// SPDX-License-Identifier: GPL-2.0 /* * Architecture-specific setup. * * Copyright (C) 1998-2003 Hewlett-Packard Co * David Mosberger-Tang * 04/11/17 Ashok Raj Added CPU Hotplug Support * * 2005-10-07 Keith Owens * Add notify_die() hooks. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "entry.h" #include "sigframe.h" void (*ia64_mark_idle)(int); unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE; EXPORT_SYMBOL(boot_option_idle_override); void (*pm_power_off) (void); EXPORT_SYMBOL(pm_power_off); static void ia64_do_show_stack (struct unw_frame_info *info, void *arg) { unsigned long ip, sp, bsp; const char *loglvl = arg; printk("%s\nCall Trace:\n", loglvl); do { unw_get_ip(info, &ip); if (ip == 0) break; unw_get_sp(info, &sp); unw_get_bsp(info, &bsp); printk("%s [<%016lx>] %pS\n" " sp=%016lx bsp=%016lx\n", loglvl, ip, (void *)ip, sp, bsp); } while (unw_unwind(info) >= 0); } void show_stack (struct task_struct *task, unsigned long *sp, const char *loglvl) { if (!task) unw_init_running(ia64_do_show_stack, (void *)loglvl); else { struct unw_frame_info info; unw_init_from_blocked_task(&info, task); ia64_do_show_stack(&info, (void *)loglvl); } } void show_regs (struct pt_regs *regs) { unsigned long ip = regs->cr_iip + ia64_psr(regs)->ri; print_modules(); printk("\n"); show_regs_print_info(KERN_DEFAULT); printk("psr : %016lx ifs : %016lx ip : [<%016lx>] %s (%s)\n", regs->cr_ipsr, regs->cr_ifs, ip, print_tainted(), init_utsname()->release); printk("ip is at %pS\n", (void *)ip); printk("unat: %016lx pfs : %016lx rsc : %016lx\n", regs->ar_unat, regs->ar_pfs, regs->ar_rsc); printk("rnat: %016lx bsps: %016lx pr : %016lx\n", regs->ar_rnat, regs->ar_bspstore, regs->pr); printk("ldrs: %016lx ccv : %016lx fpsr: %016lx\n", regs->loadrs, regs->ar_ccv, regs->ar_fpsr); printk("csd : %016lx ssd : %016lx\n", regs->ar_csd, regs->ar_ssd); printk("b0 : %016lx b6 : %016lx b7 : %016lx\n", regs->b0, regs->b6, regs->b7); printk("f6 : %05lx%016lx f7 : %05lx%016lx\n", regs->f6.u.bits[1], regs->f6.u.bits[0], regs->f7.u.bits[1], regs->f7.u.bits[0]); printk("f8 : %05lx%016lx f9 : %05lx%016lx\n", regs->f8.u.bits[1], regs->f8.u.bits[0], regs->f9.u.bits[1], regs->f9.u.bits[0]); printk("f10 : %05lx%016lx f11 : %05lx%016lx\n", regs->f10.u.bits[1], regs->f10.u.bits[0], regs->f11.u.bits[1], regs->f11.u.bits[0]); printk("r1 : %016lx r2 : %016lx r3 : %016lx\n", regs->r1, regs->r2, regs->r3); printk("r8 : %016lx r9 : %016lx r10 : %016lx\n", regs->r8, regs->r9, regs->r10); printk("r11 : %016lx r12 : %016lx r13 : %016lx\n", regs->r11, regs->r12, regs->r13); printk("r14 : %016lx r15 : %016lx r16 : %016lx\n", regs->r14, regs->r15, regs->r16); printk("r17 : %016lx r18 : %016lx r19 : %016lx\n", regs->r17, regs->r18, regs->r19); printk("r20 : %016lx r21 : %016lx r22 : %016lx\n", regs->r20, regs->r21, regs->r22); printk("r23 : %016lx r24 : %016lx r25 : %016lx\n", regs->r23, regs->r24, regs->r25); printk("r26 : %016lx r27 : %016lx r28 : %016lx\n", regs->r26, regs->r27, regs->r28); printk("r29 : %016lx r30 : %016lx r31 : %016lx\n", regs->r29, regs->r30, regs->r31); if (user_mode(regs)) { /* print the stacked registers */ unsigned long val, *bsp, ndirty; int i, sof, is_nat = 0; sof = regs->cr_ifs & 0x7f; /* size of frame */ ndirty = (regs->loadrs >> 19); bsp = ia64_rse_skip_regs((unsigned long *) regs->ar_bspstore, ndirty); for (i = 0; i < sof; ++i) { get_user(val, (unsigned long __user *) ia64_rse_skip_regs(bsp, i)); printk("r%-3u:%c%016lx%s", 32 + i, is_nat ? '*' : ' ', val, ((i == sof - 1) || (i % 3) == 2) ? "\n" : " "); } } else show_stack(NULL, NULL, KERN_DEFAULT); } /* local support for deprecated console_print */ void console_print(const char *s) { printk(KERN_EMERG "%s", s); } void do_notify_resume_user(sigset_t *unused, struct sigscratch *scr, long in_syscall) { if (fsys_mode(current, &scr->pt)) { /* * defer