/* * Procedures for creating, accessing and interpreting the device tree. * * Paul Mackerras August 1996. * Copyright (C) 1996-2005 Paul Mackerras. * * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner. * {engebret|bergner}@us.ibm.com * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static int __initdata dt_root_addr_cells; static int __initdata dt_root_size_cells; typedef u32 cell_t; static struct boot_param_header *initial_boot_params; /* export that to outside world */ struct device_node *of_chosen; static inline char *find_flat_dt_string(u32 offset) { return ((char *)initial_boot_params) + initial_boot_params->off_dt_strings + offset; } /** * This function is used to scan the flattened device-tree, it is * used to extract the memory informations at boot before we can * unflatten the tree */ int __init of_scan_flat_dt(int (*it)(unsigned long node, const char *uname, int depth, void *data), void *data) { unsigned long p = ((unsigned long)initial_boot_params) + initial_boot_params->off_dt_struct; int rc = 0; int depth = -1; do { u32 tag = *((u32 *)p); char *pathp; p += 4; if (tag == OF_DT_END_NODE) { depth--; continue; } if (tag == OF_DT_NOP) continue; if (tag == OF_DT_END) break; if (tag == OF_DT_PROP) { u32 sz = *((u32 *)p); p += 8; if (initial_boot_params->version < 0x10) p = _ALIGN(p, sz >= 8 ? 8 : 4); p += sz; p = _ALIGN(p, 4); continue; } if (tag != OF_DT_BEGIN_NODE) { printk(KERN_WARNING "Invalid tag %x scanning flattened" " device tree !\n", tag); return -EINVAL; } depth++; pathp = (char *)p; p = _ALIGN(p + strlen(pathp) + 1, 4); if ((*pathp) == '/') { char *lp, *np; for (lp = NULL, np = pathp; *np; np++) if ((*np) == '/') lp = np+1; if (lp != NULL) pathp = lp; } rc = it(p, pathp, depth, data); if (rc != 0) break; } while (1); return rc; } unsigned long __init of_get_flat_dt_root(void) { unsigned long p = ((unsigned long)initial_boot_params) + initial_boot_params->off_dt_struct; while (*((u32 *)p) == OF_DT_NOP) p += 4; BUG_ON(*((u32 *)p) != OF_DT_BEGIN_NODE); p += 4; return _ALIGN(p + strlen((char *)p) + 1, 4); } /** * This function can be used within scan_flattened_dt callback to get * access to properties */ void *__init of_get_flat_dt_prop(unsigned long node, const char *name, unsigned long *size) { unsigned long p = node; do { u32 tag = *((u32 *)p); u32 sz, noff; const char *nstr; p += 4; if (tag == OF_DT_NOP) continue; if (tag != OF_DT_PROP) return NULL; sz = *((u32 *)p); noff = *((u32 *)(p + 4)); p += 8; if (initial_boot_params->version < 0x10) p = _ALIGN(p, sz >= 8 ? 8 : 4); nstr = find_flat_dt_string(noff); if (nstr == NULL) { printk(KERN_WARNING "Can't find property index" " name !\n"); return NULL; } if (strcmp(name, nstr) == 0) { if (size) *size = sz; return (void *)p; } p += sz; p = _ALIGN(p, 4); } while (1); } int __init of_flat_dt_is_compatible(unsigned long node, const char *compat) { const char *cp; unsigned long cplen, l; cp = of_get_flat_dt_prop(node, "compatible", &cplen); if (cp == NULL) return 0; while (cplen > 0) { if (strncasecmp(cp, compat, strlen(compat)) == 0) return 1; l = strlen(cp) + 1; cp += l; cplen -= l; } return 0; } static void *__init unflatten_dt_alloc(unsigned long *mem, unsigned long size, unsigned long align) { void *res; *mem = _ALIGN(*mem, align); res = (void *)*mem; *mem += size; return res; } static unsigned long __init unflatten_dt_node(unsigned long mem, unsigned long *p, struct device_node *dad, struct device_node ***allnextpp, unsigned long fpsize) { struct device_node *np; struct property *pp, **prev_pp = NULL; char *pathp; u32 tag; unsigned int l, allocl; int has_name = 0; int new_format = 