/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 1998-2003 Hewlett-Packard Co * David Mosberger-Tang * Stephane Eranian * Copyright (C) 2000, Rohit Seth * Copyright (C) 1999 VA Linux Systems * Copyright (C) 1999 Walt Drummond * Copyright (C) 2003 Silicon Graphics, Inc. All rights reserved. * * Routines used by ia64 machines with contiguous (or virtually contiguous) * memory. */ #include #include #include #include #include #include #include #include #include #include /* physical address where the bootmem map is located */ unsigned long bootmap_start; #ifdef CONFIG_SMP static void *cpu_data; /** * per_cpu_init - setup per-cpu variables * * Allocate and setup per-cpu data areas. */ void *per_cpu_init(void) { static bool first_time = true; void *cpu0_data = __cpu0_per_cpu; unsigned int cpu; if (!first_time) goto skip; first_time = false; /* * get_free_pages() cannot be used before cpu_init() done. * BSP allocates PERCPU_PAGE_SIZE bytes for all possible CPUs * to avoid that AP calls get_zeroed_page(). */ for_each_possible_cpu(cpu) { void *src = cpu == 0 ? cpu0_data : __phys_per_cpu_start; memcpy(cpu_data, src, __per_cpu_end - __per_cpu_start); __per_cpu_offset[cpu] = (char *)cpu_data - __per_cpu_start; per_cpu(local_per_cpu_offset, cpu) = __per_cpu_offset[cpu]; /* * percpu area for cpu0 is moved from the __init area * which is setup by head.S and used till this point. * Update ar.k3. This move is ensures that percpu * area for cpu0 is on the correct node and its * virtual address isn't insanely far from other * percpu areas which is important for congruent * percpu allocator. */ if (cpu == 0) ia64_set_kr(IA64_KR_PER_CPU_DATA, __pa(cpu_data) - (unsigned long)__per_cpu_start); cpu_data += PERCPU_PAGE_SIZE; } skip: return __per_cpu_start + __per_cpu_offset[smp_processor_id()]; } static inline void alloc_per_cpu_data(void) { size_t size = PERCPU_PAGE_SIZE * num_possible_cpus(); cpu_data = memblock_alloc_from(size, PERCPU_PAGE_SIZE, __pa(MAX_DMA_ADDRESS)); if (!cpu_data) panic("%s: Failed to allocate %lu bytes align=%lx from=%lx\n", __func__, size, PERCPU_PAGE_SIZE, __pa(MAX_DMA_ADDRESS)); } /** * setup_per_cpu_areas - setup percpu areas * * Arch code has already allocated and initialized percpu areas. All * this function has to do is to teach the determined layout to the * dynamic percpu allocator, which happens to be more complex than * creating whole new ones using helpers. */ void __init setup_per_cpu_areas(void) { struct pcpu_alloc_info *ai; struct pcpu_group_info *gi; unsigned int cpu; ssize_t static_size, reserved_size, dyn_size; ai = pcpu_alloc_alloc_info(1, num_possible_cpus()); if (!ai) panic("failed to allocate pcpu_alloc_info"); gi = &ai->groups[0]; /* units are assigned consecutively to possible cpus */ for_each_possible_cpu(cpu) gi->cpu_map[gi->nr_units++] = cpu; /* set parameters */ static_size = __per_cpu_end - __per_cpu_start; reserved_size = PERCPU_MODULE_RESERVE; dyn_size = PERCPU_PAGE_SIZE - static_size - reserved_size; if (dyn_size < 0) panic("percpu area overflow static=%zd reserved=%zd\n", static_size, reserved_size); ai->static_size = static_size; ai->reserved_size = reserved_size; ai->dyn_size = dyn_size; ai->unit_size = PERCPU_PAGE_SIZE; ai->atom_size = PAGE_SIZE; ai->alloc_size = PERCPU_PAGE_SIZE; pcpu_setup_first_chunk(ai, __per_cpu_start + __per_cpu_offset[0]); pcpu_free_alloc_info(ai); } #else #define alloc_per_cpu_data() do { } while (0) #endif /* CONFIG_SMP */ /** * find_memory - setup memory map * * Walk the EFI memory map and find usable memory for the system, taking * into account reserved areas. */ void __init find_memory (void) { reserve_memory(); /* first find highest page frame number */ min_low_pfn = ~0UL; max_low_pfn = 0; efi_memmap_walk(find_max_min_low_pfn, NULL); max_pfn = max_low_pfn; memblock_add_node(0, PFN_PHYS(max_low_pfn), 0, MEMBLOCK_NONE); find_initrd(); alloc_per_cpu_data(); } static int __init find_largest_hole(u64 start, u64 end, void *arg) { u64 *max_gap = arg; static u64 last_end = PAGE_OFFSET; /* NOTE: this algorithm assumes efi memmap table is ordered */ if (*max_gap < (start - last_end)) *max_gap = start - last_end; last_end = end; return 0; } static void __init verify_gap_absence(void) { unsigned long max_gap; /* Forbid FLATMEM if hole is > than 1G */ efi_memmap_walk(find_largest_hole, (u64 *)&max_gap); if (max_gap >= SZ_1G) panic("Cannot use FLATMEM with %ldMB hole\n" "Please switch over to SPARSEMEM\n", (max_gap >> 20)); } /* * Set up the page tables. */ void __init paging_init (void) { unsigned long max_dma; unsigned long max_zone_pfns[MAX_NR_ZONES]; memset(max_zone_pfns, 0, sizeof(max_zone_pfns)); max_dma = virt_to_phys((void *) MAX_DMA_ADDRESS) >> PAGE_SHIFT; max_zone_pfns[ZONE_DMA32] = max_dma; max_zone_pfns[ZONE_NORMAL] = max_low_pfn; verify_gap_absence(); free_area_init(max_zone_pfns); zero_page_memmap_ptr = virt_to_page(ia64_imva(empty_zero_page)); }