/* SPDX-License-Identifier: GPL-2.0 */ /* * This file contains the 64-bit "server" PowerPC variant * of the low level exception handling including exception * vectors, exception return, part of the slb and stab * handling and other fixed offset specific things. * * This file is meant to be #included from head_64.S due to * position dependent assembly. * * Most of this originates from head_64.S and thus has the same * copyright history. * */ #include #include #include #include #include #include #include /* * Following are fixed section helper macros. * * EXC_REAL_BEGIN/END - real, unrelocated exception vectors * EXC_VIRT_BEGIN/END - virt (AIL), unrelocated exception vectors * TRAMP_REAL_BEGIN - real, unrelocated helpers (virt may call these) * TRAMP_VIRT_BEGIN - virt, unreloc helpers (in practice, real can use) * EXC_COMMON - After switching to virtual, relocated mode. */ #define EXC_REAL_BEGIN(name, start, size) \ FIXED_SECTION_ENTRY_BEGIN_LOCATION(real_vectors, exc_real_##start##_##name, start, size) #define EXC_REAL_END(name, start, size) \ FIXED_SECTION_ENTRY_END_LOCATION(real_vectors, exc_real_##start##_##name, start, size) #define EXC_VIRT_BEGIN(name, start, size) \ FIXED_SECTION_ENTRY_BEGIN_LOCATION(virt_vectors, exc_virt_##start##_##name, start, size) #define EXC_VIRT_END(name, start, size) \ FIXED_SECTION_ENTRY_END_LOCATION(virt_vectors, exc_virt_##start##_##name, start, size) #define EXC_COMMON_BEGIN(name) \ USE_TEXT_SECTION(); \ .balign IFETCH_ALIGN_BYTES; \ .global name; \ _ASM_NOKPROBE_SYMBOL(name); \ DEFINE_FIXED_SYMBOL(name, text); \ name: #define TRAMP_REAL_BEGIN(name) \ FIXED_SECTION_ENTRY_BEGIN(real_trampolines, name) #define TRAMP_VIRT_BEGIN(name) \ FIXED_SECTION_ENTRY_BEGIN(virt_trampolines, name) #define EXC_REAL_NONE(start, size) \ FIXED_SECTION_ENTRY_BEGIN_LOCATION(real_vectors, exc_real_##start##_##unused, start, size); \ FIXED_SECTION_ENTRY_END_LOCATION(real_vectors, exc_real_##start##_##unused, start, size) #define EXC_VIRT_NONE(start, size) \ FIXED_SECTION_ENTRY_BEGIN_LOCATION(virt_vectors, exc_virt_##start##_##unused, start, size); \ FIXED_SECTION_ENTRY_END_LOCATION(virt_vectors, exc_virt_##start##_##unused, start, size) /* * We're short on space and time in the exception prolog, so we can't * use the normal LOAD_REG_IMMEDIATE macro to load the address of label. * Instead we get the base of the kernel from paca->kernelbase and or in the low * part of label. This requires that the label be within 64KB of kernelbase, and * that kernelbase be 64K aligned. */ #define LOAD_HANDLER(reg, label) \ ld reg,PACAKBASE(r13); /* get high part of &label */ \ ori reg,reg,FIXED_SYMBOL_ABS_ADDR(label) #define __LOAD_HANDLER(reg, label, section) \ ld reg,PACAKBASE(r13); \ ori reg,reg,(ABS_ADDR(label, section))@l /* * Branches from unrelocated code (e.g., interrupts) to labels outside * head-y require >64K offsets. */ #define __LOAD_FAR_HANDLER(reg, label, section) \ ld reg,PACAKBASE(r13); \ ori reg,reg,(ABS_ADDR(label, section))@l; \ addis reg,reg,(ABS_ADDR(label, section))@h /* * Interrupt code generation macros */ #define IVEC .L_IVEC_\name\() /* Interrupt vector address */ #define IHSRR .L_IHSRR_\name\() /* Sets SRR or HSRR registers */ #define IHSRR_IF_HVMODE .L_IHSRR_IF_HVMODE_\name\() /* HSRR if HV else SRR */ #define IAREA .L_IAREA_\name\() /* PACA save area */ #define IVIRT .L_IVIRT_\name\() /* Has virt mode entry point */ #define IISIDE .L_IISIDE_\name\() /* Uses SRR0/1 not DAR/DSISR */ #define ICFAR .L_ICFAR_\name\() /* Uses CFAR */ #define ICFAR_IF_HVMODE .L_ICFAR_IF_HVMODE_\name\() /* Uses CFAR if HV */ #define IDAR .L_IDAR_\name\() /* Uses DAR (or SRR0) */ #define IDSISR .L_IDSISR_\name\() /* Uses DSISR (or SRR1) */ #define IBRANCH_TO_COMMON .L_IBRANCH_TO_COMMON_\name\() /* ENTRY branch to common */ #define IREALMODE_COMMON .L_IREALMODE_COMMON_\name\() /* Common runs in realmode */ #define IMASK .L_IMASK_\name\() /* IRQ soft-mask bit */ #define IKVM_REAL .L_IKVM_REAL_\name\() /* Real entry tests KVM */ #define __IKVM_REAL(name) .L_IKVM_REAL_ ## name #define IKVM_VIRT .L_IKVM_VIRT_\name\() /* Virt entry tests KVM */ #define ISTACK .L_ISTACK_\name\() /* Set regular kernel stack */ #define __ISTACK(name) .L_ISTACK_ ## name #define IKUAP .L_IKUAP_\name\() /* Do KUAP lock */ #define INT_DEFINE_BEGIN(n) \ .macro int_define_ ## n name #define INT_DEFINE_END(n) \ .endm ; \ int_define_ ## n n ; \ do_define_int n .macro do_define_int name .ifndef IVEC .error "IVEC not defined" .endif .ifndef IHSRR IHSRR=0 .endif .ifndef IHSRR_IF_HVMODE IHSRR_IF_HVMODE=0 .endif .ifndef IAREA IAREA=PACA_EXGEN .endif .ifndef IVIRT IVIRT=1 .endif .ifndef IISIDE IISIDE=0 .endif .ifndef ICFAR ICFAR=1 .endif .ifndef ICFAR_IF_HVMODE ICFAR_IF_HVMODE=0 .endif .ifndef IDAR IDAR=0 .endif .ifndef IDSISR IDSISR=0 .endif .ifndef IBRANCH_TO_COMMON IBRANCH_TO_COMMON=1 .endif .ifndef IREALMODE_COMMON IREALMODE_COMMON=0 .else .if ! IBRANCH_TO_COMMON .error "IREALMODE_COMMON=1 but IBRANCH_TO_COMMON=0" .endif .endif .ifndef IMASK IMASK=0 .endif .ifndef IKVM_REAL IKVM_REAL=0 .endif .ifndef IKVM_VIRT IKVM_VIRT=0 .endif .ifndef ISTACK ISTACK=1 .endif .ifndef IKUAP IKUAP=1 .endif .endm /* * All interrupts which set HSRR registers, as well as SRESET and MCE and * syscall when invoked with "sc 1" switch to MSR[HV]=1 (HVMODE) to be taken, * so they all generally need to test whether they were taken in guest context. * * Note: SRESET and MCE may also be sent to the guest by the hypervisor, and be * taken with MSR[HV]=0. * * Interrupts which set SRR registers (with the above exceptions) do not * elevate to MSR[HV]=1 mode, though most can be taken when running with * MSR[HV]=1 (e.g., bare metal kernel and userspace). So these interrupts do * not need to test whether a guest is running because