0; tag = *((u32 *)(*p)); if (tag != OF_DT_BEGIN_NODE) { printk("Weird tag at start of node: %x\n", tag); return mem; } *p += 4; pathp = (char *)*p; l = allocl = strlen(pathp) + 1; *p = _ALIGN(*p + l, 4); /* version 0x10 has a more compact unit name here instead of the full * path. we accumulate the full path size using "fpsize", we'll rebuild * it later. We detect this because the first character of the name is * not '/'. */ if ((*pathp) != '/') { new_format = 1; if (fpsize == 0) { /* root node: special case. fpsize accounts for path * plus terminating zero. root node only has '/', so * fpsize should be 2, but we want to avoid the first * level nodes to have two '/' so we use fpsize 1 here */ fpsize = 1; allocl = 2; } else { /* account for '/' and path size minus terminal 0 * already in 'l' */ fpsize += l; allocl = fpsize; } } np = unflatten_dt_alloc(&mem, sizeof(struct device_node) + allocl, __alignof__(struct device_node)); if (allnextpp) { memset(np, 0, sizeof(*np)); np->full_name = ((char *)np) + sizeof(struct device_node); if (new_format) { char *p2 = np->full_name; /* rebuild full path for new format */ if (dad && dad->parent) { strcpy(p2, dad->full_name); #ifdef DEBUG if ((strlen(p2) + l + 1) != allocl) { pr_debug("%s: p: %d, l: %d, a: %d\n", pathp, (int)strlen(p2), l, allocl); } #endif p2 += strlen(p2); } *(p2++) = '/'; memcpy(p2, pathp, l); } else memcpy(np->full_name, pathp, l); prev_pp = &np->properties; **allnextpp = np; *allnextpp = &np->allnext; if (dad != NULL) { np->parent = dad; /* we temporarily use the next field as `last_child'*/ if (dad->next == NULL) dad->child = np; else dad->next->sibling = np; dad->next = np; } kref_init(&np->kref); } while (1) { u32 sz, noff; char *pname; tag = *((u32 *)(*p)); if (tag == OF_DT_NOP) { *p += 4; continue; } if (tag != OF_DT_PROP) break; *p += 4; sz = *((u32 *)(*p)); noff = *((u32 *)((*p) + 4)); *p += 8; if (initial_boot_params->version < 0x10) *p = _ALIGN(*p, sz >= 8 ? 8 : 4); pname = find_flat_dt_string(noff); if (pname == NULL) { printk(KERN_INFO "Can't find property name in list !\n"); break; } if (strcmp(pname, "name") == 0) has_name = 1; l = strlen(pname) + 1; pp = unflatten_dt_alloc(&mem, sizeof(struct property), __alignof__(struct property)); if (allnextpp) { if (strcmp(pname, "linux,phandle") == 0) { np->node = *((u32 *)*p); if (np->linux_phandle == 0) np->linux_phandle = np->node; } if (strcmp(pname, "ibm,phandle") == 0) np->linux_phandle = *((u32 *)*p); pp->name = pname; pp->length = sz; pp->value = (void *)*p; *prev_pp = pp; prev_pp = &pp->next; } *p = _ALIGN((*p) + sz, 4); } /* with version 0x10 we may not have the name property, recreate * it here from the unit name if absent */ if (!has_name) { char *p1 = pathp, *ps = pathp, *pa = NULL; int sz; while (*p1) { if ((*p1) == '@') pa = p1; if ((*p1) == '/') ps = p1 + 1; p1++; } if (pa < ps) pa = p1; sz = (pa - ps) + 1; pp = unflatten_dt_alloc(&mem, sizeof(struct property) + sz, __alignof__(struct property)); if (allnextpp) { pp->name = "name"; pp->length = sz; pp->value = pp + 1; *prev_pp = pp; prev_pp = &pp->next; memcpy(pp->value, ps, sz - 1); ((char *)pp->value)[sz - 1] = 0; pr_debug("fixed up name for %s -> %s\n", pathp, (char *)pp->value); } } if (allnextpp) { *prev_pp = NULL; np->name = of_get_property(np, "name", NULL); np->type = of_get_property(np, "device_type", NULL); if (!np->name) np->name = ""; if (!np->type) np->type = ""; } while (tag == OF_DT_BEGIN_NODE) { mem = unflatten_dt_node(mem, p, np, allnextpp, fpsize); tag = *((u32 *)(*p)); } if (tag != OF_DT_END_NODE) { printk(KERN_INFO "Weird tag at end of node: %x\n", tag); return mem; } *p += 4; return mem; } /** * unflattens the device-tree passed by the firmware, creating the * tree of struct device_node. It also fills the "name" and "type" * pointers of the nodes so the normal device-tree walking functions * can be used (this used to be done by finish_device_tree) */ void __init unflatten_device_tree(void) { unsigned long start, mem, size; struct device_node **allnextp = &allnodes; pr_debug(" -> unflatten_device_tree()\n"); /* First pass, scan for size */ start = ((unsigned long)initial_boot_params) + initial_boot_params->off_dt_struct; size = unflatten_dt_node(0, &start, NULL, NULL, 0); size = (size | 3) + 1; pr_debug(" size is %lx, allocating...\n", size); /* Allocate memory for the expanded device tree */ mem = lmb_alloc(size + 4, __alignof__(struct device_node)); mem = (unsigned long) __va(mem); ((u32 *)mem)[size / 4] = 0xdeadbeef; pr_debug(" unflattening %lx...\n", mem); /* Second pass, do actual unflattening */ start = ((unsigned long)initial_boot_params) + initial_boot_params->off_dt_struct; unflatten_dt_node(mem, &start, NULL, &allnextp, 0); if (*((u32 *)start) != OF_DT_END) printk(KERN_WARNING "Weird tag at end of tree: %08x\n", *((u32 *)start)); if (((u32 *)mem)[size / 4] != 0xdeadbeef) printk(KERN_WARNING "End of tree marker overwritten: %08x\n", ((u32 *)mem)[size / 4]); *allnextp = NULL; /* Get pointer to OF "/chosen" node for use everywhere */ of_chosen = of_find_node_by_path("/chosen"); if (of_chosen == NULL) of_chosen = of_find_node_by_path("/chosen@0"); pr_debug(" <- unflatten_device_tree()\n"); } #define early_init_dt_scan_drconf_memory(node) 0 static int __init early_init_dt_scan_cpus(unsigned long node, const char *uname, int depth, void *data) { static int logical_cpuid; char *type = of_get_flat_dt_prop(node, "device_type", NULL); const u32 *intserv; int i, nthreads; int found = 0; /* We are scanning "cpu" nodes only */ if (type == NULL || strcmp(type, "cpu") != 0) return 0; /* Get physical cpuid */ intserv = of_get_flat_dt_prop(node, "reg", NULL); nthreads = 1; /* * Now see if any of these threads match our boot cpu. * NOTE: This must match the parsing done in smp_setup_cpu_maps. */ for (i = 0; i < nthreads; i++) { /* * version 2 of the kexec param format adds the phys cpuid of * booted proc. */ if (initial_boot_params && initial_boot_params->version >= 2) { if (intserv[i] == initial_boot_params->boot_cpuid_phys) { found = 1; break; } } else { /* * Check if it's the boot-cpu, set it's hw index now, * unfortunately this format did not support booting * off secondary threads. */ if (of_get_flat_dt_prop(node, "linux,boot-cpu", NULL) != NULL) { found = 1; break; } } #ifdef CONFIG_SMP /* logical cpu id is always 0 on UP kernels */ logical_cpuid++; #endif } if (found) { pr_debug("boot cpu: logical %d physical %d\n", logical_cpuid, intserv[i]); boot_cpuid = logical_cpuid; } return 0; } #ifdef CONFIG_BLK_DEV_INITRD static void __init early_init_dt_check_for_initrd(unsigned long node) { unsigned long l; u32 *prop; pr_debug("Looking for initrd properties... "); prop = of_get_flat_dt_prop(node, "linux,initrd-start", &l); if (prop) { initrd_start = (unsigned long) __va((u32)of_read_ulong(prop, l/4)); prop = of_get_flat_dt_prop(node, "linux,initrd-end", &l); if (prop) { initrd_end = (unsigned long) __va((u32)of_read_ulong(prop, 1/4)); initrd_below_start_ok = 1; } else { initrd_start = 0; } } pr_debug("initrd_start=0x%lx initrd_end=0x%lx\n", initrd_start, initrd_end); } #else static inline void early_init_dt_check_for_initrd(unsigned long node) { } #endif /* CONFIG_BLK_DEV_INITRD */ static int __init early_init_dt_scan_chosen(unsigned