idx, const struct ia32_user_desc *info, int n) { struct thread_struct *t = &p->thread; struct desc_struct *desc = &t->tls_array[idx - GDT_ENTRY_TLS_MIN]; int cpu; /* * We must not get preempted while modifying the TLS. */ cpu = get_cpu(); while (n-- > 0) { if (LDT_empty(info)) { desc->a = 0; desc->b = 0; } else { desc->a = LDT_entry_a(info); desc->b = LDT_entry_b(info); } ++info; ++desc; } if (t == ¤t->thread) load_TLS(t, cpu); put_cpu(); } /* * Set a given TLS descriptor: */ asmlinkage int sys32_set_thread_area (struct ia32_user_desc __user *u_info) { struct ia32_user_desc info; int idx; if (copy_from_user(&info, u_info, sizeof(info))) return -EFAULT; idx = info.entry_number; /* * index -1 means the kernel should try to find and allocate an empty descriptor: */ if (idx == -1) { idx = get_free_idx(); if (idx < 0) return idx; if (put_user(idx, &u_info->entry_number)) return -EFAULT; } if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX) return -EINVAL; set_tls_desc(current, idx, &info, 1); return 0; } /* * Get the current Thread-Local Storage area: */ #define GET_BASE(desc) ( \ (((desc)->a >> 16) & 0x0000ffff) | \ (((desc)->b << 16) & 0x00ff0000) | \ ( (desc)->b & 0xff000000) ) #define GET_LIMIT(desc) ( \ ((desc)->a & 0x0ffff) | \ ((desc)->b & 0xf0000) ) #define GET_32BIT(desc) (((desc)->b >> 22) & 1) #define GET_CONTENTS(desc) (((desc)->b >> 10) & 3) #define GET_WRITABLE(desc) (((desc)->b >> 9) & 1) #define GET_LIMIT_PAGES(desc) (((desc)->b >> 23) & 1) #define GET_PRESENT(desc) (((desc)->b >> 15) & 1) #define GET_USEABLE(desc) (((desc)->b >> 20) & 1) static void fill_user_desc(struct ia32_user_desc *info, int idx, const struct desc_struct *desc) { info->entry_number = idx; info->base_addr = GET_BASE(desc); info->limit = GET_LIMIT(desc); info->seg_32bit = GET_32BIT(desc); info->contents = GET_CONTENTS(desc); info->read_exec_only = !GET_WRITABLE(desc); info->limit_in_pages = GET_LIMIT_PAGES(desc); info->seg_not_present = !GET_PRESENT(desc); info->useable = GET_USEABLE(desc); } asmlinkage int sys32_get_thread_area (struct ia32_user_desc __user *u_info) { struct ia32_user_desc info; struct desc_struct *desc; int idx; if (get_user(idx, &u_info->entry_number)) return -EFAULT; if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX) return -EINVAL; desc = current->thread.tls_array + idx - GDT_ENTRY_TLS_MIN; fill_user_desc(&info, idx, desc); if (copy_to_user(u_info, &info, sizeof(info))) return -EFAULT; return 0; } struct regset_get { void *kbuf; void __user *ubuf; }; struct regset_set { const void *kbuf; const void __user *ubuf; }; struct regset_getset { struct task_struct *target; const struct user_regset *regset; union { struct regset_get get; struct regset_set set; } u; unsigned int pos; unsigned int count; int ret; }; static void getfpreg(struct task_struct *task, int regno, int *val) { switch (regno / sizeof(int)) { case 0: *val = task->thread.fcr & 0xffff; break; case 1: *val = task->thread.fsr & 0xffff; break; case 2: *val = (task->thread.fsr>>16) & 0xffff; break; case 3: *val = task->thread.fir; break; case 4: *val = (task->thread.fir>>32) & 0xffff; break; case 5: *val = task->thread.fdr; break; case 6: *val = (task->thread.fdr >> 32) & 0xffff; break; } } static void setfpreg(struct task_struct *task, int regno, int val) { switch (regno / sizeof(int)) { case 0: task->thread.fcr = (task->thread.fcr & (~0x1f3f)) | (val & 0x1f3f); break; case 1: task->thread.fsr = (task->thread.fsr & (~0xffff)) | val; break; case 2: task->thread.fsr = (task->thread.fsr & (~0xffff0000)) | (val << 16); break; case 3: