#if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64) || \ defined(CONFIG_CPU_R10000) || defined(CONFIG_CPU_SB1) #define M_CONFIG1_PC (1 << 4) #define M_PERFCTL_EXL (1UL << 0) #define M_PERFCTL_KERNEL (1UL << 1) #define M_PERFCTL_SUPERVISOR (1UL << 2) #define M_PERFCTL_USER (1UL << 3) #define M_PERFCTL_INTERRUPT_ENABLE (1UL << 4) #define M_PERFCTL_EVENT(event) (((event) & 0x3ff) << 5) #define M_PERFCTL_VPEID(vpe) ((vpe) << 16) #define M_PERFCTL_MT_EN(filter) ((filter) << 20) #define M_TC_EN_ALL M_PERFCTL_MT_EN(0) #define M_TC_EN_VPE M_PERFCTL_MT_EN(1) #define M_TC_EN_TC M_PERFCTL_MT_EN(2) #define M_PERFCTL_TCID(tcid) ((tcid) << 22) #define M_PERFCTL_WIDE (1UL << 30) #define M_PERFCTL_MORE (1UL << 31) #define M_PERFCTL_COUNT_EVENT_WHENEVER (M_PERFCTL_EXL | \ M_PERFCTL_KERNEL | \ M_PERFCTL_USER | \ M_PERFCTL_SUPERVISOR | \ M_PERFCTL_INTERRUPT_ENABLE) #ifdef CONFIG_MIPS_MT_SMP #define M_PERFCTL_CONFIG_MASK 0x3fff801f #else #define M_PERFCTL_CONFIG_MASK 0x1f #endif #define M_PERFCTL_EVENT_MASK 0xfe0 #define M_COUNTER_OVERFLOW (1UL << 31) #ifdef CONFIG_MIPS_MT_SMP static int cpu_has_mipsmt_pertccounters; /* * FIXME: For VSMP, vpe_id() is redefined for Perf-events, because * cpu_data[cpuid].vpe_id reports 0 for _both_ CPUs. */ #if defined(CONFIG_HW_PERF_EVENTS) #define vpe_id() (cpu_has_mipsmt_pertccounters ? \ 0 : smp_processor_id()) #else #define vpe_id() (cpu_has_mipsmt_pertccounters ? \ 0 : cpu_data[smp_processor_id()].vpe_id) #endif /* Copied from op_model_mipsxx.c */ static inline unsigned int vpe_shift(void) { if (num_possible_cpus() > 1) return 1; return 0; } #else /* !CONFIG_MIPS_MT_SMP */ #define vpe_id() 0 static inline unsigned int vpe_shift(void) { return 0; } #endif /* CONFIG_MIPS_MT_SMP */ static inline unsigned int counters_total_to_per_cpu(unsigned int counters) { return counters >> vpe_shift(); } static inline unsigned int counters_per_cpu_to_total(unsigned int counters) { return counters << vpe_shift(); } #define __define_perf_accessors(r, n, np) \ \ static inline unsigned int r_c0_ ## r ## n(void) \ { \ unsigned int cpu = vpe_id(); \ \ switch (cpu) { \ case 0: \ return read_c0_ ## r ## n(); \ case 1: \ return read_c0_ ## r ## np(); \ default: \ BUG(); \ } \ return 0; \ } \ \ static inline void w_c0_ ## r ## n(unsigned int value) \ { \ unsigned int cpu = vpe_id(); \ \ switch (cpu) { \ case 0: \ write_c0_ ## r ## n(value); \ return; \ case 1: \ write_c0_ ## r ## np(value); \ return; \ default: \ BUG(); \ } \ return; \ } \ __define_perf_accessors(perfcntr, 0, 2) __define_perf_accessors(perfcntr, 1, 3) __define_perf_accessors(perfcntr, 2, 0) __define_perf_accessors(perfcntr, 3, 1) __define_perf_accessors(perfctrl, 0, 2) __define_perf_accessors(perfctrl, 1, 3) __define_perf_accessors(perfctrl, 2, 0) __define_perf_accessors(perfctrl, 3, 1) static inline int __n_counters(void) { if (!(read_c0_config1() & M_CONFIG1_PC)) return 0; if (!(read_c0_perfctrl0() & M_PERFCTL_MORE)) return 1; if (!(read_c0_perfctrl1() & M_PERFCTL_MORE)) return 2; if (!