long node, const char *uname, int depth, void *data) { unsigned long l; char *p; pr_debug("search \"chosen\", depth: %d, uname: %s\n", depth, uname); if (depth != 1 || (strcmp(uname, "chosen") != 0 && strcmp(uname, "chosen@0") != 0)) return 0; #ifdef CONFIG_KEXEC lprop = (u64 *)of_get_flat_dt_prop(node, "linux,crashkernel-base", NULL); if (lprop) crashk_res.start = *lprop; lprop = (u64 *)of_get_flat_dt_prop(node, "linux,crashkernel-size", NULL); if (lprop) crashk_res.end = crashk_res.start + *lprop - 1; #endif early_init_dt_check_for_initrd(node); /* Retreive command line */ p = of_get_flat_dt_prop(node, "bootargs", &l); if (p != NULL && l > 0) strlcpy(cmd_line, p, min((int)l, COMMAND_LINE_SIZE)); #ifdef CONFIG_CMDLINE #ifndef CONFIG_CMDLINE_FORCE if (p == NULL || l == 0 || (l == 1 && (*p) == 0)) #endif strlcpy(cmd_line, CONFIG_CMDLINE, COMMAND_LINE_SIZE); #endif /* CONFIG_CMDLINE */ pr_debug("Command line is: %s\n", cmd_line); /* break now */ return 1; } static int __init early_init_dt_scan_root(unsigned long node, const char *uname, int depth, void *data) { u32 *prop; if (depth != 0) return 0; prop = of_get_flat_dt_prop(node, "#size-cells", NULL); dt_root_size_cells = (prop == NULL) ? 1 : *prop; pr_debug("dt_root_size_cells = %x\n", dt_root_size_cells); prop = of_get_flat_dt_prop(node, "#address-cells", NULL); dt_root_addr_cells = (prop == NULL) ? 2 : *prop; pr_debug("dt_root_addr_cells = %x\n", dt_root_addr_cells); /* break now */ return 1; } static u64 __init dt_mem_next_cell(int s, cell_t **cellp) { cell_t *p = *cellp; *cellp = p + s; return of_read_number(p, s); } static int __init early_init_dt_scan_memory(unsigned long node, const char *uname, int depth, void *data) { char *type = of_get_flat_dt_prop(node, "device_type", NULL); cell_t *reg, *endp; unsigned long l; /* Look for the ibm,dynamic-reconfiguration-memory node */ /* if (depth == 1 && strcmp(uname, "ibm,dynamic-reconfiguration-memory") == 0) return early_init_dt_scan_drconf_memory(node); */ /* We are scanning "memory" nodes only */ if (type == NULL) { /* * The longtrail doesn't have a device_type on the * /memory node, so look for the node called /memory@0. */ if (depth != 1 || strcmp(uname, "memory@0") != 0) return 0; } else if (strcmp(type, "memory") != 0) return 0; reg = (cell_t *)of_get_flat_dt_prop(node, "linux,usable-memory", &l); if (reg == NULL) reg = (cell_t *)of_get_flat_dt_prop(node, "reg", &l); if (reg == NULL) return 0; endp = reg + (l / sizeof(cell_t)); pr_debug("memory scan node %s, reg size %ld, data: %x %x %x %x,\n", uname, l, reg[0], reg[1], reg[2], reg[3]); while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) { u64 base, size; base = dt_mem_next_cell(dt_root_addr_cells, ®); size = dt_mem_next_cell(dt_root_size_cells, ®); if (size == 0) continue; pr_debug(" - %llx , %llx\n", (unsigned long long)base, (unsigned long long)size); lmb_add(base, size); } return 0; } #ifdef CONFIG_PHYP_DUMP /** * phyp_dump_calculate_reserve_size() - reserve variable boot area 5% or arg * * Function to find the largest size we need to reserve * during early boot process. * * It either looks for boot param and returns that OR * returns larger of 256 or 5% rounded down to multiples of 256MB. * */ static inline unsigned long phyp_dump_calculate_reserve_size(void) { unsigned long tmp; if (phyp_dump_info->reserve_bootvar) return phyp_dump_info->reserve_bootvar; /* divide by 20 to get 5% of value */ tmp = lmb_end_of_DRAM(); do_div(tmp, 20); /* round it down in multiples of 256 */ tmp = tmp & ~0x0FFFFFFFUL; return (tmp > PHYP_DUMP_RMR_END ? tmp : PHYP_DUMP_RMR_END); } /** * phyp_dump_reserve_mem() - reserve