/* SPDX-License-Identifier: GPL-2.0 */ /* * Macros and functions to manipulate Meta page tables. */ #ifndef _METAG_PGTABLE_H #define _METAG_PGTABLE_H #include #define __ARCH_USE_5LEVEL_HACK #include /* Invalid regions on Meta: 0x00000000-0x001FFFFF and 0xFFFF0000-0xFFFFFFFF */ #if PAGE_OFFSET >= LINGLOBAL_BASE #define CONSISTENT_START 0xF7000000 #define CONSISTENT_END 0xF73FFFFF #define VMALLOC_START 0xF8000000 #define VMALLOC_END 0xFFFEFFFF #else #define CONSISTENT_START 0x77000000 #define CONSISTENT_END 0x773FFFFF #define VMALLOC_START 0x78000000 #define VMALLOC_END 0x7FFFFFFF #endif /* * The Linux memory management assumes a three-level page table setup. On * Meta, we use that, but "fold" the mid level into the top-level page * table. */ /* PGDIR_SHIFT determines the size of the area a second-level page table can * map. This is always 4MB. */ #define PGDIR_SHIFT 22 #define PGDIR_SIZE (1UL << PGDIR_SHIFT) #define PGDIR_MASK (~(PGDIR_SIZE-1)) /* * Entries per page directory level: we use a two-level, so * we don't really have any PMD directory physically. First level tables * always map 2Gb (local or global) at a granularity of 4MB, second-level * tables map 4MB with a granularity between 4MB and 4kB (between 1 and * 1024 entries). */ #define PTRS_PER_PTE (PGDIR_SIZE/PAGE_SIZE) #define HPTRS_PER_PTE (PGDIR_SIZE/HPAGE_SIZE) #define PTRS_PER_PGD 512 #define USER_PTRS_PER_PGD 256 #define FIRST_USER_ADDRESS META_MEMORY_BASE #define FIRST_USER_PGD_NR pgd_index(FIRST_USER_ADDRESS) #define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED | \ _PAGE_CACHEABLE) #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_WRITE | \ _PAGE_ACCESSED | _PAGE_CACHEABLE) #define PAGE_SHARED_C PAGE_SHARED #define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED | \ _PAGE_CACHEABLE) #define PAGE_COPY_C PAGE_COPY #define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED | \ _PAGE_CACHEABLE) #define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_DIRTY | \ _PAGE_ACCESSED | _PAGE_WRITE | \ _PAGE_CACHEABLE | _PAGE_KERNEL) #define __P000 PAGE_NONE #define __P001 PAGE_READONLY #define __P010 PAGE_COPY #define __P011 PAGE_COPY #define __P100 PAGE_READONLY #define __P101 PAGE_READONLY #define __P110 PAGE_COPY_C #define __P111 PAGE_COPY_C #define __S000 PAGE_NONE #define __S001 PAGE_READONLY #define __S010 PAGE_SHARED #define __S011 PAGE_SHARED #define __S100 PAGE_READONLY #define __S101 PAGE_READONLY #define __S110 PAGE_SHARED_C #define __S111 PAGE_SHARED_C #ifndef __ASSEMBLY__ #include /* zero page used for uninitialized stuff */ extern unsigned long empty_zero_page; #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) /* Certain architectures need to do special things when pte's * within a page table are directly modified. Thus, the following * hook is made available. */ #define set_pte(pteptr, pteval) ((*(pteptr)) = (pteval)) #define set_pte_at(mm, addr, ptep, pteval) set_pte(ptep, pteval) #define set_pmd(pmdptr, pmdval) (*(pmdptr) = pmdval) #define pte_pfn(pte) (pte_val(pte) >> PAGE_SHIFT) #define pfn_pte(pfn, prot) __pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot)) #define pte_none(x) (!pte_val(x)) #define pte_present(x) (pte_val(x) & _PAGE_PRESENT) #define pte_clear(mm, addr, xp) do { pte_val(*(xp)) = 0; } while (0) #define pmd_none(x) (!pmd_val(x)) #define pmd_bad(x) ((pmd_val(x) & ~(PAGE_MASK | _PAGE_SZ_MASK)) \ != (_PAGE_TABLE & ~_PAGE_SZ_MASK)) #define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT) #define pmd_clear(xp) do { pmd_val(*(xp)) = 0; } while (0) #define pte_page(x) pfn_to_page(pte_pfn(x)) /* * The following only work if pte_present() is true. * Undefined behaviour if not.. */ static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_WRITE; } static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; } static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; } static inline int pte_special(pte_t pte) { return 0; } static inline pte_t pte_wrprotect(pte_t pte) { pte_val(pte) &= (~_PAGE_WRITE); return pte; } static inline pte_t pte_mkclean(pte_t pte) { pte_val(pte) &= ~_PAGE_DIRTY; return pte; } static inline pte_t pte_mkold(pte_t pte) { pte_val(pte) &= ~_PAGE_ACCESSED; return pte; } static inline pte_t pte_mkwrite(pte_t pte) { pte_val(pte) |= _PAGE_WRITE; return pte; } static inline pte_t pte_mkdirty(pte_t pte) { pte_val(pte) |= _PAGE_DIRTY; return