(read_c0_perfctrl2() & M_PERFCTL_MORE)) return 3; return 4; } static inline int n_counters(void) { int counters; switch (current_cpu_type()) { case CPU_R10000: counters = 2; break; case CPU_R12000: case CPU_R14000: counters = 4; break; default: counters = __n_counters(); } return counters; } static void reset_counters(void *arg) { int counters = (int)(long)arg; switch (counters) { case 4: w_c0_perfctrl3(0); w_c0_perfcntr3(0); case 3: w_c0_perfctrl2(0); w_c0_perfcntr2(0); case 2: w_c0_perfctrl1(0); w_c0_perfcntr1(0); case 1: w_c0_perfctrl0(0); w_c0_perfcntr0(0); } } static inline u64 mipsxx_pmu_read_counter(unsigned int idx) { switch (idx) { case 0: return r_c0_perfcntr0(); case 1: return r_c0_perfcntr1(); case 2: return r_c0_perfcntr2(); case 3: return r_c0_perfcntr3(); default: WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx); return 0; } } static inline void mipsxx_pmu_write_counter(unsigned int idx, u64 val) { switch (idx) { case 0: w_c0_perfcntr0(val); return; case 1: w_c0_perfcntr1(val); return; case 2: w_c0_perfcntr2(val); return; case 3: w_c0_perfcntr3(val); return; } } static inline unsigned int mipsxx_pmu_read_control(unsigned int idx) { switch (idx) { case 0: return r_c0_perfctrl0(); case 1: return r_c0_perfctrl1(); case 2: return r_c0_perfctrl2(); case 3: return r_c0_perfctrl3(); default: WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx); return 0; } } static inline void mipsxx_pmu_write_control(unsigned int idx, unsigned int val) { switch (idx) { case 0: w_c0_perfctrl0(val); return; case 1: w_c0_perfctrl1(val); return; case 2: w_c0_perfctrl2(val); return; case 3: w_c0_perfctrl3(val); return; } } #ifdef CONFIG_MIPS_MT_SMP static DEFINE_RWLOCK(pmuint_rwlock); #endif /* 24K/34K/1004K cores can share the same event map. */ static const struct mips_perf_event mipsxxcore_event_map [PERF_COUNT_HW_MAX] = { [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P }, [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T }, [PERF_COUNT_HW_CACHE_REFERENCES] = { UNSUPPORTED_PERF_EVENT_ID }, [PERF_COUNT_HW_CACHE_MISSES] = { UNSUPPORTED_PERF_EVENT_ID }, [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x02, CNTR_EVEN, T }, [PERF_COUNT_HW_BRANCH_MISSES] = { 0x02, CNTR_ODD, T }, [PERF_COUNT_HW_BUS_CYCLES] = { UNSUPPORTED_PERF_EVENT_ID }, }; /* 74K core has different branch event code. */ static const struct mips_perf_event mipsxx74Kcore_event_map [PERF_COUNT_HW_MAX] = { [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P }, [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T }, [PERF_COUNT_HW_CACHE_REFERENCES] = { UNSUPPORTED_PERF_EVENT_ID }, [PERF_COUNT_HW_CACHE_MISSES] = { UNSUPPORTED_PERF_EVENT_ID }, [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x27, CNTR_EVEN, T }, [PERF_COUNT_HW_BRANCH_MISSES] = { 0x27, CNTR_ODD, T }, [PERF_COUNT_HW_BUS_CYCLES] = { UNSUPPORTED_PERF_EVENT_ID }, }; /* 24K/34K/1004K cores can share the same cache event map. */ static const struct mips_perf_event mipsxxcore_cache_map [PERF_COUNT_HW_CACHE_MAX] [PERF_COUNT_HW_CACHE_OP_MAX] [PERF_COUNT_HW_CACHE_RESULT_MAX] = { [C(L1D)] = { /* * Like some other architectures (e.g. ARM), the performance * counters don't differentiate between read and write * accesses/misses, so this isn't strictly correct, but it's the * best we can do. Writes and reads get combined. */ [C(OP_READ)] = { [C(RESULT_ACCESS)] = { 0x0a, CNTR_EVEN, T }, [C(RESULT_MISS)] = { 0x0b, CNTR_EVEN | CNTR_ODD, T }, }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = { 0x0a, CNTR_EVEN, T }, [C(RESULT_MISS)] = { 0x0b, CNTR_EVEN | CNTR_ODD, T }, }, [C(OP_PREFETCH)] = { [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID }, [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID }, }, }, [C(L1I)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = { 0x09, CNTR_EVEN, T }, [C(RESULT_MISS)] = { 0x09, CNTR_ODD, T }, }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = { 0x09, CNTR_EVEN, T }, [C(RESULT_MISS)] = { 0x09, CNTR_ODD, T }, }, [C(OP_PREFETCH)] = { [C(RESULT_ACCESS)] = { 0x14, CNTR_EVEN, T }, /* * Note that MIPS has only "hit" events countable for * the prefetch operation. */ [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID }, }, }, [C(LL)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = { 0x15, CNTR_ODD, P }, [C(RESULT_MISS)] = { 0x16, CNTR_EVEN, P }, }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = { 0x15, CNTR_ODD, P }, [C(RESULT_MISS)] = { 0x16, CNTR_EVEN, P }, }, [C(OP_PREFETCH)] = { [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID }, [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID }, }, }, [C(DTLB)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T }, [C(RESULT_MISS)] = { 0x06, CNTR_ODD, T }, }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T }, [C(RESULT_MISS)] = { 0x06, CNTR_ODD, T }, }, [C(OP_PREFETCH)] = { [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID }, [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID }, }, }, [C(ITLB)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = { 0x05, CNTR_EVEN, T }, [C(RESULT_MISS)] = { 0x05, CNTR_ODD, T }, }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = { 0x05, CNTR_EVEN, T }, [C(RESULT_MISS)] = { 0x05, CNTR_ODD, T }, }, [C(OP_PREFETCH)] = { [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID }, [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID }, }, }, [C(BPU)] = { /* Using the same code for *HW_BRANCH* */ [C(OP_READ)] = { [C(RESULT_ACCESS)] = { 0x02, CNTR_EVEN, T }, [C(RESULT_MISS)] = { 0x02, CNTR_ODD, T }, }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = { 0x02, CNTR_EVEN, T }, [C(RESULT_MISS)] = { 0x02, CNTR_ODD, T }, }, [C(OP_PREFETCH)] = { [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID }, [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID }, }, }, }; /* 74K core has completely different cache event map. */ static const struct mips_perf_event mipsxx74Kcore_cache_map [PERF_COUNT_HW_CACHE_MAX] [PERF_COUNT_HW_CACHE_OP_MAX] [PERF_COUNT_HW_CACHE_RESULT_MAX] = { [C(L1D)] = { /* * Like some other architectures (e.g. ARM), the performance * counters don't differentiate between read and write * accesses/misses, so this isn't strictly correct, but it's the * best we can do. Writes and reads get combined. */ [C(OP_READ)] = { [C(RESULT_ACCESS)] = { 0x17, CNTR_ODD, T }, [C(RESULT_MISS)] = { 0x18, CNTR_ODD, T }, }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = { 0x17, CNTR_ODD, T }, [C(RESULT_MISS)] = { 0x18, CNTR_ODD, T }, }, [C(OP_PREFETCH)] = { [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID }, [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID }, }, }, [C(L1I)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T }, [C(RESULT_MISS)] = { 0x06, CNTR_ODD, T }, }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T }, [C(RESULT_MISS)] = { 0x06, CNTR_ODD, T }, }, [C(OP_PREFETCH)] = { [C(RESULT_ACCESS)] = { 0x34, CNTR_EVEN, T }, /* * Note that MIPS has only "hit" events countable for * the prefetch operation. */ [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID }, }, }, [C(LL)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = { 0x1c, CNTR_ODD, P }, [C(RESULT_MISS)] = { 0x1d, CNTR_EVEN | CNTR_ODD, P }, }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = { 0x1c, CNTR_ODD, P }, [C(RESULT_MISS)] = { 0x1d, CNTR_EVEN | CNTR_ODD, P }, }, [C(OP_PREFETCH)] = { [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID }, [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID }, }, }, [C(DTLB)] = { /* 74K core does not have specific DTLB events. */ [C(OP_READ)] = { [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID }, [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID }, }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID }, [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID }, }, [C(OP_PREFETCH)] = { [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID }, [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID }, }, }, [C(ITLB)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = { 0x04, CNTR_EVEN, T }, [C(RESULT_MISS)] = { 0x04, CNTR_ODD, T }, }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = { 0x04, CNTR_EVEN, T }, [C(RESULT_MISS)] = { 0x04, CNTR_ODD, T }, }, [C(OP_PREFETCH)] = { [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID }, [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID }, }, }, [C(BPU)] = { /* Using the same code for *HW_BRANCH* */ [C(OP_READ)] = { [C(RESULT_ACCESS)] = { 0x27, CNTR_EVEN, T }, [C(RESULT_MISS)] = { 0x27, CNTR_ODD, T }, }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = { 0x27, CNTR_EVEN, T }, [C(RESULT_MISS)] = { 0x27, CNTR_ODD, T }, }, [C(OP_PREFETCH)] = { [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID }, [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID }, }, }, }; #ifdef CONFIG_MIPS_MT_SMP static void check_and_calc_range(struct perf_event *event, const struct mips_perf_event *pev) { struct hw_perf_event *hwc = &event->hw; if (event->cpu >= 0) { if (pev->range > V) { /* * The user selected an event that is processor * wide, while expecting it to be VPE wide. */ hwc->config_base |= M_TC_EN_ALL; } else { /* * FIXME: cpu_data[event->cpu].vpe_id reports 0 * for both CPUs. */ hwc->config_base |= M_PERFCTL_VPEID(event->cpu); hwc->config_base |= M_TC_EN_VPE; } } else hwc->config_base |= M_TC_EN_ALL; } #else static void check_and_calc_range(struct perf_event *event, const struct mips_perf_event *pev) { } #endif static int __hw_perf_event_init(struct perf_event *event) { struct perf_event_attr *attr = &event->attr; struct hw_perf_event *hwc = &event->hw; const struct mips_perf_event *pev; int err; /* Returning MIPS event descriptor for generic perf event. */ if (PERF_TYPE_HARDWARE == event->attr.type) { if (event->attr.config >= PERF_COUNT_HW_MAX) return -EINVAL; pev = mipspmu_map_general_event(event->attr.config); } else if (PERF_TYPE_HW_CACHE == event->attr.type) { pev = mipspmu_map_cache_event(event->attr.config); } else if (PERF_TYPE_RAW == event->attr.type) { /* We are working on the global raw event. */ mutex_lock(&raw_event_mutex); pev = mipspmu->map_raw_event(event->attr.config); } else { /* The event type is not (yet) supported. */ return -EOPNOTSUPP; } if (IS_ERR(pev)) { if (PERF_TYPE_RAW == event->attr.type) mutex_unlock(&raw_event_mutex); return PTR_ERR(pev); } /* * We allow max flexibility on how each individual counter shared * by the single CPU operates (the mode exclusion and the