/* SPDX-License-Identifier: GPL-2.0-only */ /* * Just-In-Time compiler for eBPF bytecode on 32-bit and 64-bit MIPS. * * Copyright (c) 2021 Anyfi Networks AB. * Author: Johan Almbladh * * Based on code and ideas from * Copyright (c) 2017 Cavium, Inc. * Copyright (c) 2017 Shubham Bansal * Copyright (c) 2011 Mircea Gherzan */ #ifndef _BPF_JIT_COMP_H #define _BPF_JIT_COMP_H /* MIPS registers */ #define MIPS_R_ZERO 0 /* Const zero */ #define MIPS_R_AT 1 /* Asm temp */ #define MIPS_R_V0 2 /* Result */ #define MIPS_R_V1 3 /* Result */ #define MIPS_R_A0 4 /* Argument */ #define MIPS_R_A1 5 /* Argument */ #define MIPS_R_A2 6 /* Argument */ #define MIPS_R_A3 7 /* Argument */ #define MIPS_R_A4 8 /* Arg (n64) */ #define MIPS_R_A5 9 /* Arg (n64) */ #define MIPS_R_A6 10 /* Arg (n64) */ #define MIPS_R_A7 11 /* Arg (n64) */ #define MIPS_R_T0 8 /* Temp (o32) */ #define MIPS_R_T1 9 /* Temp (o32) */ #define MIPS_R_T2 10 /* Temp (o32) */ #define MIPS_R_T3 11 /* Temp (o32) */ #define MIPS_R_T4 12 /* Temporary */ #define MIPS_R_T5 13 /* Temporary */ #define MIPS_R_T6 14 /* Temporary */ #define MIPS_R_T7 15 /* Temporary */ #define MIPS_R_S0 16 /* Saved */ #define MIPS_R_S1 17 /* Saved */ #define MIPS_R_S2 18 /* Saved */ #define MIPS_R_S3 19 /* Saved */ #define MIPS_R_S4 20 /* Saved */ #define MIPS_R_S5 21 /* Saved */ #define MIPS_R_S6 22 /* Saved */ #define MIPS_R_S7 23 /* Saved */ #define MIPS_R_T8 24 /* Temporary */ #define MIPS_R_T9 25 /* Temporary */ /* MIPS_R_K0 26 Reserved */ /* MIPS_R_K1 27 Reserved */ #define MIPS_R_GP 28 /* Global ptr */ #define MIPS_R_SP 29 /* Stack ptr */ #define MIPS_R_FP 30 /* Frame ptr */ #define MIPS_R_RA 31 /* Return */ /* * Jump address mask for immediate jumps. The four most significant bits * must be equal to PC. */ #define MIPS_JMP_MASK 0x0fffffffUL /* Maximum number of iterations in offset table computation */ #define JIT_MAX_ITERATIONS 8 /* * Jump pseudo-instructions used internally * for branch conversion and branch optimization. */ #define JIT_JNSET 0xe0 #define JIT_JNOP 0xf0 /* Descriptor flag for PC-relative branch conversion */ #define JIT_DESC_CONVERT BIT(31) /* JIT context for an eBPF program */ struct jit_context { struct bpf_prog *program; /* The eBPF program being JITed */ u32 *descriptors; /* eBPF to JITed CPU insn descriptors */ u32 *target; /* JITed code buffer */ u32 bpf_index; /* Index of current BPF program insn */ u32 jit_index; /* Index of current JIT target insn */ u32 changes; /* Number of PC-relative branch conv */ u32 accessed; /* Bit mask of read eBPF registers */ u32 clobbered; /* Bit mask of modified CPU registers */ u32 stack_size; /* Total allocated stack size in bytes */ u32 saved_size; /* Size of callee-saved registers */ u32 stack_used; /* Stack size used for function calls */ }; /* Emit the instruction if the JIT memory space has been allocated */ #define __emit(ctx, func, ...) \ do { \ if ((ctx)->target != NULL) { \ u32 *p = &(ctx)->target[ctx->jit_index]; \ uasm_i_##func(&p, ##__VA_ARGS__); \ } \ (ctx)->jit_index++; \ } while (0) #define emit(...) __emit(__VA_ARGS__) /* Workaround for R10000 ll/sc errata */ #ifdef CONFIG_WAR_R10000_LLSC #define LLSC_beqz beqzl #else #define LLSC_beqz beqz #endif /* Workaround for Loongson-3 ll/sc errata */ #ifdef CONFIG_CPU_LOONGSON3_WORKAROUNDS #define LLSC_sync(ctx) emit(ctx, sync, 0) #define LLSC_offset 4 #else #define LLSC_sync(ctx) #define LLSC_offset 0 #endif /* Workaround for Loongson-2F jump errata */ #ifdef CONFIG_CPU_JUMP_WORKAROUNDS #define JALR_MASK 0xffffffffcfffffffULL #else #define JALR_MASK (~0ULL) #endif /* * Mark a BPF register as accessed, it needs to