signal-handling etc. until we return to * privilege-level 0. */ if (!ia64_psr(&scr->pt)->lp) ia64_psr(&scr->pt)->lp = 1; return; } /* deal with pending signal delivery */ if (test_thread_flag(TIF_SIGPENDING) || test_thread_flag(TIF_NOTIFY_SIGNAL)) { local_irq_enable(); /* force interrupt enable */ ia64_do_signal(scr, in_syscall); } if (test_thread_flag(TIF_NOTIFY_RESUME)) { local_irq_enable(); /* force interrupt enable */ resume_user_mode_work(&scr->pt); } /* copy user rbs to kernel rbs */ if (unlikely(test_thread_flag(TIF_RESTORE_RSE))) { local_irq_enable(); /* force interrupt enable */ ia64_sync_krbs(); } local_irq_disable(); /* force interrupt disable */ } static int __init nohalt_setup(char * str) { cpu_idle_poll_ctrl(true); return 1; } __setup("nohalt", nohalt_setup); #ifdef CONFIG_HOTPLUG_CPU /* We don't actually take CPU down, just spin without interrupts. */ static inline void play_dead(void) { unsigned int this_cpu = smp_processor_id(); /* Ack it */ __this_cpu_write(cpu_state, CPU_DEAD); max_xtp(); local_irq_disable(); idle_task_exit(); ia64_jump_to_sal(&sal_boot_rendez_state[this_cpu]); /* * The above is a point of no-return, the processor is * expected to be in SAL loop now. */ BUG(); } #else static inline void play_dead(void) { BUG(); } #endif /* CONFIG_HOTPLUG_CPU */ void arch_cpu_idle_dead(void) { play_dead(); } void arch_cpu_idle(void) { void (*mark_idle)(int) = ia64_mark_idle; #ifdef CONFIG_SMP min_xtp(); #endif rmb(); if (mark_idle) (*mark_idle)(1); raw_safe_halt(); if (mark_idle) (*mark_idle)(0); #ifdef CONFIG_SMP normal_xtp(); #endif } void ia64_save_extra (struct task_struct *task) { if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0) ia64_save_debug_regs(&task->thread.dbr[0]); } void ia64_load_extra (struct task_struct *task) { if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0) ia64_load_debug_regs(&task->thread.dbr[0]); } /* * Copy the state of an ia-64 thread. * * We get here through the following call chain: * * from user-level: from kernel: * * * sys_clone : * kernel_clone kernel_clone * copy_thread copy_thread * * This means that the stack layout is as follows: * * +---------------------+ (highest addr) * | struct pt_regs | * +---------------------+ * | struct switch_stack | * +---------------------+ * | | * | memory stack | * | | <-- sp (lowest addr) * +---------------------+ * * Observe that we copy the unat values that are in pt_regs and switch_stack. Spilling an * integer to address X causes bit N in ar.unat to be set to the NaT bit of the register, * with N=(X & 0x1ff)/8. Thus, copying the unat value preserves the NaT bits ONLY if the * pt_regs structure in the parent is congruent to that of the child, modulo 512. Since * the stack is page aligned and the page size is at least 4KB, this is always the case, * so there is nothing to worry about. */ int copy_thread(struct task_struct *p, const struct kernel_clone_args *args) { unsigned long clone_flags = args->flags; unsigned long user_stack_base = args->stack; unsigned long user_stack_size = args->stack_size; unsigned long tls = args->tls; extern char ia64_ret_from_clone; struct switch_stack *child_stack, *stack; unsigned long rbs, child_rbs, rbs_size; struct pt_regs *child_ptregs; struct pt_regs *regs = current_pt_regs(); int retval = 0; child_ptregs = (struct pt_regs *) ((unsigned long) p + IA64_STK_OFFSET) - 1; child_stack = (struct switch_stack *) child_ptregs - 1; rbs = (unsigned long) current + IA64_RBS_OFFSET; child_rbs = (unsigned long) p + IA64_RBS_OFFSET; /* copy parts of thread_struct: */ p->thread.ksp = (unsigned long) child_stack - 16; /* * NOTE: The calling convention considers all floating point * registers in the high partition (fph) to be scratch. Since * the only way to get to this point is through a system call, * we know that the values in fph are all