/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 2008 Maxime Bizon */ #include #include #include #include #include #include "pci-bcm63xx.h" /* * swizzle 32bits data to return only the needed part */ static int postprocess_read(u32 data, int where, unsigned int size) { u32 ret; ret = 0; switch (size) { case 1: ret = (data >> ((where & 3) << 3)) & 0xff; break; case 2: ret = (data >> ((where & 3) << 3)) & 0xffff; break; case 4: ret = data; break; } return ret; } static int preprocess_write(u32 orig_data, u32 val, int where, unsigned int size) { u32 ret; ret = 0; switch (size) { case 1: ret = (orig_data & ~(0xff << ((where & 3) << 3))) | (val << ((where & 3) << 3)); break; case 2: ret = (orig_data & ~(0xffff << ((where & 3) << 3))) | (val << ((where & 3) << 3)); break; case 4: ret = val; break; } return ret; } /* * setup hardware for a configuration cycle with given parameters */ static int bcm63xx_setup_cfg_access(int type, unsigned int busn, unsigned int devfn, int where) { unsigned int slot, func, reg; u32 val; slot = PCI_SLOT(devfn); func = PCI_FUNC(devfn); reg = where >> 2; /* sanity check */ if (slot > (MPI_L2PCFG_DEVNUM_MASK >> MPI_L2PCFG_DEVNUM_SHIFT)) return 1; if (func > (MPI_L2PCFG_FUNC_MASK >> MPI_L2PCFG_FUNC_SHIFT)) return 1; if (reg > (MPI_L2PCFG_REG_MASK >> MPI_L2PCFG_REG_SHIFT)) return 1; /* ok, setup config access */ val = (reg << MPI_L2PCFG_REG_SHIFT); val |= (func << MPI_L2PCFG_FUNC_SHIFT); val |= (slot << MPI_L2PCFG_DEVNUM_SHIFT); val |= MPI_L2PCFG_CFG_USEREG_MASK; val |= MPI_L2PCFG_CFG_SEL_MASK; /* type 0 cycle for local bus, type 1 cycle for anything else */ if (type != 0) { /* FIXME: how to specify bus ??? */ val |= (1 << MPI_L2PCFG_CFG_TYPE_SHIFT); } bcm_mpi_writel(val, MPI_L2PCFG_REG); return 0; } static int bcm63xx_do_cfg_read(int type, unsigned int busn, unsigned int devfn, int where, int size, u32 *val) { u32 data; /* two phase cycle, first we write address, then read data at * another location, caller already has a spinlock so no need * to add one here */ if (bcm63xx_setup_cfg_access(type, busn, devfn, where)) return PCIBIOS_DEVICE_NOT_FOUND; iob(); data = le32_to_cpu(__raw_readl(pci_iospace_start)); /* restore IO space normal behaviour */ bcm_mpi_writel(0, MPI_L2PCFG_REG); *val = postprocess_read(data, where, size); return PCIBIOS_SUCCESSFUL; } static int bcm63xx_do_cfg_write(int type, unsigned int busn, unsigned int devfn, int where, int size, u32 val) { u32 data; /* two phase cycle, first we write address, then write data to * another location, caller already has a spinlock so no need * to add one here */ if (bcm63xx_setup_cfg_access(type, busn, devfn, where)) return PCIBIOS_DEVICE_NOT_FOUND; iob(); data = le32_to_cpu(__raw_readl(pci_iospace_start)); data = preprocess_write(data, val, where, size); __raw_writel(cpu_to_le32(data), pci_iospace_start); wmb(); /* no way to know the access is done, we have to wait */ udelay(500); /* restore IO space normal behaviour */ bcm_mpi_writel(0, MPI_L2PCFG_REG); return PCIBIOS_SUCCESSFUL; } static int bcm63xx_pci_read(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 *val) { int type; type = bus->parent ? 1 : 0; if (type == 0 && PCI_SLOT(devfn) == CARDBUS_PCI_IDSEL) return PCIBIOS_DEVICE_NOT_FOUND; return bcm63xx_do_cfg_read(type, bus->number, devfn, where, size, val); } static int bcm63xx_pci_write(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 val) { int type; type = bus->parent ? 