they get delivered to * the guest directly, including nested HV KVM guests. * * The exception is PR KVM, where the guest runs with MSR[PR]=1 and the host * runs with MSR[HV]=0, so the host takes all interrupts on behalf of the * guest. PR KVM runs with LPCR[AIL]=0 which causes interrupts to always be * delivered to the real-mode entry point, therefore such interrupts only test * KVM in their real mode handlers, and only when PR KVM is possible. * * Interrupts that are taken in MSR[HV]=0 and escalate to MSR[HV]=1 are always * delivered in real-mode when the MMU is in hash mode because the MMU * registers are not set appropriately to translate host addresses. In nested * radix mode these can be delivered in virt-mode as the host translations are * used implicitly (see: effective LPID, effective PID). */ /* * If an interrupt is taken while a guest is running, it is immediately routed * to KVM to handle. */ .macro KVMTEST name handler #ifdef CONFIG_KVM_BOOK3S_64_HANDLER lbz r10,HSTATE_IN_GUEST(r13) cmpwi r10,0 /* HSRR variants have the 0x2 bit added to their trap number */ .if IHSRR_IF_HVMODE BEGIN_FTR_SECTION li r10,(IVEC + 0x2) FTR_SECTION_ELSE li r10,(IVEC) ALT_FTR_SECTION_END_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206) .elseif IHSRR li r10,(IVEC + 0x2) .else li r10,(IVEC) .endif bne \handler #endif .endm /* * This is the BOOK3S interrupt entry code macro. * * This can result in one of several things happening: * - Branch to the _common handler, relocated, in virtual mode. * These are normal interrupts (synchronous and asynchronous) handled by * the kernel. * - Branch to KVM, relocated but real mode interrupts remain in real mode. * These occur when HSTATE_IN_GUEST is set. The interrupt may be caused by * / intended for host or guest kernel, but KVM must always be involved * because the machine state is set for guest execution. * - Branch to the masked handler, unrelocated. * These occur when maskable asynchronous interrupts are taken with the * irq_soft_mask set. * - Branch to an "early" handler in real mode but relocated. * This is done if early=1. MCE and HMI use these to handle errors in real * mode. * - Fall through and continue executing in real, unrelocated mode. * This is done if early=2. */ .macro GEN_BRANCH_TO_COMMON name, virt .if IREALMODE_COMMON LOAD_HANDLER(r10, \name\()_common) mtctr r10 bctr .else .if \virt #ifndef CONFIG_RELOCATABLE b \name\()_common_virt #else LOAD_HANDLER(r10, \name\()_common_virt) mtctr r10 bctr #endif .else LOAD_HANDLER(r10, \name\()_common_real) mtctr r10 bctr .endif .endif .endm .macro GEN_INT_ENTRY name, virt, ool=0 SET_SCRATCH0(r13) /* save r13 */ GET_PACA(r13) std r9,IAREA+EX_R9(r13) /* save r9 */ BEGIN_FTR_SECTION mfspr r9,SPRN_PPR END_FTR_SECTION_IFSET(CPU_FTR_HAS_PPR) HMT_MEDIUM std r10,IAREA+EX_R10(r13) /* save r10 */ .if ICFAR BEGIN_FTR_SECTION mfspr r10,SPRN_CFAR END_FTR_SECTION_IFSET(CPU_FTR_CFAR) .elseif ICFAR_IF_HVMODE BEGIN_FTR_SECTION BEGIN_FTR_SECTION_NESTED(69) mfspr r10,SPRN_CFAR END_FTR_SECTION_NESTED(CPU_FTR_CFAR, CPU_FTR_CFAR, 69) FTR_SECTION_ELSE BEGIN_FTR_SECTION_NESTED(69) li r10,0 END_FTR_SECTION_NESTED(CPU_FTR_CFAR, CPU_FTR_CFAR, 69) ALT_FTR_SECTION_END_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206) .endif .if \ool .if !