task->thread.fir = (task->thread.fir & (~0xffffffff)) | val; break; case 5: task->thread.fdr = (task->thread.fdr & (~0xffffffff)) | val; break; } } static void access_fpreg_ia32(int regno, void *reg, struct pt_regs *pt, struct switch_stack *sw, int tos, int write) { void *f; if ((regno += tos) >= 8) regno -= 8; if (regno < 4) f = &pt->f8 + regno; else if (regno <= 7) f = &sw->f12 + (regno - 4); else { printk(KERN_ERR "regno must be less than 7 \n"); return; } if (write) memcpy(f, reg, sizeof(struct _fpreg_ia32)); else memcpy(reg, f, sizeof(struct _fpreg_ia32)); } static void do_fpregs_get(struct unw_frame_info *info, void *arg) { struct regset_getset *dst = arg; struct task_struct *task = dst->target; struct pt_regs *pt; int start, end, tos; char buf[80]; if (dst->count == 0 || unw_unwind_to_user(info) < 0) return; if (dst->pos < 7 * sizeof(int)) { end = min((dst->pos + dst->count), (unsigned int)(7 * sizeof(int))); for (start = dst->pos; start < end; start += sizeof(int)) getfpreg(task, start, (int *)(buf + start)); dst->ret = user_regset_copyout(&dst->pos, &dst->count, &dst->u.get.kbuf, &dst->u.get.ubuf, buf, 0, 7 * sizeof(int)); if (dst->ret || dst->count == 0) return; } if (dst->pos < sizeof(struct ia32_user_i387_struct)) { pt = task_pt_regs(task); tos = (task->thread.fsr >> 11) & 7; end = min(dst->pos + dst->count, (unsigned int)(sizeof(struct ia32_user_i387_struct))); start = (dst->pos - 7 * sizeof(int)) / sizeof(struct _fpreg_ia32); end = (end - 7 * sizeof(int)) / sizeof(struct _fpreg_ia32); for (; start < end; start++) access_fpreg_ia32(start, (struct _fpreg_ia32 *)buf + start, pt, info->sw, tos, 0); dst->ret = user_regset_copyout(&dst->pos, &dst->count, &dst->u.get.kbuf, &dst->u.get.ubuf, buf, 7 * sizeof(int), sizeof(struct ia32_user_i387_struct)); if (dst->ret || dst->count == 0) return; } } static void do_fpregs_set(struct unw_frame_info *info, void *arg) { struct regset_getset *dst = arg; struct task_struct *task = dst->target; struct pt_regs *pt; char buf[80]; int end, start, tos; if (dst->count == 0 || unw_unwind_to_user(info) < 0) return; if (dst->pos < 7 * sizeof(int)) { start = dst->pos; dst->ret = user_regset_copyin(&dst->pos, &dst->count, &dst->u.set.kbuf, &dst->u.set.ubuf, buf, 0, 7 * sizeof(int)); if (dst->ret) return; for (; start < dst->pos; start += sizeof(int)) setfpreg(task, start, *((int *)(buf + start))); if (dst->count == 0) return; } if (dst->pos < sizeof(struct ia32_user_i387_struct)) { start = (dst->pos - 7 * sizeof(int)) / sizeof(struct _fpreg_ia32); dst->ret = user_regset_copyin(&dst->pos, &dst->count, &dst->u.set.kbuf, &dst->u.set.ubuf, buf, 7 * sizeof(int), sizeof(struct ia32_user_i387_struct)); if (dst->ret) return; pt = task_pt_regs(task); tos = (task->thread.fsr >> 11) & 7; end = (dst->pos - 7 * sizeof(int)) / sizeof(struct _fpreg_ia32); for (; start < end; start++) access_fpreg_ia32(start, (struct _fpreg_ia32 *)buf + start, pt, info->sw, tos, 1); if (dst->count == 0) return; } } #define OFFSET(member) ((int)(offsetof(struct ia32_user_fxsr_struct, member))) static void getfpxreg(struct task_struct *task, int start, int end, char *buf) { int min_val; min_val = min(end, OFFSET(fop)); while (start < min_val) { if (start == OFFSET(cwd)) *((short *)buf) = task->thread.fcr & 0xffff; else if (start == OFFSET(swd)) *((short *)buf) = task->thread.fsr & 0xffff; else if (start == OFFSET(twd)) *((short *)buf) = (task->thread.fsr>>16) & 0xffff; buf += 2; start += 2; } /* skip fop element */ if (start == OFFSET(fop)) { start += 2; buf += 2; } while (start < end) { if (start == OFFSET(fip)) *((int *)buf) = task->thread.fir; else if (start == OFFSET(fcs)) *((int *)buf) = (task->thread.fir>>32) & 0xffff; else if (start == OFFSET(foo)) *((int *)buf) = task->thread.fdr; else if (start == OFFSET(fos)) *((int *)buf) = (task->thread.fdr>>32) & 0xffff; else if (start == OFFSET(mxcsr)) *((int *)buf) = ((task->thread.fcr>>32) & 0xff80) | ((task->thread.fsr>>32) & 0x3f); buf += 4; start += 4; } } static void setfpxreg(struct task_struct *task, int start, int end, char *buf) { int min_val, num32; short num; unsigned long num64; min_val = min(end, OFFSET(fop)); while (start < min_val) { num = *((short *)buf); if (start == OFFSET(cwd)) { task->thread.fcr = (task->thread.fcr & (~0x1f3f)) | (num & 0x1f3f); } else if (start == OFFSET(swd)) { task->thread.fsr = (task->thread.fsr & (~0xffff)) | num; } else if (start == OFFSET(twd)) { task->thread.fsr = (task->thread.fsr & (~0xffff0000)) | (((int)num) << 16); } buf += 2; start += 2; } /* skip fop element */ if (start == OFFSET(fop)) { start += 2; buf += 2; } while (start < end) { num32 = *((int *)buf); if (start == OFFSET(fip)) task->thread.fir = (task->thread.fir & (~0xffffffff)) | num32; else if (start == OFFSET(foo)) task->thread.fdr = (task->thread.fdr & (~0xffffffff)) | num32; else if (start == OFFSET(mxcsr)) { num64 = num32 & 0xff10; task->thread.fcr = (task->thread.fcr & (~0xff1000000000UL)) | (num64<<32); num64 = num32 & 0x3f; task->thread.fsr = (task->thread.fsr & (~0x3f00000000UL)) | (num64<<32); } buf += 4; start += 4; } } static void do_fpxregs_get(struct unw_frame_info *info, void *arg) { struct regset_getset *dst = arg; struct task_struct *task = dst->target; struct pt_regs *pt; char buf[128]; int start, end, tos; if (dst->count == 0 || unw_unwind_to_user(info) < 0) return; if (dst->pos < OFFSET(st_space[0])) { end = min(dst->pos + dst->count, (unsigned int)32); getfpxreg(task, dst->pos, end, buf); dst->ret = user_regset_copyout(&dst->pos, &dst->count, &dst->u.get.kbuf, &dst->u.get.ubuf, buf, 0, OFFSET(st_space[0])); if (dst->ret || dst->count == 0) return; } if (dst->pos < OFFSET(xmm_space[0])) { pt = task_pt_regs(task); tos = (task->thread.fsr >> 11) & 7; end = min(dst->pos + dst->count, (unsigned int)OFFSET(xmm_space[0])); start = (dst->pos - OFFSET(st_space[0])) / 16; end = (end - OFFSET(st_space[0])) / 16; for (; start < end; start++) access_fpreg_ia32(start, buf + 16 * start, pt, info->sw, tos, 0); dst->ret = user_regset_copyout(&dst->pos, &dst->count, &dst->u.get.kbuf, &dst->u.get.ubuf, buf, OFFSET(st_space[0]), OFFSET(xmm_space[0])); if (dst->ret || dst->count == 0) return; } if (dst->pos < OFFSET(padding[0])) dst->ret = user_regset_copyout(&dst->pos, &dst->count, &dst->u.get.kbuf, &dst->u.get.ubuf, &info->sw->f16, OFFSET(xmm_space[0]), OFFSET(padding[0])); } static void do_fpxregs_set(struct unw_frame_info *info, void *arg) { struct regset_getset *dst = arg; struct task_struct *task = dst->target; char buf[128]; int start, end; if (dst->count == 0 || unw_unwind_to_user(info) < 0) return; if (dst->pos < OFFSET(st_space[0])) { start = dst->pos; dst->ret = user_regset_copyin(&dst->pos, &dst->count, &dst->u.set.kbuf, &dst->u.set.ubuf, buf, 0, OFFSET(st_space[0])); if (dst->ret) return; setfpxreg(task, start, dst->pos, buf); if (dst->count == 0) return; } if (dst->pos < OFFSET(xmm_space[0])) { struct pt_regs *pt; int tos; pt = task_pt_regs(task); tos = (task->thread.fsr >> 11) & 7; start = (dst->pos - OFFSET(st_space[0])) / 16; dst->ret = user_regset_copyin(&dst->pos, &dst->count, &dst->u.set.kbuf, &dst->u.set.ubuf, buf, OFFSET(st_space[0]), OFFSET(xmm_space[0])); if (dst->ret) return; end = (dst->pos - OFFSET(st_space[0])) / 16; for (; start < end; start++) access_fpreg_ia32(start, buf + 16 * start, pt, info->sw, tos, 1); if (dst->count == 0) return; } if (dst->pos < OFFSET(padding[0])) dst->ret = user_regset_copyin(&dst->pos, &dst->count, &dst->u.set.kbuf, &dst->u.set.ubuf, &info->sw->f16, OFFSET(xmm_space[0]), OFFSET(padding[0])); } #undef OFFSET static int do_regset_call(void (*call)(struct unw_frame_info *, void *), struct task_struct *target, const struct user_regset *regset, unsigned int pos, unsigned int count, const void *kbuf, const void __user *ubuf) { struct regset_getset info = { .target = target, .regset = regset, .pos = pos, .count = count, .u.set = { .kbuf = kbuf, .ubuf = ubuf }, .ret = 0 }; if (target == current) unw_init_running(call, &info); else { struct unw_frame_info ufi; memset(&ufi, 0, sizeof(ufi)); unw_init_from_blocked_task(&ufi, target); (*call)(&ufi, &info); } return info.ret; } static int ia32_fpregs_get(struct task_struct *target, const struct user_regset *regset, unsigned int pos, unsigned int count, void *kbuf, void __user *ubuf) { return do_regset_call(do_fpregs_get, target, regset, pos, count, kbuf, ubuf); } static int ia32_fpregs_set(struct task_struct *target, const struct user_regset *regset, unsigned int pos, unsigned int count, const void *kbuf, const void __user *ubuf) { return do_regset_call(do_fpregs_set, target, regset, pos, count, kbuf, ubuf); } static int ia32_fpxregs_get(struct task_struct *target, const struct user_regset *regset, unsigned int pos, unsigned int count, void *kbuf, void __user *ubuf) { return do_regset_call(do_fpxregs_get, target, regset, pos, count, kbuf, ubuf); } static int ia32_fpxregs_set(struct task_struct *target, const struct user_regset *regset, unsigned int pos, unsigned int count, const void *kbuf, const void __user *ubuf) { return do_regset_call(do_fpxregs_set, target, regset, pos, count, kbuf, ubuf); } static int ia32_genregs_get(struct task_struct *target, const struct user_regset *regset, unsigned int pos, unsigned int count, void *kbuf, void __user *ubuf) { if (kbuf) { u32 *kp = kbuf; while (count > 0) { *kp++ = getreg(target, pos); pos += 4; count -= 4; } } else { u32 __user *up = ubuf; while (count > 0) { if (__put_user(getreg(target, pos), up++)) return -EFAULT; pos += 4; count -= 4; } } return 0; } static int ia32_genregs_set(struct task_struct *target, const struct user_regset *regset, unsigned int pos, unsigned int count, const void *kbuf, const void __user *ubuf) { int ret = 0; if (kbuf) { const u32 *kp = kbuf; while (!ret && count > 0) { putreg(target, pos, *kp++); pos += 4; count -= 4; } } else { const u32 __user *up = ubuf; u32 val; while (!ret && count > 0) { ret = __get_user(val, up++); if (!ret) putreg(target, pos, val); pos += 4; count -= 4; } } return ret; } static int ia32_tls_active(struct task_struct *target, const struct user_regset *regset) { struct thread_struct *t = &target->thread; int n = GDT_ENTRY_TLS_ENTRIES; while (n > 0 && desc_empty(&t->tls_array[n -1])) --n; return n; } static int ia32_tls_get(struct task_struct *target, const struct user_regset *regset, unsigned int pos, unsigned int count, void *kbuf, void __user *ubuf) { const struct desc_struct *tls; if (pos > GDT_ENTRY_TLS_ENTRIES * sizeof(struct ia32_user_desc) || (pos % sizeof(struct ia32_user_desc)) != 0 || (count % sizeof(struct ia32_user_desc)) != 0) return -EINVAL; pos /= sizeof(struct ia32_user_desc); count /= sizeof(struct ia32_user_desc); tls = &target->thread.tls_array[pos]; if (kbuf) { struct ia32_user_desc *info = kbuf; while (count-- > 0) fill_user_desc(info++, GDT_ENTRY_TLS_MIN + pos++, tls++); } else { struct ia32_user_desc __user *u_info = ubuf; while (count-- > 0) { struct ia32_user_desc info; fill_user_desc(&info, GDT_ENTRY_TLS_MIN + pos++, tls++); if (__copy_to_user(u_info++, &info, sizeof(info))) return -EFAULT; } } return 0; } static int ia32_tls_set(struct task_struct *target, const struct user_regset *regset, unsigned int pos, unsigned int count, const void *kbuf, const void __user *ubuf) { struct ia32_user_desc infobuf[GDT_ENTRY_TLS_ENTRIES]; const struct ia32_user_desc *info; if (pos > GDT_ENTRY_TLS_ENTRIES * sizeof(struct ia32_user_desc) || (pos % sizeof(struct ia32_user_desc)) != 0 || (count % sizeof(struct ia32_user_desc)) != 0) return -EINVAL; if (kbuf) info = kbuf; else if (__copy_from_user(infobuf, ubuf, count)) return -EFAULT; else info = infobuf; set_tls_desc(target, GDT_ENTRY_TLS_MIN + (pos / sizeof(struct ia32_user_desc)), info, count / sizeof(struct ia32_user_desc)); return 0; } /* * This should match arch/i386/kernel/ptrace.c:native_regsets. * XXX ioperm? vm86? */ static const struct user_regset ia32_regsets[] = { { .core_note_type = NT_PRSTATUS, .n = sizeof(struct user_regs_struct32)/4, .size = 4, .align = 4, .get = ia32_genregs_get, .set = ia32_genregs_set }, { .core_note_type = NT_PRFPREG, .n = sizeof(struct ia32_user_i387_struct) / 4, .size = 4, .align = 4, .get = ia32_fpregs_get, .set = ia32_fpregs_set }, { .core_note_type = NT_PRXFPREG, .n = sizeof(struct ia32_user_fxsr_struct) / 4, .size = 4, .align = 4, .get = ia32_fpxregs_get, .set = ia32_fpxregs_set }, { .core_note_type = NT_386_TLS, .n = GDT_ENTRY_TLS_ENTRIES, .bias = GDT_ENTRY_TLS_MIN, .size = sizeof(struct ia32_user_desc), .align = sizeof(struct ia32_user_desc), .active = ia32_tls_active, .get = ia32_tls_get, .set = ia32_tls_set, }, }; const struct user_regset_view user_ia32_view = { .name = "i386", .e_machine = EM_386, .regsets = ia32_regsets, .n = ARRAY_SIZE(ia32_regsets) }; long sys32_fadvise64_64(int fd, __u32 offset_low, __u32 offset_high, __u32 len_low, __u32 len_high, int advice) { return sys_fadvise64_64(fd, (((u64)offset_high)<<32) | offset_low, (((u64)len_high)<<32) | len_low, advice); } #ifdef NOTYET /* UNTESTED FOR IA64 FROM HERE DOWN */ asmlinkage long sys32_setreuid(compat_uid_t ruid, compat_uid_t euid) { uid_t sruid, seuid; sruid = (ruid == (compat_uid_t)-1) ? ((uid_t)-1) : ((uid_t)ruid); seuid = (euid == (compat_uid_t)-1) ? ((uid_t)-1) : ((uid_t)euid); return sys_setreuid(sruid, seuid); } asmlinkage long sys32_setresuid(compat_uid_t ruid, compat_uid_t euid, compat_uid_t suid) { uid_t sruid, seuid, ssuid; sruid = (ruid == (compat_uid_t)-1) ? ((uid_t)-1) : ((uid_t)ruid); seuid = (euid == (compat_uid_t)-1) ? ((uid_t)-1) : ((uid_t)euid); ssuid = (suid == (compat_uid_t)-1) ? ((uid_t)-1) : ((uid_t)suid); return sys_setresuid(sruid, seuid, ssuid); } asmlinkage long sys32_setregid(compat_gid_t rgid, compat_gid_t egid) { gid_t srgid, segid; srgid = (rgid == (compat_gid_t)-1) ? ((gid_t)-1) : ((gid_t)rgid); segid = (egid == (compat_gid_t)-1) ? ((gid_t)-1) : ((gid_t)egid); return sys_setregid(srgid, segid); } asmlinkage long sys32_setresgid(compat_gid_t rgid, compat_gid_t egid, compat_gid_t sgid) { gid_t srgid, segid, ssgid; srgid = (rgid == (compat_gid_t)-1) ? ((gid_t)-1) : ((gid_t)rgid); segid = (egid == (compat_gid_t)-1) ? ((gid_t)-1) : ((gid_t)egid); ssgid = (sgid == (compat_gid_t)-1) ? ((gid_t)-1) : ((gid_t)sgid); return sys_setresgid(srgid, segid, ssgid); } #endif /* NOTYET */