pte; } static inline pte_t pte_mkyoung(pte_t pte) { pte_val(pte) |= _PAGE_ACCESSED; return pte; } static inline pte_t pte_mkspecial(pte_t pte) { return pte; } static inline pte_t pte_mkhuge(pte_t pte) { return pte; } /* * Macro and implementation to make a page protection as uncacheable. */ #define pgprot_writecombine(prot) \ __pgprot(pgprot_val(prot) & ~(_PAGE_CACHE_CTRL1 | _PAGE_CACHE_CTRL0)) #define pgprot_noncached(prot) \ __pgprot(pgprot_val(prot) & ~_PAGE_CACHEABLE) /* * Conversion functions: convert a page and protection to a page entry, * and a page entry and page directory to the page they refer to. */ #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot)) static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) { pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot); return pte; } static inline unsigned long pmd_page_vaddr(pmd_t pmd) { unsigned long paddr = pmd_val(pmd) & PAGE_MASK; if (!paddr) return 0; return (unsigned long)__va(paddr); } #define pmd_page(pmd) (pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT)) #define pmd_page_shift(pmd) (12 + ((pmd_val(pmd) & _PAGE_SZ_MASK) \ >> _PAGE_SZ_SHIFT)) #define pmd_num_ptrs(pmd) (PGDIR_SIZE >> pmd_page_shift(pmd)) /* * Each pgd is only 2k, mapping 2Gb (local or global). If we're in global * space drop the top bit before indexing the pgd. */ #if PAGE_OFFSET >= LINGLOBAL_BASE #define pgd_index(address) ((((address) & ~0x80000000) >> PGDIR_SHIFT) \ & (PTRS_PER_PGD-1)) #else #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1)) #endif #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address)) #define pgd_offset_k(address) pgd_offset(&init_mm, address) #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1)) /* Find an entry in the second-level page table.. */ #if !defined(CONFIG_HUGETLB_PAGE) /* all pages are of size (1 << PAGE_SHIFT), so no need to read 1st level pt */ # define pte_index(pmd, address) \ (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) #else /* some pages are huge, so read 1st level pt to find out */ # define pte_index(pmd, address) \ (((address) >> pmd_page_shift(pmd)) & (pmd_num_ptrs(pmd) - 1)) #endif #define pte_offset_kernel(dir, address) \ ((pte_t *) pmd_page_vaddr(*(dir)) + pte_index(*(dir), address)) #define pte_offset_map(dir, address) pte_offset_kernel(dir, address) #define pte_offset_map_nested(dir, address) pte_offset_kernel(dir, address) #define pte_unmap(pte) do { } while (0) #define pte_unmap_nested(pte) do { } while (0) #define pte_ERROR(e) \ pr_err("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e)) #define pgd_ERROR(e) \ pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e)) /* * Meta doesn't have any external MMU info: the kernel page * tables contain all the necessary information. */ static inline void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *pte) { } /* * Encode and decode a swap entry (must be !pte_none(e) && !pte_present(e)) * Since PAGE_PRESENT is bit 1, we can use the bits above that. */ #define __swp_type(x) (((x).val >> 1) & 0xff) #define __swp_offset(x) ((x).val >> 10) #define __swp_entry(type, offset) ((swp_entry_t) { ((type) << 1) | \ ((offset) << 10) }) #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) #define __swp_entry_to_pte(x) ((pte_t) { (x).val }) #define kern_addr_valid(addr) (1) /* * No page table caches to initialise */ #define pgtable_cache_init() do { } while (0) extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; void paging_init(unsigned long mem_end); #ifdef CONFIG_METAG_META12 /* This is a workaround for an issue in Meta 1 cores. These cores cache * invalid entries in the TLB so we always need to flush whenever we add * a new pte. Unfortunately we can only flush the whole TLB not shoot down * single entries so this is sub-optimal. This implementation ensures that * we will get a flush at the second attempt, so we may still get repeated * faults, we just don't overflow the kernel stack handling them. */ #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS #define ptep_set_access_flags(__vma, __address, __ptep, __entry, __dirty) \ ({ \ int __changed = !pte_same(*(__ptep), __entry); \ if (__changed) { \ set_pte_at((__vma)->vm_mm, (__address), __ptep, __entry); \ } \ flush_tlb_page(__vma, __address); \ __changed; \ }) #endif #include #endif /* __ASSEMBLY__ */ #endif /* _METAG_PGTABLE_H */