// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C) Paul Mackerras 1997. * * Updates for PPC64 by Todd Inglett, Dave Engebretsen & Peter Bergner. */ #include #include #include "elf.h" #include "page.h" #include "string.h" #include "stdio.h" #include "ops.h" #include "reg.h" struct addr_range { void *addr; unsigned long size; }; #undef DEBUG static struct addr_range prep_kernel(void) { char elfheader[256]; unsigned char *vmlinuz_addr = (unsigned char *)_vmlinux_start; unsigned long vmlinuz_size = _vmlinux_end - _vmlinux_start; void *addr = 0; struct elf_info ei; long len; int uncompressed_image = 0; len = partial_decompress(vmlinuz_addr, vmlinuz_size, elfheader, sizeof(elfheader), 0); /* assume uncompressed data if -1 is returned */ if (len == -1) { uncompressed_image = 1; memcpy(elfheader, vmlinuz_addr, sizeof(elfheader)); printf("No valid compressed data found, assume uncompressed data\n\r"); } if (!parse_elf64(elfheader, &ei) && !parse_elf32(elfheader, &ei)) fatal("Error: not a valid PPC32 or PPC64 ELF file!\n\r"); if (platform_ops.image_hdr) platform_ops.image_hdr(elfheader); /* We need to alloc the memsize: gzip will expand the kernel * text/data, then possible rubbish we don't care about. But * the kernel bss must be claimed (it will be zero'd by the * kernel itself) */ printf("Allocating 0x%lx bytes for kernel...\n\r", ei.memsize); if (platform_ops.vmlinux_alloc) { addr = platform_ops.vmlinux_alloc(ei.memsize); } else { /* * Check if the kernel image (without bss) would overwrite the * bootwrapper. The device tree has been moved in fdt_init() * to an area allocated with malloc() (somewhere past _end). */ if ((unsigned long)_start < ei.loadsize) fatal("Insufficient memory for kernel at address 0!" " (_start=%p, uncompressed size=%08lx)\n\r", _start, ei.loadsize); if ((unsigned long)_end < ei.memsize) fatal("The final kernel image would overwrite the " "device tree\n\r"); } if (uncompressed_image) { memcpy(addr, vmlinuz_addr + ei.elfoffset, ei.loadsize); printf("0x%lx bytes of uncompressed data copied\n\r", ei.loadsize); goto out; } /* Finally, decompress the kernel */ printf("Decompressing (0x%p <- 0x%p:0x%p)...\n\r", addr, vmlinuz_addr, vmlinuz_addr+vmlinuz_size); len = partial_decompress(vmlinuz_addr, vmlinuz_size, addr, ei.loadsize, ei.elfoffset); if (len < 0) fatal("Decompression failed with error code %ld\n\r", len); if (len != ei.loadsize) fatal("Decompression error: got 0x%lx bytes, expected 0x%lx.\n\r", len, ei.loadsize); printf("Done! Decompressed 0x%lx bytes\n\r", len); out: flush_cache(addr, ei.loadsize); return (struct addr_range){addr, ei.memsize}; } static struct addr_range prep_initrd(struct addr_range vmlinux, void *chosen, unsigned long initrd_addr, unsigned long initrd_size) { /* If we have an image attached to us, it overrides anything * supplied by the loader. */ if (_initrd_end > _initrd_start) { printf("Attached initrd image at 0x%p-0x%p\n\r", _initrd_start, _initrd_end); initrd_addr = (unsigned long)_initrd_start; initrd_size = _initrd_end - _initrd_start; } else if (initrd_size > 0) { printf("Using loader supplied ramdisk at 0x%lx-0x%lx\n\r", initrd_addr, initrd_addr + initrd_size); } /* If there's no initrd at all, we're done */ if (! initrd_size) return (struct addr_range){0, 0}; /* * If the initrd is too low it will be clobbered when the * kernel relocates to its final location. In this case, * allocate a safer place and move it. */ if (initrd_addr < vmlinux.size) { void *old_addr = (void *)initrd_addr; printf("Allocating 0x%lx bytes for initrd ...\n\r", initrd_size); initrd_addr = (unsigned long)malloc(initrd_size); if (! initrd_addr) fatal("Can't allocate memory for initial " "ramdisk !