be * initialized by the program if expected, e.g. FP. */ static inline void access_reg(struct jit_context *ctx, u8 reg) { ctx->accessed |= BIT(reg); } /* * Mark a CPU register as clobbered, it needs to be * saved/restored by the program if callee-saved. */ static inline void clobber_reg(struct jit_context *ctx, u8 reg) { ctx->clobbered |= BIT(reg); } /* * Push registers on the stack, starting at a given depth from the stack * pointer and increasing. The next depth to be written is returned. */ int push_regs(struct jit_context *ctx, u32 mask, u32 excl, int depth); /* * Pop registers from the stack, starting at a given depth from the stack * pointer and increasing. The next depth to be read is returned. */ int pop_regs(struct jit_context *ctx, u32 mask, u32 excl, int depth); /* Compute the 28-bit jump target address from a BPF program location */ int get_target(struct jit_context *ctx, u32 loc); /* Compute the PC-relative offset to relative BPF program offset */ int get_offset(const struct jit_context *ctx, int off); /* dst = imm (32-bit) */ void emit_mov_i(struct jit_context *ctx, u8 dst, s32 imm); /* dst = src (32-bit) */ void emit_mov_r(struct jit_context *ctx, u8 dst, u8 src); /* Validate ALU/ALU64 immediate range */ bool valid_alu_i(u8 op, s32 imm); /* Rewrite ALU/ALU64 immediate operation */ bool rewrite_alu_i(u8 op, s32 imm, u8 *alu, s32 *val); /* ALU immediate operation (32-bit) */ void emit_alu_i(struct jit_context *ctx, u8 dst, s32 imm, u8 op); /* ALU register operation (32-bit) */ void emit_alu_r(struct jit_context *ctx, u8 dst, u8 src, u8 op); /* Atomic read-modify-write (32-bit) */ void emit_atomic_r(struct jit_context *ctx, u8 dst, u8 src, s16 off, u8 code); /* Atomic compare-and-exchange (32-bit) */ void emit_cmpxchg_r(struct jit_context *ctx, u8 dst, u8 src, u8 res, s16 off); /* Swap bytes and truncate a register word or half word */ void emit_bswap_r(struct jit_context *ctx, u8 dst, u32 width); /* Validate JMP/JMP32 immediate range */ bool valid_jmp_i(u8 op, s32 imm); /* Prepare a PC-relative jump operation with immediate conditional */ void setup_jmp_i(struct jit_context *ctx, s32 imm, u8 width, u8 bpf_op, s16 bpf_off, u8 *jit_op, s32 *jit_off); /* Prepare a PC-relative jump operation with register conditional */ void setup_jmp_r(struct jit_context *ctx, bool same_reg, u8 bpf_op, s16 bpf_off, u8 *jit_op, s32 *jit_off); /* Finish a PC-relative jump operation */ int finish_jmp(struct jit_context *ctx, u8 jit_op, s16 bpf_off); /* Conditional JMP/JMP32 immediate */ void emit_jmp_i(struct jit_context *ctx, u8 dst, s32 imm, s32 off, u8 op); /* Conditional JMP/JMP32 register */ void emit_jmp_r(struct jit_context *ctx, u8 dst, u8 src, s32 off, u8 op); /* Jump always */ int emit_ja(struct jit_context *ctx, s16 off); /* Jump to epilogue */ int emit_exit(struct jit_context *ctx); /* * Build program prologue to set up the stack and registers. * This function is implemented separately for 32-bit and 64-bit JITs. */ void build_prologue(struct jit_context *ctx); /* * Build the program epilogue to restore the stack and registers. * This function is implemented separately for 32-bit and 64-bit JITs. */ void build_epilogue(struct jit_context *ctx, int dest_reg); /* * Convert an eBPF instruction to native instruction, i.e * JITs an eBPF instruction. * Returns : * 0 - Successfully JITed an 8-byte eBPF instruction * >0 - Successfully JITed a 16-byte eBPF instruction * <0 - Failed to JIT. * This function is implemented separately for 32-bit and 64-bit JITs. */ int build_insn(const struct bpf_insn *insn, struct jit_context *ctx); #endif /* _BPF_JIT_COMP_H */