#ifndef _ASM_POWERPC_BOOK3S_64_HASH_64K_H #define _ASM_POWERPC_BOOK3S_64_HASH_64K_H #include #define PTE_INDEX_SIZE 8 #define PMD_INDEX_SIZE 10 #define PUD_INDEX_SIZE 0 #define PGD_INDEX_SIZE 12 #define PTRS_PER_PTE (1 << PTE_INDEX_SIZE) #define PTRS_PER_PMD (1 << PMD_INDEX_SIZE) #define PTRS_PER_PGD (1 << PGD_INDEX_SIZE) /* With 4k base page size, hugepage PTEs go at the PMD level */ #define MIN_HUGEPTE_SHIFT PAGE_SHIFT /* PMD_SHIFT determines what a second-level page table entry can map */ #define PMD_SHIFT (PAGE_SHIFT + PTE_INDEX_SIZE) #define PMD_SIZE (1UL << PMD_SHIFT) #define PMD_MASK (~(PMD_SIZE-1)) /* PGDIR_SHIFT determines what a third-level page table entry can map */ #define PGDIR_SHIFT (PMD_SHIFT + PMD_INDEX_SIZE) #define PGDIR_SIZE (1UL << PGDIR_SHIFT) #define PGDIR_MASK (~(PGDIR_SIZE-1)) #define _PAGE_COMBO 0x00040000 /* this is a combo 4k page */ #define _PAGE_4K_PFN 0x00080000 /* PFN is for a single 4k page */ /* * Used to track subpage group valid if _PAGE_COMBO is set * This overloads _PAGE_F_GIX and _PAGE_F_SECOND */ #define _PAGE_COMBO_VALID (_PAGE_F_GIX | _PAGE_F_SECOND) /* PTE flags to conserve for HPTE identification */ #define _PAGE_HPTEFLAGS (_PAGE_BUSY | _PAGE_F_SECOND | \ _PAGE_F_GIX | _PAGE_HASHPTE | _PAGE_COMBO) /* Shift to put page number into pte. * * That gives us a max RPN of 34 bits, which means a max of 50 bits * of addressable physical space, or 46 bits for the special 4k PFNs. */ #define PTE_RPN_SHIFT (30) /* * we support 16 fragments per PTE page of 64K size. */ #define PTE_FRAG_NR 16 /* * We use a 2K PTE page fragment and another 2K for storing * real_pte_t hash index */ #define PTE_FRAG_SIZE_SHIFT 12 #define PTE_FRAG_SIZE (1UL << PTE_FRAG_SIZE_SHIFT) /* * Bits to mask out from a PMD to get to the PTE page * PMDs point to PTE table fragments which are PTE_FRAG_SIZE aligned. */ #define PMD_MASKED_BITS (PTE_FRAG_SIZE - 1) /* Bits to mask out from a PGD/PUD to get to the PMD page */ #define PUD_MASKED_BITS 0x1ff #ifndef __ASSEMBLY__ /* * With 64K pages on hash table, we have a special PTE format that * uses a second "half" of the page table to encode sub-page information * in order to deal with 64K made of 4K HW pages. Thus we override the * generic accessors and iterators here */ #define __real_pte __real_pte static inline real_pte_t __real_pte(pte_t pte, pte_t *ptep) { real_pte_t rpte; unsigned long *hidxp; rpte.pte = pte; rpte.hidx = 0; if (pte_val(pte) & _PAGE_COMBO) { /* * Make sure we order the hidx load against the _PAGE_COMBO * check. The store side ordering is done in __hash_page_4K */ smp_rmb(); hidxp = (unsigned long *)(ptep + PTRS_PER_PTE); rpte.hidx = *hidxp; } return rpte; } static inline unsigned long __rpte_to_hidx(real_pte_t rpte, unsigned long index) { if ((pte_val(rpte.pte) & _PAGE_COMBO)) return (rpte.hidx >> (index<<2)) & 0xf; return (pte_val(rpte.pte) >> _PAGE_F_GIX_SHIFT) & 0xf; } #define __rpte_to_pte(r) ((r).pte) extern bool __rpte_sub_valid(real_pte_t rpte, unsigned long index); /* * Trick: we set __end to va + 64k, which happens works for * a 16M page as well as we want only one iteration */ #define pte_iterate_hashed_subpages(rpte, psize, vpn, index, shift) \ do { \ unsigned long __end = vpn + (1UL << (PAGE_SHIFT - VPN_SHIFT)); \ unsigned __split = (psize == MMU_PAGE_4K || \ psize == MMU_PAGE_64K_AP); \ shift = mmu_psize_defs[psize].shift; \ for (index = 0; vpn < __end; index++, \ vpn += (1L << (shift - VPN_SHIFT))) { \ if (!__split || __rpte_sub_valid(rpte, index)) \ do { #define pte_iterate_hashed_end() } while(0); } } while(0) #define pte_pagesize_index(mm, addr, pte) \ (((pte) & _PAGE_COMBO)? MMU_PAGE_4K: MMU_PAGE_64K) #define remap_4k_pfn(vma, addr, pfn, prot) \ (WARN_ON(((pfn) >= (1UL << (64 - PTE_RPN_SHIFT)))) ? -EINVAL : \ remap_pfn_range((vma), (addr), (pfn), PAGE_SIZE, \ __pgprot(pgprot_val((prot)) | _PAGE_4K_PFN))) #define PTE_TABLE_SIZE PTE_FRAG_SIZE #ifdef CONFIG_TRANSPARENT_HUGEPAGE #define PMD_TABLE_SIZE ((sizeof(pmd_t) << PMD_INDEX_SIZE) + (sizeof(unsigned long) << PMD_INDEX_SIZE)) #else #define PMD_TABLE_SIZE (sizeof(pmd_t) << PMD_INDEX_SIZE) #endif #define PGD_TABLE_SIZE (sizeof(pgd_t) << PGD_INDEX_SIZE) #define pgd_pte(pgd) (pud_pte(((pud_t){ pgd }))) #define pte_pgd(pte) ((pgd_t)pte_pud(pte)) #ifdef CONFIG_HUGETLB_PAGE /* * We have PGD_INDEX_SIZ = 12 and PTE_INDEX_SIZE = 8, so that we can have * 16GB hugepage pte in PGD and 16MB hugepage pte at PMD; * * Defined in such a way that we can optimize away code block at build time * if CONFIG_HUGETLB_PAGE=n. */ static inline int pmd_huge(pmd_t pmd) { /* * leaf pte for huge page */ return !!