\virt b tramp_real_\name .pushsection .text TRAMP_REAL_BEGIN(tramp_real_\name) .else b tramp_virt_\name .pushsection .text TRAMP_VIRT_BEGIN(tramp_virt_\name) .endif .endif BEGIN_FTR_SECTION std r9,IAREA+EX_PPR(r13) END_FTR_SECTION_IFSET(CPU_FTR_HAS_PPR) .if ICFAR || ICFAR_IF_HVMODE BEGIN_FTR_SECTION std r10,IAREA+EX_CFAR(r13) END_FTR_SECTION_IFSET(CPU_FTR_CFAR) .endif INTERRUPT_TO_KERNEL mfctr r10 std r10,IAREA+EX_CTR(r13) mfcr r9 std r11,IAREA+EX_R11(r13) /* save r11 - r12 */ std r12,IAREA+EX_R12(r13) /* * DAR/DSISR, SCRATCH0 must be read before setting MSR[RI], * because a d-side MCE will clobber those registers so is * not recoverable if they are live. */ GET_SCRATCH0(r10) std r10,IAREA+EX_R13(r13) .if IDAR && !IISIDE .if IHSRR mfspr r10,SPRN_HDAR .else mfspr r10,SPRN_DAR .endif std r10,IAREA+EX_DAR(r13) .endif .if IDSISR && !IISIDE .if IHSRR mfspr r10,SPRN_HDSISR .else mfspr r10,SPRN_DSISR .endif stw r10,IAREA+EX_DSISR(r13) .endif .if IHSRR_IF_HVMODE BEGIN_FTR_SECTION mfspr r11,SPRN_HSRR0 /* save HSRR0 */ mfspr r12,SPRN_HSRR1 /* and HSRR1 */ FTR_SECTION_ELSE mfspr r11,SPRN_SRR0 /* save SRR0 */ mfspr r12,SPRN_SRR1 /* and SRR1 */ ALT_FTR_SECTION_END_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206) .elseif IHSRR mfspr r11,SPRN_HSRR0 /* save HSRR0 */ mfspr r12,SPRN_HSRR1 /* and HSRR1 */ .else mfspr r11,SPRN_SRR0 /* save SRR0 */ mfspr r12,SPRN_SRR1 /* and SRR1 */ .endif .if IBRANCH_TO_COMMON GEN_BRANCH_TO_COMMON \name \virt .endif .if \ool .popsection .endif .endm /* * __GEN_COMMON_ENTRY is required to receive the branch from interrupt * entry, except in the case of the real-mode handlers which require * __GEN_REALMODE_COMMON_ENTRY. * * This switches to virtual mode and sets MSR[RI]. */ .macro __GEN_COMMON_ENTRY name DEFINE_FIXED_SYMBOL(\name\()_common_real, text) \name\()_common_real: .if IKVM_REAL KVMTEST \name kvm_interrupt .endif ld r10,PACAKMSR(r13) /* get MSR value for kernel */ /* MSR[RI] is clear iff using SRR regs */ .if IHSRR_IF_HVMODE BEGIN_FTR_SECTION xori r10,r10,MSR_RI END_FTR_SECTION_IFCLR(CPU_FTR_HVMODE) .elseif ! IHSRR xori r10,r10,MSR_RI .endif mtmsrd r10 .if IVIRT .if IKVM_VIRT b 1f /* skip the virt test coming from real */ .endif .balign IFETCH_ALIGN_BYTES DEFINE_FIXED_SYMBOL(\name\()_common_virt, text) \name\()_common_virt: .if IKVM_VIRT KVMTEST \name kvm_interrupt 1: .endif .endif /* IVIRT */ .endm /* * Don't switch to virt mode. Used for early MCE and HMI handlers that * want to run in real mode. */ .macro __GEN_REALMODE_COMMON_ENTRY