range). */ hwc->config_base = M_PERFCTL_INTERRUPT_ENABLE; /* Calculate range bits and validate it. */ if (num_possible_cpus() > 1) check_and_calc_range(event, pev); hwc->event_base = mipspmu_perf_event_encode(pev); if (PERF_TYPE_RAW == event->attr.type) mutex_unlock(&raw_event_mutex); if (!attr->exclude_user) hwc->config_base |= M_PERFCTL_USER; if (!attr->exclude_kernel) { hwc->config_base |= M_PERFCTL_KERNEL; /* MIPS kernel mode: KSU == 00b || EXL == 1 || ERL == 1 */ hwc->config_base |= M_PERFCTL_EXL; } if (!attr->exclude_hv) hwc->config_base |= M_PERFCTL_SUPERVISOR; hwc->config_base &= M_PERFCTL_CONFIG_MASK; /* * The event can belong to another cpu. We do not assign a local * counter for it for now. */ hwc->idx = -1; hwc->config = 0; if (!hwc->sample_period) { hwc->sample_period = MAX_PERIOD; hwc->last_period = hwc->sample_period; local64_set(&hwc->period_left, hwc->sample_period); } err = 0; if (event->group_leader != event) { err = validate_group(event); if (err) return -EINVAL; } event->destroy = hw_perf_event_destroy; return err; } static void pause_local_counters(void) { struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); int counters = mipspmu->num_counters; unsigned long flags; local_irq_save(flags); switch (counters) { case 4: cpuc->saved_ctrl[3] = r_c0_perfctrl3(); w_c0_perfctrl3(cpuc->saved_ctrl[3] & ~M_PERFCTL_COUNT_EVENT_WHENEVER); case 3: cpuc->saved_ctrl[2] = r_c0_perfctrl2(); w_c0_perfctrl2(cpuc->saved_ctrl[2] & ~M_PERFCTL_COUNT_EVENT_WHENEVER); case 2: cpuc->saved_ctrl[1] = r_c0_perfctrl1(); w_c0_perfctrl1(cpuc->saved_ctrl[1] & ~M_PERFCTL_COUNT_EVENT_WHENEVER); case 1: cpuc->saved_ctrl[0] = r_c0_perfctrl0(); w_c0_perfctrl0(cpuc->saved_ctrl[0] & ~M_PERFCTL_COUNT_EVENT_WHENEVER); } local_irq_restore(flags); } static void resume_local_counters(void) { struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); int counters = mipspmu->num_counters; unsigned long flags; local_irq_save(flags); switch (counters) { case 4: w_c0_perfctrl3(cpuc->saved_ctrl[3]); case 3: w_c0_perfctrl2(cpuc->saved_ctrl[2]); case 2: w_c0_perfctrl1(cpuc->saved_ctrl[1]); case 1: w_c0_perfctrl0(cpuc->saved_ctrl[0]); } local_irq_restore(flags); } static int mipsxx_pmu_handle_shared_irq(void) { struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); struct perf_sample_data data; unsigned int counters = mipspmu->num_counters; unsigned int counter; int handled = IRQ_NONE; struct pt_regs *regs; if (cpu_has_mips_r2 && !(read_c0_cause() & (1 << 26))) return handled; /* * First we pause the local counters, so that when we are locked * here, the counters are all paused. When it gets locked due to * perf_disable(), the timer interrupt handler will be delayed. * * See also mipsxx_pmu_start(). */ pause_local_counters(); #ifdef CONFIG_MIPS_MT_SMP read_lock(&pmuint_rwlock); #endif regs = get_irq_regs(); perf_sample_data_init(&data, 0); switch (counters) { #define HANDLE_COUNTER(n) \ case n + 1: \ if (test_bit(n, cpuc->used_mask)) { \ counter = r_c0_perfcntr ## n(); \ if (counter & M_COUNTER_OVERFLOW) { \ w_c0_perfcntr ## n(counter & \ VALID_COUNT); \ if (test_and_change_bit(n, cpuc->msbs)) \ handle_associated_event(cpuc, \ n, &data, regs); \ handled = IRQ_HANDLED; \ } \ } HANDLE_COUNTER(3) HANDLE_COUNTER(2) HANDLE_COUNTER(1) HANDLE_COUNTER(0) } /* * Do all the work for the pending perf events. We can do this * in