// SPDX-License-Identifier: GPL-2.0-or-later /* * Glue code for AES implementation for SPE instructions (PPC) * * Based on generic implementation. The assembler module takes care * about the SPE registers so it can run from interrupt context. * * Copyright (c) 2015 Markus Stockhausen */ #include #include #include #include #include #include #include #include #include #include /* * MAX_BYTES defines the number of bytes that are allowed to be processed * between preempt_disable() and preempt_enable(). e500 cores can issue two * instructions per clock cycle using one 32/64 bit unit (SU1) and one 32 * bit unit (SU2). One of these can be a memory access that is executed via * a single load and store unit (LSU). XTS-AES-256 takes ~780 operations per * 16 byte block block or 25 cycles per byte. Thus 768 bytes of input data * will need an estimated maximum of 20,000 cycles. Headroom for cache misses * included. Even with the low end model clocked at 667 MHz this equals to a * critical time window of less than 30us. The value has been chosen to * process a 512 byte disk block in one or a large 1400 bytes IPsec network * packet in two runs. * */ #define MAX_BYTES 768 struct ppc_aes_ctx { u32 key_enc[AES_MAX_KEYLENGTH_U32]; u32 key_dec[AES_MAX_KEYLENGTH_U32]; u32 rounds; }; struct ppc_xts_ctx { u32 key_enc[AES_MAX_KEYLENGTH_U32]; u32 key_dec[AES_MAX_KEYLENGTH_U32]; u32 key_twk[AES_MAX_KEYLENGTH_U32]; u32 rounds; }; extern void ppc_encrypt_aes(u8 *out, const u8 *in, u32 *key_enc, u32 rounds); extern void ppc_decrypt_aes(u8 *out, const u8 *in, u32 *key_dec, u32 rounds); extern void ppc_encrypt_ecb(u8 *out, const u8 *in, u32 *key_enc, u32 rounds, u32 bytes); extern void ppc_decrypt_ecb(u8 *out, const u8 *in, u32 *key_dec, u32 rounds, u32 bytes); extern void ppc_encrypt_cbc(u8 *out, const u8 *in, u32 *key_enc, u32 rounds, u32 bytes, u8 *iv); extern void ppc_decrypt_cbc(u8 *out, const u8 *in, u32 *key_dec, u32 rounds, u32 bytes, u8 *iv); extern void ppc_crypt_ctr (u8 *out, const u8 *in, u32 *key_enc, u32 rounds, u32 bytes, u8 *iv); extern void ppc_encrypt_xts(u8 *out, const u8 *in, u32 *key_enc, u32 rounds, u32 bytes, u8 *iv, u32 *key_twk); extern void ppc_decrypt_xts(u8 *out, const u8 *in, u32 *key_dec, u32 rounds, u32 bytes, u8 *iv, u32 *key_twk); extern void ppc_expand_key_128(u32 *key_enc, const u8 *key); extern void ppc_expand_key_192(u32 *key_enc, const u8 *key); extern void ppc_expand_key_256(u32 *key_enc, const u8 *key); extern void ppc_generate_decrypt_key(u32 *key_dec,u32 *key_enc, unsigned int key_len); static void spe_begin(void) { /* disable preemption and save users SPE registers if required */ preempt_disable(); enable_kernel_spe(); } static void spe_end(void) { disable_kernel_spe(); /* reenable preemption */ preempt_enable(); } static int ppc_aes_setkey(struct crypto_tfm *tfm, const u8 *in_key, unsigned int key_len) { struct ppc_aes_ctx *ctx = crypto_tfm_ctx(tfm); if (key_len != AES_KEYSIZE_128 && key_len != AES_KEYSIZE_192 && key_len != AES_KEYSIZE_256) { tfm->crt_flags |= CRYPTO_TFM_RES_BAD_KEY_LEN; return -EINVAL; } switch (key_len) { case AES_KEYSIZE_128: ctx->rounds = 4; ppc_expand_key_128(ctx->key_enc, in_key); break; case