name DEFINE_FIXED_SYMBOL(\name\()_common_real, text) \name\()_common_real: .if IKVM_REAL KVMTEST \name kvm_interrupt .endif .endm .macro __GEN_COMMON_BODY name .if IMASK .if ! ISTACK .error "No support for masked interrupt to use custom stack" .endif /* If coming from user, skip soft-mask tests. */ andi. r10,r12,MSR_PR bne 3f /* * Kernel code running below __end_soft_masked may be * implicitly soft-masked if it is within the regions * in the soft mask table. */ LOAD_HANDLER(r10, __end_soft_masked) cmpld r11,r10 bge+ 1f /* SEARCH_SOFT_MASK_TABLE clobbers r9,r10,r12 */ mtctr r12 stw r9,PACA_EXGEN+EX_CCR(r13) SEARCH_SOFT_MASK_TABLE cmpdi r12,0 mfctr r12 /* Restore r12 to SRR1 */ lwz r9,PACA_EXGEN+EX_CCR(r13) beq 1f /* Not in soft-mask table */ li r10,IMASK b 2f /* In soft-mask table, always mask */ /* Test the soft mask state against our interrupt's bit */ 1: lbz r10,PACAIRQSOFTMASK(r13) 2: andi. r10,r10,IMASK /* Associate vector numbers with bits in paca->irq_happened */ .if IVEC == 0x500 || IVEC == 0xea0 li r10,PACA_IRQ_EE .elseif IVEC == 0x900 li r10,PACA_IRQ_DEC .elseif IVEC == 0xa00 || IVEC == 0xe80 li r10,PACA_IRQ_DBELL .elseif IVEC == 0xe60 li r10,PACA_IRQ_HMI .elseif IVEC == 0xf00 li r10,PACA_IRQ_PMI .else .abort "Bad maskable vector" .endif .if IHSRR_IF_HVMODE BEGIN_FTR_SECTION bne masked_Hinterrupt FTR_SECTION_ELSE bne masked_interrupt ALT_FTR_SECTION_END_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206) .elseif IHSRR bne masked_Hinterrupt .else bne masked_interrupt .endif .endif .if ISTACK andi. r10,r12,MSR_PR /* See if coming from user */ 3: mr r10,r1 /* Save r1 */ subi r1,r1,INT_FRAME_SIZE /* alloc frame on kernel stack */ beq- 100f ld r1,PACAKSAVE(r13) /* kernel stack to use */ 100: tdgei r1,-INT_FRAME_SIZE /* trap if r1 is in userspace */ EMIT_BUG_ENTRY 100b,__FILE__,__LINE__,0 .endif std r9,_CCR(r1) /* save CR in stackframe */ std r11,_NIP(r1) /* save SRR0 in stackframe */ std r12,_MSR(r1) /* save SRR1 in stackframe */ std r10,0(r1) /* make stack chain pointer */ std r0,GPR0(r1) /* save r0 in stackframe */ std r10,GPR1(r1) /* save r1 in stackframe */ /* Mark our [H]SRRs valid for return */ li r10,1 .if IHSRR_IF_HVMODE BEGIN_FTR_SECTION stb r10,PACAHSRR_VALID(r13) FTR_SECTION_ELSE stb r10,PACASRR_VALID(r13) ALT_FTR_SECTION_END_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206) .elseif IHSRR stb r10,PACAHSRR_VALID(r13) .else stb r10,PACASRR_VALID(r13) .endif .if ISTACK .if IKUAP kuap_save_amr_and_lock r9, r10, cr1, cr0 .endif beq 101f /* if from kernel mode */ BEGIN_FTR_SECTION ld r9,IAREA+EX_PPR(r13) /* Read PPR from paca */ std r9,_PPR(r1) END_FTR_SECTION_IFSET(CPU_FTR_HAS_PPR) 101: .else .if IKUAP kuap_save_amr_and_lock r9, r10, cr1 .endif .endif /* Save original regs values from save area to stack frame. */ ld r9,IAREA+EX_R9(r13) /* move r9, r10 to stackframe */ ld r10,IAREA+EX_R10(r13) std