here because the performance counter interrupt is a regular * interrupt, not NMI. */ if (handled == IRQ_HANDLED) irq_work_run(); #ifdef CONFIG_MIPS_MT_SMP read_unlock(&pmuint_rwlock); #endif resume_local_counters(); return handled; } static irqreturn_t mipsxx_pmu_handle_irq(int irq, void *dev) { return mipsxx_pmu_handle_shared_irq(); } static void mipsxx_pmu_start(void) { #ifdef CONFIG_MIPS_MT_SMP write_unlock(&pmuint_rwlock); #endif resume_local_counters(); } /* * MIPS performance counters can be per-TC. The control registers can * not be directly accessed across CPUs. Hence if we want to do global * control, we need cross CPU calls. on_each_cpu() can help us, but we * can not make sure this function is called with interrupts enabled. So * here we pause local counters and then grab a rwlock and leave the * counters on other CPUs alone. If any counter interrupt raises while * we own the write lock, simply pause local counters on that CPU and * spin in the handler. Also we know we won't be switched to another * CPU after pausing local counters and before grabbing the lock. */ static void mipsxx_pmu_stop(void) { pause_local_counters(); #ifdef CONFIG_MIPS_MT_SMP write_lock(&pmuint_rwlock); #endif } static int mipsxx_pmu_alloc_counter(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc) { int i; /* * We only need to care the counter mask. The range has been * checked definitely. */ unsigned long cntr_mask = (hwc->event_base >> 8) & 0xffff; for (i = mipspmu->num_counters - 1; i >= 0; i--) { /* * Note that some MIPS perf events can be counted by both * even and odd counters, wheresas many other are only by * even _or_ odd counters. This introduces an issue that * when the former kind of event takes the counter the * latter kind of event wants to use, then the "counter * allocation" for the latter event will fail. In fact if * they can be dynamically swapped, they both feel happy. * But here we leave this issue alone for now. */ if (test_bit(i, &cntr_mask) && !test_and_set_bit(i, cpuc->used_mask)) return i; } return -EAGAIN; } static void mipsxx_pmu_enable_event(struct hw_perf_event *evt, int idx) { struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); unsigned long flags; WARN_ON(idx < 0 || idx >= mipspmu->num_counters); local_irq_save(flags); cpuc->saved_ctrl[idx] = M_PERFCTL_EVENT(evt->event_base & 0xff) | (evt->config_base & M_PERFCTL_CONFIG_MASK) | /* Make sure interrupt enabled. */ M_PERFCTL_INTERRUPT_ENABLE; /* * We do not actually let the counter run. Leave it until start(). */ local_irq_restore(flags); } static void mipsxx_pmu_disable_event(int idx) { struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); unsigned long flags; WARN_ON(idx < 0 || idx >= mipspmu->num_counters); local_irq_save(flags); cpuc->saved_ctrl[idx] = mipsxx_pmu_read_control(idx) & ~M_PERFCTL_COUNT_EVENT_WHENEVER; mipsxx_pmu_write_control(idx, cpuc->saved_ctrl[idx]); local_irq_restore(flags); } /* 24K */ #define IS_UNSUPPORTED_24K_EVENT(r, b) \ ((b) == 12 || (r) == 151 || (r) == 152 || (b) == 26 || \ (b) == 27 || (r) == 28 || (r) == 158 || (b) == 31 || \ (b) == 32 || (b) == 34 || (b) == 36 || (r) == 168 || \ (r) == 172 || (b) == 47 || ((b) >= 56 && (b) <= 63) || \ ((b) >= 68 && (b) <= 127)) #define IS_BOTH_COUNTERS_24K_EVENT(b) \ ((b) == 0 || (b) == 1 || (b) == 11) /* 34K */ #define IS_UNSUPPORTED_34K_EVENT(r, b) \ ((b) == 12 || (r) == 27 || (r) == 158 || (b) == 36 || \ (b) == 38 || (r) == 175 || ((b) >= 56 && (b) <= 63) || \ ((b) >= 68 && (b) <= 127)) #define IS_BOTH_COUNTERS_34K_EVENT(b) \ ((b) == 0 || (b) == 1 || (b) == 11) #ifdef CONFIG_MIPS_MT_SMP #define IS_RANGE_P_34K_EVENT(r, b) \ ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 || \ (b) == 25 || (b) == 39 || (r) == 44 || (r) == 174 || \ (r) == 176 || ((b) >= 50 && (b) <= 55) || \ ((b) >= 64 && (b) <= 67)) #define IS_RANGE_V_34K_EVENT(r) ((r) == 47) #endif /* 74K */ #define IS_UNSUPPORTED_74K_EVENT(r, b) \ ((r) == 5 || ((r) >= 135 && (r) <= 137) || \ ((b) >= 10 && (b) <= 12) || (b) == 22 || (b) == 27 || \ (b) == 33 || (b) == 34 || ((b) >= 47 && (b) <= 49) || \ (r) == 178 || (b) == 55 || (b) == 57 || (b) == 60 || \ (b) == 61 || (r) == 62 || (r) == 191 || \ ((b) >= 64 && (b) <= 127)) #define IS_BOTH_COUNTERS_74K_EVENT(b) \ ((b) == 0 || (b) == 1) /* 1004K */ #define IS_UNSUPPORTED_1004K_EVENT(r, b) \ ((b) == 12 || (r) == 27 || (r) == 158 || (b) == 38 || \ (r) == 175 || (b) == 63 || ((b) >= 68 && (b) <= 127)) #define IS_BOTH_COUNTERS_1004K_EVENT(b) \ ((b) == 0 || (b) == 1 || (b) == 11) #ifdef CONFIG_MIPS_MT_SMP #define IS_RANGE_P_1004K_EVENT(r, b) \ ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 || \ (b) == 25 || (b) == 36 || (b) == 39 || (r) == 44 || \ (r) == 174 || (r) == 176 || ((b) >= 50 && (b) <= 59) || \ (r) == 188 || (b) == 61 || (b) == 62 || \ ((b) >= 64 && (b) <= 67)) #define IS_RANGE_V_1004K_EVENT(r) ((r) == 47) #endif /* * User can use 0-255 raw events, where 0-127 for the events of even * counters, and 128-255 for odd counters. Note that bit 7 is used to * indicate the parity. So, for example, when user wants to take the * Event Num of 15 for odd counters (by referring to the user manual), * then 128 needs to be added to 15 as the input for the event config, * i.e., 143 (0x8F) to be used. */ static const struct mips_perf_event * mipsxx_pmu_map_raw_event(u64 config) { unsigned int raw_id = config & 0xff; unsigned int base_id = raw_id & 0x7f; switch (current_cpu_type()) { case CPU_24K: if (IS_UNSUPPORTED_24K_EVENT(raw_id, base_id)) return ERR_PTR(-EOPNOTSUPP); raw_event.event_id = base_id; if (IS_BOTH_COUNTERS_24K_EVENT(base_id)) raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD; else raw_event.cntr_mask = raw_id > 127 ? CNTR_ODD : CNTR_EVEN; #ifdef CONFIG_MIPS_MT_SMP /* * This is actually doing nothing. Non-multithreading * CPUs will not check and calculate the range. */ raw_event.range = P; #endif break; case CPU_34K: if (IS_UNSUPPORTED_34K_EVENT(raw_id, base_id)) return ERR_PTR(-EOPNOTSUPP); raw_event.event_id = base_id; if (IS_BOTH_COUNTERS_34K_EVENT(base_id)) raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD; else raw_event.cntr_mask = raw_id > 127 ? CNTR_ODD : CNTR_EVEN; #ifdef CONFIG_MIPS_MT_SMP if (IS_RANGE_P_34K_EVENT(raw_id, base_id)) raw_event.range = P; else if (unlikely(IS_RANGE_V_34K_EVENT(raw_id))) raw_event.range = V; else raw_event.range = T; #endif break; case CPU_74K: if (IS_UNSUPPORTED_74K_EVENT(raw_id, base_id)) return ERR_PTR(-EOPNOTSUPP); raw_event.event_id = base_id; if (IS_BOTH_COUNTERS_74K_EVENT(base_id)) raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD; else raw_event.cntr_mask = raw_id > 127 ? CNTR_ODD : CNTR_EVEN; #ifdef CONFIG_MIPS_MT_SMP raw_event.range = P; #endif break; case