(pmd_val(pmd) & _PAGE_PTE); } static inline int pud_huge(pud_t pud) { /* * leaf pte for huge page */ return !!(pud_val(pud) & _PAGE_PTE); } static inline int pgd_huge(pgd_t pgd) { /* * leaf pte for huge page */ return !!(pgd_val(pgd) & _PAGE_PTE); } #define pgd_huge pgd_huge #ifdef CONFIG_DEBUG_VM extern int hugepd_ok(hugepd_t hpd); #define is_hugepd(hpd) (hugepd_ok(hpd)) #else /* * With 64k page size, we have hugepage ptes in the pgd and pmd entries. We don't * need to setup hugepage directory for them. Our pte and page directory format * enable us to have this enabled. */ static inline int hugepd_ok(hugepd_t hpd) { return 0; } #define is_hugepd(pdep) 0 #endif /* CONFIG_DEBUG_VM */ #endif /* CONFIG_HUGETLB_PAGE */ #ifdef CONFIG_TRANSPARENT_HUGEPAGE extern unsigned long pmd_hugepage_update(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp, unsigned long clr, unsigned long set); static inline char *get_hpte_slot_array(pmd_t *pmdp) { /* * The hpte hindex is stored in the pgtable whose address is in the * second half of the PMD * * Order this load with the test for pmd_trans_huge in the caller */ smp_rmb(); return *(char **)(pmdp + PTRS_PER_PMD); } /* * The linux hugepage PMD now include the pmd entries followed by the address * to the stashed pgtable_t. The stashed pgtable_t contains the hpte bits. * [ 1 bit secondary | 3 bit hidx | 1 bit valid | 000]. We use one byte per * each HPTE entry. With 16MB hugepage and 64K HPTE we need 256 entries and * with 4K HPTE we need 4096 entries. Both will fit in a 4K pgtable_t. * * The last three bits are intentionally left to zero. This memory location * are also used as normal page PTE pointers. So if we have any pointers * left around while we collapse a hugepage, we need to make sure * _PAGE_PRESENT bit of that is zero when we look at them */ static inline unsigned int hpte_valid(unsigned char *hpte_slot_array, int index) { return (hpte_slot_array[index] >> 3) & 0x1; } static inline unsigned int hpte_hash_index(unsigned char *hpte_slot_array, int index) { return hpte_slot_array[index] >> 4; } static inline void mark_hpte_slot_valid(unsigned char *hpte_slot_array, unsigned int index, unsigned int hidx) { hpte_slot_array[index] = hidx << 4 | 0x1 << 3; } /* * * For core kernel code by design pmd_trans_huge is never run on any hugetlbfs * page. The hugetlbfs page table walking and mangling paths are totally * separated form the core VM paths and they're differentiated by * VM_HUGETLB being set on vm_flags well before any pmd_trans_huge could run. * * pmd_trans_huge() is defined as false at build time if * CONFIG_TRANSPARENT_HUGEPAGE=n to optimize away code blocks at build * time in such case. * * For ppc64 we need to differntiate from explicit hugepages from THP, because * for THP we also track the subpage details at the pmd level. We don't do * that for explicit huge pages. * */ static inline int pmd_trans_huge(pmd_t pmd) { return !!((pmd_val(pmd) & (_PAGE_PTE | _PAGE_THP_HUGE)) == (_PAGE_PTE | _PAGE_THP_HUGE)); } static inline int pmd_large(pmd_t pmd) { return !!(pmd_val(pmd) & _PAGE_PTE); } static inline pmd_t pmd_mknotpresent(pmd_t pmd) { return __pmd(pmd_val(pmd) & ~_PAGE_PRESENT); } #define __HAVE_ARCH_PMD_SAME static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b) { return (((pmd_val(pmd_a) ^ pmd_val(pmd_b)) & ~_PAGE_HPTEFLAGS) == 0); } static inline int __pmdp_test_and_clear_young(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp) { unsigned long old; if ((pmd_val(*pmdp) & (_PAGE_ACCESSED | _PAGE_HASHPTE)) == 0) return 0; old = pmd_hugepage_update(mm, addr, pmdp, _PAGE_ACCESSED, 0); return ((old & _PAGE_ACCESSED) != 0); } #define __HAVE_ARCH_PMDP_SET_WRPROTECT static inline void pmdp_set_wrprotect(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp) { if ((pmd_val(*pmdp) & _PAGE_RW) == 0) return; pmd_hugepage_update(mm, addr, pmdp, _PAGE_RW, 0); } #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ #endif /* __ASSEMBLY__ */ #endif /* _ASM_POWERPC_BOOK3S_64_HASH_64K_H */