AES_KEYSIZE_192: ctx->rounds = 5; ppc_expand_key_192(ctx->key_enc, in_key); break; case AES_KEYSIZE_256: ctx->rounds = 6; ppc_expand_key_256(ctx->key_enc, in_key); break; } ppc_generate_decrypt_key(ctx->key_dec, ctx->key_enc, key_len); return 0; } static int ppc_xts_setkey(struct crypto_tfm *tfm, const u8 *in_key, unsigned int key_len) { struct ppc_xts_ctx *ctx = crypto_tfm_ctx(tfm); int err; err = xts_check_key(tfm, in_key, key_len); if (err) return err; key_len >>= 1; if (key_len != AES_KEYSIZE_128 && key_len != AES_KEYSIZE_192 && key_len != AES_KEYSIZE_256) { tfm->crt_flags |= CRYPTO_TFM_RES_BAD_KEY_LEN; return -EINVAL; } switch (key_len) { case AES_KEYSIZE_128: ctx->rounds = 4; ppc_expand_key_128(ctx->key_enc, in_key); ppc_expand_key_128(ctx->key_twk, in_key + AES_KEYSIZE_128); break; case AES_KEYSIZE_192: ctx->rounds = 5; ppc_expand_key_192(ctx->key_enc, in_key); ppc_expand_key_192(ctx->key_twk, in_key + AES_KEYSIZE_192); break; case AES_KEYSIZE_256: ctx->rounds = 6; ppc_expand_key_256(ctx->key_enc, in_key); ppc_expand_key_256(ctx->key_twk, in_key + AES_KEYSIZE_256); break; } ppc_generate_decrypt_key(ctx->key_dec, ctx->key_enc, key_len); return 0; } static void ppc_aes_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in) { struct ppc_aes_ctx *ctx = crypto_tfm_ctx(tfm); spe_begin(); ppc_encrypt_aes(out, in, ctx->key_enc, ctx->rounds); spe_end(); } static void ppc_aes_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in) { struct ppc_aes_ctx *ctx = crypto_tfm_ctx(tfm); spe_begin(); ppc_decrypt_aes(out, in, ctx->key_dec, ctx->rounds); spe_end(); } static int ppc_ecb_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes) { struct ppc_aes_ctx *ctx = crypto_blkcipher_ctx(desc->tfm); struct blkcipher_walk walk; unsigned int ubytes; int err; desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP; blkcipher_walk_init(&walk, dst, src, nbytes); err = blkcipher_walk_virt(desc, &walk); while ((nbytes = walk.nbytes)) { ubytes = nbytes > MAX_BYTES ? nbytes - MAX_BYTES : nbytes & (AES_BLOCK_SIZE - 1); nbytes -= ubytes; spe_begin(); ppc_encrypt_ecb(walk.dst.virt.addr, walk.src.virt.addr, ctx->key_enc, ctx->rounds, nbytes); spe_end(); err = blkcipher_walk_done(desc, &walk, ubytes); } return err; } static int ppc_ecb_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes) { struct ppc_aes_ctx *ctx = crypto_blkcipher_ctx(desc->tfm); struct blkcipher_walk walk; unsigned int ubytes; int err; desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP; blkcipher_walk_init(&walk, dst, src, nbytes); err = blkcipher_walk_virt(desc, &walk); while ((nbytes = walk.nbytes)) { ubytes = nbytes > MAX_BYTES ? nbytes - MAX_BYTES : nbytes & (AES_BLOCK_SIZE - 1); nbytes -= ubytes; spe_begin(); ppc_decrypt_ecb(walk.dst.virt.addr, walk.src.virt.addr, ctx->key_dec, ctx->rounds, nbytes); spe_end(); err = blkcipher_walk_done(desc, &walk, ubytes); } return err; } static int ppc_cbc_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes) { struct ppc_aes_ctx *ctx = crypto_blkcipher_ctx(desc->tfm); struct blkcipher_walk walk; unsigned int ubytes; int err; desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP; blkcipher_walk_init(&walk, dst, src, nbytes); err = blkcipher_walk_virt(desc, &walk); while ((nbytes = walk.nbytes)) { ubytes = nbytes > MAX_BYTES ? nbytes - MAX_BYTES : nbytes & (AES_BLOCK_SIZE - 1); nbytes -= ubytes; spe_begin(); ppc_encrypt_cbc(walk.dst.virt.addr, walk.src.virt.addr, ctx->key_enc, ctx->rounds, nbytes, walk.iv); spe_end(); err = blkcipher_walk_done(desc, &walk, ubytes); } return err; } static int ppc_cbc_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes) { struct ppc_aes_ctx *ctx = crypto_blkcipher_ctx(desc->tfm); struct blkcipher_walk walk; unsigned int ubytes; int err; desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP; blkcipher_walk_init(&walk, dst, src, nbytes); err = blkcipher_walk_virt(desc, &walk); while ((nbytes = walk.nbytes)) { ubytes = nbytes > MAX_BYTES ? nbytes - MAX_BYTES : nbytes & (AES_BLOCK_SIZE - 1); nbytes -= ubytes; spe_begin(); ppc_decrypt_cbc(walk.dst.virt.addr, walk.src.virt.addr, ctx->key_dec, ctx->rounds, nbytes, walk.iv); spe_end(); err = blkcipher_walk_done(desc, &walk, ubytes); } return err; } static int ppc_ctr_crypt(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes) { struct ppc_aes_ctx *ctx = crypto_blkcipher_ctx(desc->tfm); struct blkcipher_walk walk; unsigned int pbytes, ubytes; int err; desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP; blkcipher_walk_init(&walk, dst, src, nbytes); err = blkcipher_walk_virt_block(desc, &walk, AES_BLOCK_SIZE); while ((pbytes = walk.nbytes)) { pbytes = pbytes > MAX_BYTES ? MAX_BYTES : pbytes; pbytes = pbytes == nbytes ? nbytes : pbytes & ~(AES_BLOCK_SIZE - 1); ubytes = walk.nbytes - pbytes; spe_begin(); ppc_crypt_ctr(walk.dst.virt.addr, walk.src.virt.addr, ctx->key_enc, ctx->rounds, pbytes , walk.iv); spe_end(); nbytes -= pbytes; err = blkcipher_walk_done(desc, &walk, ubytes); } return err; } static int ppc_xts_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes) { struct ppc_xts_ctx *ctx = crypto_blkcipher_ctx(desc->tfm); struct blkcipher_walk walk; unsigned int ubytes; int err; u32 *twk; desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP; blkcipher_walk_init(&walk, dst, src, nbytes); err = blkcipher_walk_virt(desc, &walk); twk = ctx->key_twk; while ((nbytes = walk.nbytes)) { ubytes = nbytes > MAX_BYTES ? nbytes - MAX_BYTES : nbytes & (AES_BLOCK_SIZE - 1); nbytes -= ubytes; spe_begin(); ppc_encrypt_xts(walk.dst.virt.addr, walk.src.virt.addr, ctx->key_enc, ctx->rounds, nbytes, walk.iv, twk); spe_end(); twk = NULL; err = blkcipher_walk_done(desc, &walk, ubytes); } return err; } static int ppc_xts_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes) { struct ppc_xts_ctx *ctx = crypto_blkcipher_ctx(desc->tfm); struct blkcipher_walk walk; unsigned int ubytes; int err; u32 *twk; desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP; blkcipher_walk_init(&walk, dst, src, nbytes); err = blkcipher_walk_virt(desc, &walk); twk = ctx->key_twk; while ((nbytes = walk.nbytes)) { ubytes = nbytes > MAX_BYTES ? nbytes - MAX_BYTES : nbytes & (AES_BLOCK_SIZE - 1); nbytes -= ubytes; spe_begin(); ppc_decrypt_xts(walk.dst.virt.addr, walk.src.virt.addr, ctx->key_dec, ctx->rounds, nbytes, walk.iv, twk); spe_end(); twk = NULL; err = blkcipher_walk_done(desc, &walk, ubytes); } return err; } /* * Algorithm definitions. Disabling alignment (cra_alignmask=0) was chosen * because the e500 platform can handle unaligned reads/writes very efficently. * This improves IPsec thoughput by another few percent. Additionally we assume * that AES context is always aligned to at least 8 bytes because it is created * with kmalloc() in the crypto infrastructure * */ static struct crypto_alg aes_algs[] = { { .cra_name = "aes", .cra_driver_name = "aes-ppc-spe", .cra_priority = 300, .cra_flags = CRYPTO_ALG_TYPE_CIPHER, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct ppc_aes_ctx), .cra_alignmask = 0, .cra_module = THIS_MODULE, .cra_u = { .cipher = { .cia_min_keysize = AES_MIN_KEY_SIZE, .cia_max_keysize = AES_MAX_KEY_SIZE, .cia_setkey = ppc_aes_setkey, .cia_encrypt = ppc_aes_encrypt, .cia_decrypt = ppc_aes_decrypt } } }, { .cra_name = "ecb(aes)", .cra_driver_name = "ecb-ppc-spe", .cra_priority = 300, .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct ppc_aes_ctx), .cra_alignmask = 0, .cra_type = &crypto_blkcipher_type, .cra_module = THIS_MODULE, .cra_u = { .blkcipher = { .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, .setkey = ppc_aes_setkey, .encrypt = ppc_ecb_encrypt, .decrypt = ppc_ecb_decrypt, } } }, { .cra_name = "cbc(aes)", .cra_driver_name = "cbc-ppc-spe", .cra_priority = 300, .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct ppc_aes_ctx), .cra_alignmask = 0, .cra_type = &crypto_blkcipher_type, .cra_module = THIS_MODULE, .cra_u = { .blkcipher = { .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, .setkey = ppc_aes_setkey, .encrypt = ppc_cbc_encrypt, .decrypt = ppc_cbc_decrypt, } } }, { .cra_name = "ctr(aes)", .cra_driver_name = "ctr-ppc-spe", .cra_priority = 300, .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER, .cra_blocksize = 1, .cra_ctxsize = sizeof(struct ppc_aes_ctx), .cra_alignmask = 0, .cra_type = &crypto_blkcipher_type, .cra_module = THIS_MODULE, .cra_u = { .blkcipher = { .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, .setkey = ppc_aes_setkey, .encrypt = ppc_ctr_crypt, .decrypt = ppc_ctr_crypt, } } }, { .cra_name = "xts(aes)", .cra_driver_name = "xts-ppc-spe", .cra_priority = 300, .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct ppc_xts_ctx), .cra_alignmask = 0, .cra_type = &crypto_blkcipher_type, .cra_module = THIS_MODULE, .cra_u = { .blkcipher = { .min_keysize = AES_MIN_KEY_SIZE * 2, .max_keysize = AES_MAX_KEY_SIZE * 2, .ivsize = AES_BLOCK_SIZE, .setkey = ppc_xts_setkey, .encrypt = ppc_xts_encrypt, .decrypt = ppc_xts_decrypt, } } } }; static int __init ppc_aes_mod_init(void) { return crypto_register_algs(aes_algs, ARRAY_SIZE(aes_algs)); } static void __exit ppc_aes_mod_fini(void) { crypto_unregister_algs(aes_algs, ARRAY_SIZE(aes_algs)); } module_init(ppc_aes_mod_init); module_exit(ppc_aes_mod_fini); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("AES-ECB/CBC/CTR/XTS, SPE optimized"); MODULE_ALIAS_CRYPTO("aes"); MODULE_ALIAS_CRYPTO("ecb(aes)"); MODULE_ALIAS_CRYPTO("cbc(aes)"); MODULE_ALIAS_CRYPTO("ctr(aes)"); MODULE_ALIAS_CRYPTO("xts(aes)"); MODULE_ALIAS_CRYPTO("aes-ppc-spe");