dead. Hence, there * is no need to inherit the fph state from the parent to the * child and all we have to do is to make sure that * IA64_THREAD_FPH_VALID is cleared in the child. * * XXX We could push this optimization a bit further by * clearing IA64_THREAD_FPH_VALID on ANY system call. * However, it's not clear this is worth doing. Also, it * would be a slight deviation from the normal Linux system * call behavior where scratch registers are preserved across * system calls (unless used by the system call itself). */ # define THREAD_FLAGS_TO_CLEAR (IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID \ | IA64_THREAD_PM_VALID) # define THREAD_FLAGS_TO_SET 0 p->thread.flags = ((current->thread.flags & ~THREAD_FLAGS_TO_CLEAR) | THREAD_FLAGS_TO_SET); ia64_drop_fpu(p); /* don't pick up stale state from a CPU's fph */ if (unlikely(args->fn)) { if (unlikely(args->idle)) { /* fork_idle() called us */ return 0; } memset(child_stack, 0, sizeof(*child_ptregs) + sizeof(*child_stack)); child_stack->r4 = (unsigned long) args->fn; child_stack->r5 = (unsigned long) args->fn_arg; /* * Preserve PSR bits, except for bits 32-34 and 37-45, * which we can't read. */ child_ptregs->cr_ipsr = ia64_getreg(_IA64_REG_PSR) | IA64_PSR_BN; /* mark as valid, empty frame */ child_ptregs->cr_ifs = 1UL << 63; child_stack->ar_fpsr = child_ptregs->ar_fpsr = ia64_getreg(_IA64_REG_AR_FPSR); child_stack->pr = (1 << PRED_KERNEL_STACK); child_stack->ar_bspstore = child_rbs; child_stack->b0 = (unsigned long) &ia64_ret_from_clone; /* stop some PSR bits from being inherited. * the psr.up/psr.pp bits must be cleared on fork but inherited on execve() * therefore we must specify them explicitly here and not include them in * IA64_PSR_BITS_TO_CLEAR. */ child_ptregs->cr_ipsr = ((child_ptregs->cr_ipsr | IA64_PSR_BITS_TO_SET) & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_PP | IA64_PSR_UP)); return 0; } stack = ((struct switch_stack *) regs) - 1; /* copy parent's switch_stack & pt_regs to child: */ memcpy(child_stack, stack, sizeof(*child_ptregs) + sizeof(*child_stack)); /* copy the parent's register backing store to the child: */ rbs_size = stack->ar_bspstore - rbs; memcpy((void *) child_rbs, (void *) rbs, rbs_size); if (clone_flags & CLONE_SETTLS) child_ptregs->r13 = tls; if (user_stack_base) { child_ptregs->r12 = user_stack_base + user_stack_size - 16; child_ptregs->ar_bspstore = user_stack_base; child_ptregs->ar_rnat = 0; child_ptregs->loadrs = 0; } child_stack->ar_bspstore = child_rbs + rbs_size; child_stack->b0 = (unsigned long) &ia64_ret_from_clone; /* stop some PSR bits from being inherited. * the psr.up/psr.pp bits must be cleared on fork but inherited on execve() * therefore we must specify them explicitly here and not include them in * IA64_PSR_BITS_TO_CLEAR. */ child_ptregs->cr_ipsr = ((child_ptregs->cr_ipsr | IA64_PSR_BITS_TO_SET) & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_PP | IA64_PSR_UP)); return retval; } asmlinkage long ia64_clone(unsigned long clone_flags, unsigned long stack_start, unsigned long stack_size, unsigned long parent_tidptr, unsigned long child_tidptr, unsigned long tls) { struct kernel_clone_args args = { .flags = (lower_32_bits(clone_flags) & ~CSIGNAL), .pidfd = (int __user *)parent_tidptr, .child_tid = (int __user *)child_tidptr, .parent_tid = (int __user *)parent_tidptr, .