CPU_1004K: if (IS_UNSUPPORTED_1004K_EVENT(raw_id, base_id)) return ERR_PTR(-EOPNOTSUPP); raw_event.event_id = base_id; if (IS_BOTH_COUNTERS_1004K_EVENT(base_id)) raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD; else raw_event.cntr_mask = raw_id > 127 ? CNTR_ODD : CNTR_EVEN; #ifdef CONFIG_MIPS_MT_SMP if (IS_RANGE_P_1004K_EVENT(raw_id, base_id)) raw_event.range = P; else if (unlikely(IS_RANGE_V_1004K_EVENT(raw_id))) raw_event.range = V; else raw_event.range = T; #endif break; } return &raw_event; } static struct mips_pmu mipsxxcore_pmu = { .handle_irq = mipsxx_pmu_handle_irq, .handle_shared_irq = mipsxx_pmu_handle_shared_irq, .start = mipsxx_pmu_start, .stop = mipsxx_pmu_stop, .alloc_counter = mipsxx_pmu_alloc_counter, .read_counter = mipsxx_pmu_read_counter, .write_counter = mipsxx_pmu_write_counter, .enable_event = mipsxx_pmu_enable_event, .disable_event = mipsxx_pmu_disable_event, .map_raw_event = mipsxx_pmu_map_raw_event, .general_event_map = &mipsxxcore_event_map, .cache_event_map = &mipsxxcore_cache_map, }; static struct mips_pmu mipsxx74Kcore_pmu = { .handle_irq = mipsxx_pmu_handle_irq, .handle_shared_irq = mipsxx_pmu_handle_shared_irq, .start = mipsxx_pmu_start, .stop = mipsxx_pmu_stop, .alloc_counter = mipsxx_pmu_alloc_counter, .read_counter = mipsxx_pmu_read_counter, .write_counter = mipsxx_pmu_write_counter, .enable_event = mipsxx_pmu_enable_event, .disable_event = mipsxx_pmu_disable_event, .map_raw_event = mipsxx_pmu_map_raw_event, .general_event_map = &mipsxx74Kcore_event_map, .cache_event_map = &mipsxx74Kcore_cache_map, }; static int __init init_hw_perf_events(void) { int counters, irq; pr_info("Performance counters: "); counters = n_counters(); if (counters == 0) { pr_cont("No available PMU.\n"); return -ENODEV; } #ifdef CONFIG_MIPS_MT_SMP cpu_has_mipsmt_pertccounters = read_c0_config7() & (1<<19); if (!cpu_has_mipsmt_pertccounters) counters = counters_total_to_per_cpu(counters); #endif #ifdef MSC01E_INT_BASE if (cpu_has_veic) { /* * Using platform specific interrupt controller defines. */ irq = MSC01E_INT_BASE + MSC01E_INT_PERFCTR; } else { #endif if (cp0_perfcount_irq >= 0) irq = MIPS_CPU_IRQ_BASE + cp0_perfcount_irq; else irq = -1; #ifdef MSC01E_INT_BASE } #endif on_each_cpu(reset_counters, (void *)(long)counters, 1); switch (current_cpu_type()) { case CPU_24K: mipsxxcore_pmu.name = "mips/24K"; mipsxxcore_pmu.num_counters = counters; mipsxxcore_pmu.irq = irq; mipspmu = &mipsxxcore_pmu; break; case CPU_34K: mipsxxcore_pmu.name = "mips/34K"; mipsxxcore_pmu.num_counters = counters; mipsxxcore_pmu.irq = irq; mipspmu = &mipsxxcore_pmu; break; case CPU_74K: mipsxx74Kcore_pmu.name = "mips/74K"; mipsxx74Kcore_pmu.num_counters = counters; mipsxx74Kcore_pmu.irq = irq; mipspmu = &mipsxx74Kcore_pmu; break; case CPU_1004K: mipsxxcore_pmu.name = "mips/1004K"; mipsxxcore_pmu.num_counters = counters; mipsxxcore_pmu.irq = irq; mipspmu = &mipsxxcore_pmu; break; default: pr_cont("Either hardware does not support performance " "counters, or not yet implemented.\n"); return -ENODEV; } if (mipspmu) pr_cont("%s PMU enabled, %d counters available to each " "CPU, irq %d%s\n", mipspmu->name, counters, irq, irq < 0 ? " (share with timer interrupt)" : ""); perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW); return 0; } early_initcall(init_hw_perf_events); #endif /* defined(CONFIG_CPU_MIPS32)... */