/* * Copyright 2001 MontaVista Software Inc. * Author: Jun Sun, jsun@mvista.com or jsun@junsun.net * Copyright (c) 2003, 2004 Maciej W. Rozycki * * Common time service routines for MIPS machines. See * Documentation/mips/time.README. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * forward reference */ DEFINE_SPINLOCK(rtc_lock); EXPORT_SYMBOL(rtc_lock); int __weak rtc_mips_set_time(unsigned long sec) { return 0; } EXPORT_SYMBOL(rtc_mips_set_time); int __weak rtc_mips_set_mmss(unsigned long nowtime) { return rtc_mips_set_time(nowtime); } int update_persistent_clock(struct timespec now) { return rtc_mips_set_mmss(now.tv_sec); } /* * Null high precision timer functions for systems lacking one. */ static cycle_t null_hpt_read(void) { return 0; } /* * High precision timer functions for a R4k-compatible timer. */ static cycle_t c0_hpt_read(void) { return read_c0_count(); } int (*mips_timer_state)(void); /* * local_timer_interrupt() does profiling and process accounting * on a per-CPU basis. * * In UP mode, it is invoked from the (global) timer_interrupt. * * In SMP mode, it might invoked by per-CPU timer interrupt, or * a broadcasted inter-processor interrupt which itself is triggered * by the global timer interrupt. */ void local_timer_interrupt(int irq, void *dev_id) { profile_tick(CPU_PROFILING); update_process_times(user_mode(get_irq_regs())); } int null_perf_irq(void) { return 0; } EXPORT_SYMBOL(null_perf_irq); int (*perf_irq)(void) = null_perf_irq; EXPORT_SYMBOL(perf_irq); /* * time_init() - it does the following things. * * 1) plat_time_init() - * a) (optional) set up RTC routines, * b) (optional) calibrate and set the mips_hpt_frequency * (only needed if you intended to use cpu counter as timer interrupt * source) * 2) calculate a couple of cached variables for later usage * 3) plat_timer_setup() - * a) (optional) over-write any choices made above by time_init(). * b) machine specific code should setup the timer irqaction. * c) enable the timer interrupt */ unsigned int mips_hpt_frequency; static unsigned int __init calibrate_hpt(void) { cycle_t frequency, hpt_start, hpt_end, hpt_count, hz; const int loops = HZ / 10; int log_2_loops = 0; int i; /* * We want to calibrate for 0.1s, but to avoid a 64-bit * division we round the number of loops up to the nearest * power of 2. */ while (loops > 1 << log_2_loops) log_2_loops++; i = 1 << log_2_loops; /* * Wait for a rising edge of the timer interrupt. */ while (mips_timer_state()); while (!mips_timer_state()); /* * Now see how many high precision timer ticks happen * during the calculated number of periods between timer * interrupts. */ hpt_start = clocksource_mips.read(); do { while (mips_timer_state()); while (!mips_timer_state()); } while (--i); hpt_end = clocksource_mips.read(); hpt_count = (hpt_end - hpt_start) & clocksource_mips.mask; hz = HZ; frequency = hpt_count * hz; return frequency >> log_2_loops; } struct clocksource clocksource_mips = { .name = "MIPS", .mask = CLOCKSOURCE_MASK(32), .flags = CLOCK_SOURCE_IS_CONTINUOUS, }; void __init clocksource_set_clock(struct clocksource *cs, unsigned int clock) { u64 temp; u32 shift; /* Find a shift value */ for (shift = 32; shift > 0; shift--) { temp = (u64) NSEC_PER_SEC << shift; do_div(temp, clock); if ((temp >> 32) == 0) break; } cs->shift = shift; cs->mult = (u32) temp; } void __cpuinit clockevent_set_clock(struct clock_event_device *cd, unsigned int clock) { u64 temp; u32 shift; /* Find a shift value */ for (shift = 32; shift > 0; shift--) { temp = (u64) NSEC_PER_SEC << shift; do_div(temp, clock); if ((temp >> 32) == 0) break; } cd->shift = shift; cd->mult = (u32) temp; } static void __init init_mips_clocksource(void) { if (!mips_hpt_frequency || clocksource_mips.read == null_hpt_read) return; /* Calclate a somewhat reasonable rating value */ clocksource_mips.rating = 200 + mips_hpt_frequency / 10000000; clocksource_set_clock(&clocksource_mips, mips_hpt_frequency); clocksource_register(&clocksource_mips); } void __init __weak plat_time_init(void) { } void __init __weak plat_timer_setup(struct irqaction *irq) { } void __init time_init(void) { plat_time_init(); /* Choose appropriate high precision timer routines. */ if (!cpu_has_counter && !clocksource_mips.read) /* No high precision timer -- sorry. */ clocksource_mips.read = null_hpt_read; else if (!mips_hpt_frequency && !mips_timer_state) { /* A high precision timer of unknown frequency. */ if (!clocksource_mips.read) /* No external high precision timer -- use R4k. */ clocksource_mips.read = c0_hpt_read; } else { /* We know counter frequency. Or we can get it. */ if (!clocksource_mips.read) { /* No external high precision timer -- use R4k. */ clocksource_mips.read = c0_hpt_read; } if (!mips_hpt_frequency) mips_hpt_frequency = calibrate_hpt(); /* Report the high precision timer rate for a reference. */ printk("Using %u.%03u MHz high precision timer.\n", ((mips_hpt_frequency + 500) / 1000) / 1000, ((mips_hpt_frequency + 500) / 1000) % 1000); } init_mips_clocksource(); mips_clockevent_init(); }