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL), .stack = stack_start, .stack_size = stack_size, .tls = tls, }; return kernel_clone(&args); } static void do_copy_task_regs (struct task_struct *task, struct unw_frame_info *info, void *arg) { unsigned long mask, sp, nat_bits = 0, ar_rnat, urbs_end, cfm; unsigned long ip; elf_greg_t *dst = arg; struct pt_regs *pt; char nat; int i; memset(dst, 0, sizeof(elf_gregset_t)); /* don't leak any kernel bits to user-level */ if (unw_unwind_to_user(info) < 0) return; unw_get_sp(info, &sp); pt = (struct pt_regs *) (sp + 16); urbs_end = ia64_get_user_rbs_end(task, pt, &cfm); if (ia64_sync_user_rbs(task, info->sw, pt->ar_bspstore, urbs_end) < 0) return; ia64_peek(task, info->sw, urbs_end, (long) ia64_rse_rnat_addr((long *) urbs_end), &ar_rnat); /* * coredump format: * r0-r31 * NaT bits (for r0-r31; bit N == 1 iff rN is a NaT) * predicate registers (p0-p63) * b0-b7 * ip cfm user-mask * ar.rsc ar.bsp ar.bspstore ar.rnat * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec */ /* r0 is zero */ for (i = 1, mask = (1UL << i); i < 32; ++i) { unw_get_gr(info, i, &dst[i], &nat); if (nat) nat_bits |= mask; mask <<= 1; } dst[32] = nat_bits; unw_get_pr(info, &dst[33]); for (i = 0; i < 8; ++i) unw_get_br(info, i, &dst[34 + i]); unw_get_rp(info, &ip); dst[42] = ip + ia64_psr(pt)->ri; dst[43] = cfm; dst[44] = pt->cr_ipsr & IA64_PSR_UM; unw_get_ar(info, UNW_AR_RSC, &dst[45]); /* * For bsp and bspstore, unw_get_ar() would return the kernel * addresses, but we need the user-level addresses instead: */ dst[46] = urbs_end; /* note: by convention PT_AR_BSP points to the end of the urbs! */ dst[47] = pt->ar_bspstore; dst[48] = ar_rnat; unw_get_ar(info, UNW_AR_CCV, &dst[49]); unw_get_ar(info, UNW_AR_UNAT, &dst[50]); unw_get_ar(info, UNW_AR_FPSR, &dst[51]); dst[52] = pt->ar_pfs; /* UNW_AR_PFS is == to pt->cr_ifs for interrupt frames */ unw_get_ar(info, UNW_AR_LC, &dst[53]); unw_get_ar(info, UNW_AR_EC, &dst[54]); unw_get_ar(info, UNW_AR_CSD, &dst[55]); unw_get_ar(info, UNW_AR_SSD, &dst[56]); } static void do_copy_regs (struct unw_frame_info *info, void *arg) { do_copy_task_regs(current, info, arg); } void ia64_elf_core_copy_regs (struct pt_regs *pt, elf_gregset_t dst) { unw_init_running(do_copy_regs, dst); } /* * Flush thread state. This is called when a thread does an execve(). */ void flush_thread (void) { /* drop floating-point and debug-register state if it exists: */ current->thread.flags &= ~(IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID); ia64_drop_fpu(current); } /* * Clean up state associated with a thread. This is called when * the thread calls exit(). */ void exit_thread (struct task_struct *tsk) { ia64_drop_fpu(tsk); } unsigned long __get_wchan (struct task_struct *p) { struct unw_frame_info info; unsigned long ip; int count = 0; /* * Note: p may not be a blocked task (it could be current or * another process running on some other CPU. Rather than * trying to determine if p is really blocked, we just assume * it's blocked and rely on the unwind routines to fail * gracefully if the process wasn't really blocked after all. * --davidm 99/12/15 */ unw_init_from_blocked_task(&info, p); do { if (task_is_running(p)) return 0; if (unw_unwind(&info) < 0) return 0; unw_get_ip(&info, &ip); if (!in_sched_functions(ip)) return ip; } while (count++ < 16); return 0; } void cpu_halt (void) { pal_power_mgmt_info_u_t power_info[8]; unsigned long min_power; int i, min_power_state; if (ia64_pal_halt_info(power_info) != 0) return; min_power_state = 0; min_power = power_info[0].pal_power_mgmt_info_s.power_consumption; for (i = 1; i < 8; ++i) if (power_info[i].pal_power_mgmt_info_s.im && power_info[i].pal_power_mgmt_info_s.power_consumption < min_power) { min_power = power_info[i].pal_power_mgmt_info_s.power_consumption; min_power_state = i; } while (1) ia64_pal_halt(min_power_state); } void machine_shutdown(void) { smp_shutdown_nonboot_cpus(reboot_cpu); #ifdef CONFIG_KEXEC kexec_disable_iosapic(); #endif } void machine_restart (char *restart_cmd) { (void) notify_die(DIE_MACHINE_RESTART, restart_cmd, NULL, 0, 0, 0); efi_reboot(REBOOT_WARM, NULL); } void machine_halt (void) { (void) notify_die(DIE_MACHINE_HALT, "", NULL, 0, 0, 0); cpu_halt(); } void machine_power_off (void) { do_kernel_power_off(); machine_halt(); } EXPORT_SYMBOL(ia64_delay_loop);