all not-yet-dumped mmemory * * This routine may reserve memory regions in the kernel only * if the system is supported and a dump was taken in last * boot instance or if the hardware is supported and the * scratch area needs to be setup. In other instances it returns * without reserving anything. The memory in case of dump being * active is freed when the dump is collected (by userland tools). */ static void __init phyp_dump_reserve_mem(void) { unsigned long base, size; unsigned long variable_reserve_size; if (!phyp_dump_info->phyp_dump_configured) { printk(KERN_ERR "Phyp-dump not supported on this hardware\n"); return; } if (!phyp_dump_info->phyp_dump_at_boot) { printk(KERN_INFO "Phyp-dump disabled at boot time\n"); return; } variable_reserve_size = phyp_dump_calculate_reserve_size(); if (phyp_dump_info->phyp_dump_is_active) { /* Reserve *everything* above RMR.Area freed by userland tools*/ base = variable_reserve_size; size = lmb_end_of_DRAM() - base; /* XXX crashed_ram_end is wrong, since it may be beyond * the memory_limit, it will need to be adjusted. */ lmb_reserve(base, size); phyp_dump_info->init_reserve_start = base; phyp_dump_info->init_reserve_size = size; } else { size = phyp_dump_info->cpu_state_size + phyp_dump_info->hpte_region_size + variable_reserve_size; base = lmb_end_of_DRAM() - size; lmb_reserve(base, size); phyp_dump_info->init_reserve_start = base; phyp_dump_info->init_reserve_size = size; } } #else static inline void __init phyp_dump_reserve_mem(void) {} #endif /* CONFIG_PHYP_DUMP && CONFIG_PPC_RTAS */ #ifdef CONFIG_EARLY_PRINTK /* MS this is Microblaze specifig function */ static int __init early_init_dt_scan_serial(unsigned long node, const char *uname, int depth, void *data) { unsigned long l; char *p; int *addr; pr_debug("search \"chosen\", depth: %d, uname: %s\n", depth, uname); /* find all serial nodes */ if (strncmp(uname, "serial", 6) != 0) return 0; early_init_dt_check_for_initrd(node); /* find compatible node with uartlite */ p = of_get_flat_dt_prop(node, "compatible", &l); if ((strncmp(p, "xlnx,xps-uartlite", 17) != 0) && (strncmp(p, "xlnx,opb-uartlite", 17) != 0)) return 0; addr = of_get_flat_dt_prop(node, "reg", &l); return *addr; /* return address */ } /* this function is looking for early uartlite console - Microblaze specific */ int __init early_uartlite_console(void) { return of_scan_flat_dt(early_init_dt_scan_serial, NULL); } #endif void __init early_init_devtree(void *params) { pr_debug(" -> early_init_devtree(%p)\n", params); /* Setup flat device-tree pointer */ initial_boot_params = params; #ifdef CONFIG_PHYP_DUMP /* scan tree to see if dump occured during last boot */ of_scan_flat_dt(early_init_dt_scan_phyp_dump, NULL); #endif /* Retrieve various informations from the /chosen node of the * device-tree, including the platform type, initrd location and * size, TCE reserve, and more ... */ of_scan_flat_dt(early_init_dt_scan_chosen, NULL); /* Scan memory nodes and rebuild LMBs */ lmb_init(); of_scan_flat_dt(early_init_dt_scan_root, NULL); of_scan_flat_dt(early_init_dt_scan_memory, NULL); /* Save command line for /proc/cmdline and then parse parameters */ strlcpy(boot_command_line, cmd_line, COMMAND_LINE_SIZE); parse_early_param(); lmb_analyze(); pr_debug("Phys. mem: %lx\n", (unsigned long) lmb_phys_mem_size()); pr_debug("Scanning CPUs ...