r9,GPR9(r1) std r10,GPR10(r1) ld r9,IAREA+EX_R11(r13) /* move r11 - r13 to stackframe */ ld r10,IAREA+EX_R12(r13) ld r11,IAREA+EX_R13(r13) std r9,GPR11(r1) std r10,GPR12(r1) std r11,GPR13(r1) SAVE_NVGPRS(r1) .if IDAR .if IISIDE ld r10,_NIP(r1) .else ld r10,IAREA+EX_DAR(r13) .endif std r10,_DAR(r1) .endif .if IDSISR .if IISIDE ld r10,_MSR(r1) lis r11,DSISR_SRR1_MATCH_64S@h and r10,r10,r11 .else lwz r10,IAREA+EX_DSISR(r13) .endif std r10,_DSISR(r1) .endif BEGIN_FTR_SECTION .if ICFAR || ICFAR_IF_HVMODE ld r10,IAREA+EX_CFAR(r13) .else li r10,0 .endif std r10,ORIG_GPR3(r1) END_FTR_SECTION_IFSET(CPU_FTR_CFAR) ld r10,IAREA+EX_CTR(r13) std r10,_CTR(r1) std r2,GPR2(r1) /* save r2 in stackframe */ SAVE_GPRS(3, 8, r1) /* save r3 - r8 in stackframe */ mflr r9 /* Get LR, later save to stack */ LOAD_PACA_TOC() /* get kernel TOC into r2 */ std r9,_LINK(r1) lbz r10,PACAIRQSOFTMASK(r13) mfspr r11,SPRN_XER /* save XER in stackframe */ std r10,SOFTE(r1) std r11,_XER(r1) li r9,IVEC std r9,_TRAP(r1) /* set trap number */ li r10,0 LOAD_REG_IMMEDIATE(r11, STACK_FRAME_REGS_MARKER) std r10,RESULT(r1) /* clear regs->result */ std r11,STACK_FRAME_OVERHEAD-16(r1) /* mark the frame */ .endm /* * On entry r13 points to the paca, r9-r13 are saved in the paca, * r9 contains the saved CR, r11 and r12 contain the saved SRR0 and * SRR1, and relocation is on. * * If stack=0, then the stack is already set in r1, and r1 is saved in r10. * PPR save and CPU accounting is not done for the !stack case (XXX why not?) */ .macro GEN_COMMON name __GEN_COMMON_ENTRY \name __GEN_COMMON_BODY \name .endm .macro SEARCH_RESTART_TABLE #ifdef CONFIG_RELOCATABLE mr r12,r2 LOAD_PACA_TOC() LOAD_REG_ADDR(r9, __start___restart_table) LOAD_REG_ADDR(r10, __stop___restart_table) mr r2,r12 #else LOAD_REG_IMMEDIATE_SYM(r9, r12, __start___restart_table) LOAD_REG_IMMEDIATE_SYM(r10, r12, __stop___restart_table) #endif 300: cmpd r9,r10 beq 302f ld r12,0(r9) cmpld r11,r12 blt 301f ld r12,8(r9) cmpld r11,r12 bge 301f ld r12,16(r9) b 303f 301: addi r9,r9,24 b 300b 302: li r12,0 303: .endm .macro SEARCH_SOFT_MASK_TABLE #ifdef CONFIG_RELOCATABLE mr r12,r2 LOAD_PACA_TOC() LOAD_REG_ADDR(r9, __start___soft_mask_table) LOAD_REG_ADDR(r10, __stop___soft_mask_table) mr r2,r12 #else LOAD_REG_IMMEDIATE_SYM(r9, r12, __start___soft_mask_table) LOAD_REG_IMMEDIATE_SYM(r10, r12, __stop___soft_mask_table) #endif 300: cmpd r9,r10 beq 302f ld r12,0(r9) cmpld r11,r12 blt 301f ld r12,8(r9) cmpld r11,r12 bge 301f li r12,1 b 303f 301: addi r9,r9,16 b 300b 302: li r12,0 303: .endm /* * Restore all registers including H/SRR0/1 saved in a stack frame of a * standard exception. */ .macro EXCEPTION_RESTORE_REGS hsrr=0 /* Move original SRR0 and SRR1 into the respective regs */ ld r9,_MSR(r1) li r10,0 .if \hsrr mtspr SPRN_HSRR1,r9 stb r10,PACAHSRR_VALID(r13) .else mtspr SPRN_SRR1,r9 stb r10,PACASRR_VALID(r13) .endif ld