1 : 0; if (type == 0 && PCI_SLOT(devfn) == CARDBUS_PCI_IDSEL) return PCIBIOS_DEVICE_NOT_FOUND; return bcm63xx_do_cfg_write(type, bus->number, devfn, where, size, val); } struct pci_ops bcm63xx_pci_ops = { .read = bcm63xx_pci_read, .write = bcm63xx_pci_write }; #ifdef CONFIG_CARDBUS /* * emulate configuration read access on a cardbus bridge */ #define FAKE_CB_BRIDGE_SLOT 0x1e static int fake_cb_bridge_bus_number = -1; static struct { u16 pci_command; u8 cb_latency; u8 subordinate_busn; u8 cardbus_busn; u8 pci_busn; int bus_assigned; u16 bridge_control; u32 mem_base0; u32 mem_limit0; u32 mem_base1; u32 mem_limit1; u32 io_base0; u32 io_limit0; u32 io_base1; u32 io_limit1; } fake_cb_bridge_regs; static int fake_cb_bridge_read(int where, int size, u32 *val) { unsigned int reg; u32 data; data = 0; reg = where >> 2; switch (reg) { case (PCI_VENDOR_ID >> 2): case (PCI_CB_SUBSYSTEM_VENDOR_ID >> 2): /* create dummy vendor/device id from our cpu id */ data = (bcm63xx_get_cpu_id() << 16) | PCI_VENDOR_ID_BROADCOM; break; case (PCI_COMMAND >> 2): data = (PCI_STATUS_DEVSEL_SLOW << 16); data |= fake_cb_bridge_regs.pci_command; break; case (PCI_CLASS_REVISION >> 2): data = (PCI_CLASS_BRIDGE_CARDBUS << 16); break; case (PCI_CACHE_LINE_SIZE >> 2): data = (PCI_HEADER_TYPE_CARDBUS << 16); break; case (PCI_INTERRUPT_LINE >> 2): /* bridge control */ data = (fake_cb_bridge_regs.bridge_control << 16); /* pin:intA line:0xff */ data |= (0x1 << 8) | 0xff; break; case (PCI_CB_PRIMARY_BUS >> 2): data = (fake_cb_bridge_regs.cb_latency << 24); data |= (fake_cb_bridge_regs.subordinate_busn << 16); data |= (fake_cb_bridge_regs.cardbus_busn << 8); data |= fake_cb_bridge_regs.pci_busn; break; case (PCI_CB_MEMORY_BASE_0 >> 2): data = fake_cb_bridge_regs.mem_base0; break; case (PCI_CB_MEMORY_LIMIT_0 >> 2): data = fake_cb_bridge_regs.mem_limit0; break; case (PCI_CB_MEMORY_BASE_1 >> 2): data = fake_cb_bridge_regs.mem_base1; break; case (PCI_CB_MEMORY_LIMIT_1 >> 2): data = fake_cb_bridge_regs.mem_limit1; break; case (PCI_CB_IO_BASE_0 >> 2): /* | 1 for 32bits io support */ data = fake_cb_bridge_regs.io_base0 | 0x1; break; case (PCI_CB_IO_LIMIT_0 >> 2): data = fake_cb_bridge_regs.io_limit0; break; case (PCI_CB_IO_BASE_1 >> 2): /* | 1 for 32bits io support */ data = fake_cb_bridge_regs.io_base1 | 0x1; break; case (PCI_CB_IO_LIMIT_1 >> 2): data = fake_cb_bridge_regs.io_limit1; break; } *val = postprocess_read(data, where, size); return PCIBIOS_SUCCESSFUL; } /* * emulate configuration write access on a cardbus bridge */ static int fake_cb_bridge_write(int where, int size, u32 val) { unsigned int reg; u32 data, tmp; int ret; ret = fake_cb_bridge_read((where & ~0x3), 4, &data); if (ret != PCIBIOS_SUCCESSFUL) return ret; data = preprocess_write(data, val, where, size); reg = where >> 2; switch (reg) { case (PCI_COMMAND >> 2): fake_cb_bridge_regs.pci_command = (data & 0xffff); break; case (PCI_CB_PRIMARY_BUS >> 2): fake_cb_bridge_regs.cb_latency = (data >> 24) & 0xff; fake_cb_bridge_regs.subordinate_busn = (data >> 16) & 0xff; fake_cb_bridge_regs.cardbus_busn = (data >> 8) & 0xff; fake_cb_bridge_regs.pci_busn = data & 0xff; if (fake_cb_bridge_regs.cardbus_busn) fake_cb_bridge_regs.bus_assigned = 1; break; case (PCI_INTERRUPT_LINE >> 2): tmp = (data >> 16) & 0xffff; /* disable memory prefetch support */ tmp &= ~PCI_CB_BRIDGE_CTL_PREFETCH_MEM0; tmp &= ~PCI_CB_BRIDGE_CTL_PREFETCH_MEM1; fake_cb_bridge_regs.bridge_control = tmp; break; case (PCI_CB_MEMORY_BASE_0 >> 2): fake_cb_bridge_regs.mem_base0 = data; break; case (PCI_CB_MEMORY_LIMIT_0 >> 2): fake_cb_bridge_regs.mem_limit0 = data; break; case (PCI_CB_MEMORY_BASE_1 >> 2): fake_cb_bridge_regs.mem_base1 = data; break; case (PCI_CB_MEMORY_LIMIT_1 >> 2): fake_cb_bridge_regs.mem_limit1 = data; break; case (PCI_CB_IO_BASE_0 >> 2): fake_cb_bridge_regs.io_base0 = data; break; case (PCI_CB_IO_LIMIT_0 >> 2): fake_cb_bridge_regs.io_limit0 = data; break; case (PCI_CB_IO_BASE_1 >> 2): fake_cb_bridge_regs.io_base1 = data; break; case (PCI_CB_IO_LIMIT_1 >> 2): fake_cb_bridge_regs.io_limit1 = data; break; } return PCIBIOS_SUCCESSFUL; } static int