\n"); /* Retreive CPU related informations from the flat tree * (altivec support, boot CPU ID, ...) */ of_scan_flat_dt(early_init_dt_scan_cpus, NULL); pr_debug(" <- early_init_devtree()\n"); } /** * Indicates whether the root node has a given value in its * compatible property. */ int machine_is_compatible(const char *compat) { struct device_node *root; int rc = 0; root = of_find_node_by_path("/"); if (root) { rc = of_device_is_compatible(root, compat); of_node_put(root); } return rc; } EXPORT_SYMBOL(machine_is_compatible); /******* * * New implementation of the OF "find" APIs, return a refcounted * object, call of_node_put() when done. The device tree and list * are protected by a rw_lock. * * Note that property management will need some locking as well, * this isn't dealt with yet. * *******/ /** * of_find_node_by_phandle - Find a node given a phandle * @handle: phandle of the node to find * * Returns a node pointer with refcount incremented, use * of_node_put() on it when done. */ struct device_node *of_find_node_by_phandle(phandle handle) { struct device_node *np; read_lock(&devtree_lock); for (np = allnodes; np != NULL; np = np->allnext) if (np->linux_phandle == handle) break; of_node_get(np); read_unlock(&devtree_lock); return np; } EXPORT_SYMBOL(of_find_node_by_phandle); /** * of_find_all_nodes - Get next node in global list * @prev: Previous node or NULL to start iteration * of_node_put() will be called on it * * Returns a node pointer with refcount incremented, use * of_node_put() on it when done. */ struct device_node *of_find_all_nodes(struct device_node *prev) { struct device_node *np; read_lock(&devtree_lock); np = prev ? prev->allnext : allnodes; for (; np != NULL; np = np->allnext) if (of_node_get(np)) break; of_node_put(prev); read_unlock(&devtree_lock); return np; } EXPORT_SYMBOL(of_find_all_nodes); /** * of_node_get - Increment refcount of a node * @node: Node to inc refcount, NULL is supported to * simplify writing of callers * * Returns node. */ struct device_node *of_node_get(struct device_node *node) { if (node) kref_get(&node->kref); return node; } EXPORT_SYMBOL(of_node_get); static inline struct device_node *kref_to_device_node(struct kref *kref) { return container_of(kref, struct device_node, kref); } /** * of_node_release - release a dynamically allocated node * @kref: kref element of the node to be released * * In of_node_put() this function is passed to kref_put() * as the destructor. */ static void of_node_release(struct kref *kref) { struct device_node *node = kref_to_device_node(kref); struct property *prop = node->properties; /* We should never be releasing nodes that haven't been detached. */ if (!of_node_check_flag(node, OF_DETACHED)) { printk(KERN_INFO "WARNING: Bad of_node_put() on %s\n", node->full_name); dump_stack(); kref_init(&node->kref); return; } if (!of_node_check_flag(node, OF_DYNAMIC)) return; while (prop) { struct property *next = prop->next; kfree(prop->name); kfree(prop->value); kfree(prop); prop = next; if (!prop) { prop = node->deadprops; node->deadprops = NULL; } } kfree(node->full_name); kfree(node->data); kfree(node); } /** * of_node_put - Decrement refcount of a node * @node: Node to dec refcount, NULL is supported to * simplify writing of callers * */ void of_node_put(struct device_node *node) { if (node) kref_put(&node->kref, of_node_release); } EXPORT_SYMBOL(of_node_put); /* * Plug a device node into the tree and global list. */ void of_attach_node(struct device_node *np) { unsigned long flags; write_lock_irqsave(&devtree_lock, flags); np->sibling = np->parent->child; np->allnext = allnodes; np->parent->child = np; allnodes = np; write_unlock_irqrestore(&devtree_lock, flags); } /* * "Unplug" a node from the device tree. The caller must hold * a reference to the node. The memory associated with the node * is not freed until its refcount goes to zero. */ void of_detach_node(struct