\n\r"); printf("Relocating initrd 0x%lx <- 0x%p (0x%lx bytes)\n\r", initrd_addr, old_addr, initrd_size); memmove((void *)initrd_addr, old_addr, initrd_size); } printf("initrd head: 0x%lx\n\r", *((unsigned long *)initrd_addr)); /* Tell the kernel initrd address via device tree */ setprop_val(chosen, "linux,initrd-start", (u32)(initrd_addr)); setprop_val(chosen, "linux,initrd-end", (u32)(initrd_addr+initrd_size)); return (struct addr_range){(void *)initrd_addr, initrd_size}; } #ifdef __powerpc64__ static void prep_esm_blob(struct addr_range vmlinux, void *chosen) { unsigned long esm_blob_addr, esm_blob_size; /* Do we have an ESM (Enter Secure Mode) blob? */ if (_esm_blob_end <= _esm_blob_start) return; printf("Attached ESM blob at 0x%p-0x%p\n\r", _esm_blob_start, _esm_blob_end); esm_blob_addr = (unsigned long)_esm_blob_start; esm_blob_size = _esm_blob_end - _esm_blob_start; /* * If the ESM blob is too low it will be clobbered when the * kernel relocates to its final location. In this case, * allocate a safer place and move it. */ if (esm_blob_addr < vmlinux.size) { void *old_addr = (void *)esm_blob_addr; printf("Allocating 0x%lx bytes for esm_blob ...\n\r", esm_blob_size); esm_blob_addr = (unsigned long)malloc(esm_blob_size); if (!esm_blob_addr) fatal("Can't allocate memory for ESM blob !\n\r"); printf("Relocating ESM blob 0x%lx <- 0x%p (0x%lx bytes)\n\r", esm_blob_addr, old_addr, esm_blob_size); memmove((void *)esm_blob_addr, old_addr, esm_blob_size); } /* Tell the kernel ESM blob address via device tree. */ setprop_val(chosen, "linux,esm-blob-start", (u32)(esm_blob_addr)); setprop_val(chosen, "linux,esm-blob-end", (u32)(esm_blob_addr + esm_blob_size)); } #else static inline void prep_esm_blob(struct addr_range vmlinux, void *chosen) { } #endif /* A buffer that may be edited by tools operating on a zImage binary so as to * edit the command line passed to vmlinux (by setting /chosen/bootargs). * The buffer is put in it's own section so that tools may locate it easier. */ static char cmdline[BOOT_COMMAND_LINE_SIZE] __attribute__((__section__("__builtin_cmdline"))); static void prep_cmdline(void *chosen) { unsigned int getline_timeout = 5000; int v; int n; /* Wait-for-input time */ n = getprop(chosen, "linux,cmdline-timeout", &v, sizeof(v)); if (n == sizeof(v)) getline_timeout = v; if (cmdline[0] == '\0') getprop(chosen, "bootargs", cmdline, BOOT_COMMAND_LINE_SIZE-1); printf("\n\rLinux/PowerPC load: %s", cmdline); /* If possible, edit the command line */ if (console_ops.edit_cmdline && getline_timeout) console_ops.edit_cmdline(cmdline, BOOT_COMMAND_LINE_SIZE, getline_timeout); printf("\n\r"); /* Put the command line back into the devtree for the kernel */ setprop_str(chosen, "bootargs", cmdline); } struct platform_ops platform_ops; struct dt_ops dt_ops; struct console_ops console_ops; struct loader_info loader_info; void start(void) { struct addr_range vmlinux, initrd; kernel_entry_t kentry; unsigned long ft_addr = 0; void *chosen; /* Do this first, because malloc() could clobber the loader's * command line. Only use the loader command line if a * built-in command line wasn't set by an external tool */ if ((loader_info.cmdline_len > 0) && (cmdline[0] == '\0')) memmove(cmdline, loader_info.cmdline, min(loader_info.cmdline_len, BOOT_COMMAND_LINE_SIZE-1)); if (console_ops.open && (console_ops.open() < 0)) exit(); if (platform_ops.fixups) platform_ops.fixups(); printf("\n\rzImage starting: loaded at 0x%p (sp: 0x%p)\n\r", _start, get_sp()); /* Ensure that the device tree has a /chosen node */ chosen = finddevice("/chosen"); if (!chosen) chosen = create_node(NULL, "chosen"); vmlinux = prep_kernel(); initrd = prep_initrd(vmlinux, chosen, loader_info.initrd_addr, loader_info.initrd_size); prep_esm_blob(vmlinux, chosen); prep_cmdline(chosen); printf("Finalizing device tree..."); if (dt_ops.finalize) ft_addr = dt_ops.finalize(); if (ft_addr) printf(" flat tree at 0x%lx\n\r", ft_addr); else printf(" using OF tree (promptr=%p)\n\r", loader_info.promptr); if (console_ops.close) console_ops.close(); kentry = (kernel_entry_t) vmlinux.addr; if (ft_addr) { if(platform_ops.kentry) platform_ops.kentry(ft_addr, vmlinux.addr); else kentry(ft_addr, 0, NULL); } else kentry((unsigned long)initrd.addr, initrd.size, loader_info.promptr); /* console closed so printf in fatal below may not work */ fatal("Error: Linux kernel returned to zImage boot wrapper!\n\r"); }