bcm63xx_cb_read(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 *val) { /* snoop access to slot 0x1e on root bus, we fake a cardbus * bridge at this location */ if (!bus->parent && PCI_SLOT(devfn) == FAKE_CB_BRIDGE_SLOT) { fake_cb_bridge_bus_number = bus->number; return fake_cb_bridge_read(where, size, val); } /* a configuration cycle for the device behind the cardbus * bridge is actually done as a type 0 cycle on the primary * bus. This means that only one device can be on the cardbus * bus */ if (fake_cb_bridge_regs.bus_assigned && bus->number == fake_cb_bridge_regs.cardbus_busn && PCI_SLOT(devfn) == 0) return bcm63xx_do_cfg_read(0, 0, PCI_DEVFN(CARDBUS_PCI_IDSEL, 0), where, size, val); return PCIBIOS_DEVICE_NOT_FOUND; } static int bcm63xx_cb_write(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 val) { if (!bus->parent && PCI_SLOT(devfn) == FAKE_CB_BRIDGE_SLOT) { fake_cb_bridge_bus_number = bus->number; return fake_cb_bridge_write(where, size, val); } if (fake_cb_bridge_regs.bus_assigned && bus->number == fake_cb_bridge_regs.cardbus_busn && PCI_SLOT(devfn) == 0) return bcm63xx_do_cfg_write(0, 0, PCI_DEVFN(CARDBUS_PCI_IDSEL, 0), where, size, val); return PCIBIOS_DEVICE_NOT_FOUND; } struct pci_ops bcm63xx_cb_ops = { .read = bcm63xx_cb_read, .write = bcm63xx_cb_write, }; /* * only one IO window, so it cannot be shared by PCI and cardbus, use * fixup to choose and detect unhandled configuration */ static void bcm63xx_fixup(struct pci_dev *dev) { static int io_window = -1; int i, found, new_io_window; u32 val; /* look for any io resource */ found = 0; for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) { if (pci_resource_flags(dev, i) & IORESOURCE_IO) { found = 1; break; } } if (!found) return; /* skip our fake bus with only cardbus bridge on it */ if (dev->bus->number == fake_cb_bridge_bus_number) return; /* find on which bus the device is */ if (fake_cb_bridge_regs.bus_assigned && dev->bus->number == fake_cb_bridge_regs.cardbus_busn && PCI_SLOT(dev->devfn) == 0) new_io_window = 1; else new_io_window = 0; if (new_io_window == io_window) return; if (io_window != -1) { printk(KERN_ERR "bcm63xx: both PCI and cardbus devices " "need IO, which hardware cannot do\n"); return; } printk(KERN_INFO "bcm63xx: PCI IO window assigned to %s\n", (new_io_window == 0) ? "PCI" : "cardbus"); val = bcm_mpi_readl(MPI_L2PIOREMAP_REG); if (io_window) val |= MPI_L2PREMAP_IS_CARDBUS_MASK; else val &= ~MPI_L2PREMAP_IS_CARDBUS_MASK; bcm_mpi_writel(val, MPI_L2PIOREMAP_REG); io_window = new_io_window; } DECLARE_PCI_FIXUP_ENABLE(PCI_ANY_ID, PCI_ANY_ID, bcm63xx_fixup); #endif static int bcm63xx_pcie_can_access(struct pci_bus *bus, int devfn) { switch (bus->number) { case PCIE_BUS_BRIDGE: return PCI_SLOT(devfn) == 0; case PCIE_BUS_DEVICE: if (PCI_SLOT(devfn) == 0) return bcm_pcie_readl(PCIE_DLSTATUS_REG) & DLSTATUS_PHYLINKUP; /* else, fall through */ default: return false; } } static int bcm63xx_pcie_read(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 *val) { u32 data; u32 reg = where & ~3; if (!bcm63xx_pcie_can_access(bus, devfn)) return PCIBIOS_DEVICE_NOT_FOUND; if (bus->number == PCIE_BUS_DEVICE) reg += PCIE_DEVICE_OFFSET; data = bcm_pcie_readl(reg); *val = postprocess_read(data, where, size); return PCIBIOS_SUCCESSFUL; } static int bcm63xx_pcie_write(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 val) { u32 data; u32 reg = where & ~3; if (!bcm63xx_pcie_can_access(bus, devfn)) return PCIBIOS_DEVICE_NOT_FOUND; if (bus->number == PCIE_BUS_DEVICE) reg += PCIE_DEVICE_OFFSET; data = bcm_pcie_readl(reg); data = preprocess_write(data, val, where, size); bcm_pcie_writel(data, reg); return PCIBIOS_SUCCESSFUL; } struct pci_ops bcm63xx_pcie_ops = { .read = bcm63xx_pcie_read, .write = bcm63xx_pcie_write };