device_node *np) { struct device_node *parent; unsigned long flags; write_lock_irqsave(&devtree_lock, flags); parent = np->parent; if (!parent) goto out_unlock; if (allnodes == np) allnodes = np->allnext; else { struct device_node *prev; for (prev = allnodes; prev->allnext != np; prev = prev->allnext) ; prev->allnext = np->allnext; } if (parent->child == np) parent->child = np->sibling; else { struct device_node *prevsib; for (prevsib = np->parent->child; prevsib->sibling != np; prevsib = prevsib->sibling) ; prevsib->sibling = np->sibling; } of_node_set_flag(np, OF_DETACHED); out_unlock: write_unlock_irqrestore(&devtree_lock, flags); } /* * Add a property to a node */ int prom_add_property(struct device_node *np, struct property *prop) { struct property **next; unsigned long flags; prop->next = NULL; write_lock_irqsave(&devtree_lock, flags); next = &np->properties; while (*next) { if (strcmp(prop->name, (*next)->name) == 0) { /* duplicate ! don't insert it */ write_unlock_irqrestore(&devtree_lock, flags); return -1; } next = &(*next)->next; } *next = prop; write_unlock_irqrestore(&devtree_lock, flags); #ifdef CONFIG_PROC_DEVICETREE /* try to add to proc as well if it was initialized */ if (np->pde) proc_device_tree_add_prop(np->pde, prop); #endif /* CONFIG_PROC_DEVICETREE */ return 0; } /* * Remove a property from a node. Note that we don't actually * remove it, since we have given out who-knows-how-many pointers * to the data using get-property. Instead we just move the property * to the "dead properties" list, so it won't be found any more. */ int prom_remove_property(struct device_node *np, struct property *prop) { struct property **next; unsigned long flags; int found = 0; write_lock_irqsave(&devtree_lock, flags); next = &np->properties; while (*next) { if (*next == prop) { /* found the node */ *next = prop->next; prop->next = np->deadprops; np->deadprops = prop; found = 1; break; } next = &(*next)->next; } write_unlock_irqrestore(&devtree_lock, flags); if (!found) return -ENODEV; #ifdef CONFIG_PROC_DEVICETREE /* try to remove the proc node as well */ if (np->pde) proc_device_tree_remove_prop(np->pde, prop); #endif /* CONFIG_PROC_DEVICETREE */ return 0; } /* * Update a property in a node. Note that we don't actually * remove it, since we have given out who-knows-how-many pointers * to the data using get-property. Instead we just move the property * to the "dead properties" list, and add the new property to the * property list */ int prom_update_property(struct device_node *np, struct property *newprop, struct property *oldprop) { struct property **next; unsigned long flags; int found = 0; write_lock_irqsave(&devtree_lock, flags); next = &np->properties; while (*next) { if (*next == oldprop) { /* found the node */ newprop->next = oldprop->next; *next = newprop; oldprop->next = np->deadprops; np->deadprops = oldprop; found = 1; break; } next = &(*next)->next; } write_unlock_irqrestore(&devtree_lock, flags); if (!found) return -ENODEV; #ifdef CONFIG_PROC_DEVICETREE /* try to add to proc as well if it was initialized */ if (np->pde) proc_device_tree_update_prop(np->pde, newprop, oldprop); #endif /* CONFIG_PROC_DEVICETREE */ return 0; } #if defined(CONFIG_DEBUG_FS) && defined(DEBUG) static struct debugfs_blob_wrapper flat_dt_blob; static int __init export_flat_device_tree(void) { struct dentry *d; flat_dt_blob.data = initial_boot_params; flat_dt_blob.size = initial_boot_params->totalsize; d = debugfs_create_blob("flat-device-tree", S_IFREG | S_IRUSR, of_debugfs_root, &flat_dt_blob); if (!d) return 1; return 0; } device_initcall(export_flat_device_tree); #endif