r9,_NIP(r1) .if \hsrr mtspr SPRN_HSRR0,r9 .else mtspr SPRN_SRR0,r9 .endif ld r9,_CTR(r1) mtctr r9 ld r9,_XER(r1) mtxer r9 ld r9,_LINK(r1) mtlr r9 ld r9,_CCR(r1) mtcr r9 REST_GPRS(2, 13, r1) REST_GPR(0, r1) /* restore original r1. */ ld r1,GPR1(r1) .endm /* * EARLY_BOOT_FIXUP - Fix real-mode interrupt with wrong endian in early boot. * * There's a short window during boot where although the kernel is running * little endian, any exceptions will cause the CPU to switch back to big * endian. For example a WARN() boils down to a trap instruction, which will * cause a program check, and we end up here but with the CPU in big endian * mode. The first instruction of the program check handler (in GEN_INT_ENTRY * below) is an mtsprg, which when executed in the wrong endian is an lhzu with * a ~3GB displacement from r3. The content of r3 is random, so that is a load * from some random location, and depending on the system can easily lead to a * checkstop, or an infinitely recursive page fault. * * So to handle that case we have a trampoline here that can detect we are in * the wrong endian and flip us back to the correct endian. We can't flip * MSR[LE] using mtmsr, so we have to use rfid. That requires backing up SRR0/1 * as well as a GPR. To do that we use SPRG0/2/3, as SPRG1 is already used for * the paca. SPRG3 is user readable, but this trampoline is only active very * early in boot, and SPRG3 will be reinitialised in vdso_getcpu_init() before * userspace starts. */ .macro EARLY_BOOT_FIXUP BEGIN_FTR_SECTION #ifdef CONFIG_CPU_LITTLE_ENDIAN tdi 0,0,0x48 // Trap never, or in reverse endian: b . + 8 b 2f // Skip trampoline if endian is correct .long 0xa643707d // mtsprg 0, r11 Backup r11 .long 0xa6027a7d // mfsrr0 r11 .long 0xa643727d // mtsprg 2, r11 Backup SRR0 in SPRG2 .long 0xa6027b7d // mfsrr1 r11 .long 0xa643737d // mtsprg 3, r11 Backup SRR1 in SPRG3 .long 0xa600607d // mfmsr r11 .long 0x01006b69 // xori r11, r11, 1 Invert MSR[LE] .long 0xa6037b7d // mtsrr1 r11 /* * This is 'li r11,1f' where 1f is the absolute address of that * label, byteswapped into the SI field of the instruction. */ .long 0x00006039 | \ ((ABS_ADDR(1f, real_vectors) & 0x00ff) << 24) | \ ((ABS_ADDR(1f, real_vectors) & 0xff00) << 8) .long 0xa6037a7d // mtsrr0 r11 .long 0x2400004c // rfid 1: mfsprg r11, 3 mtsrr1 r11 // Restore SRR1 mfsprg r11, 2 mtsrr0 r11 // Restore SRR0 mfsprg r11, 0 // Restore r11 2: #endif /* * program check could hit at any time, and pseries can not block * MSR[ME] in early boot. So check if there is anything useful in r13 * yet, and spin forever if not. */ mtsprg 0, r11 mfcr r11 cmpdi r13, 0 beq . mtcr r11 mfsprg r11, 0 END_FTR_SECTION(0, 1) // nop out after boot .endm /* * There are a few constraints to be concerned with. * - Real mode exceptions code/data must be located at their physical location. * - Virtual mode exceptions must be mapped at their 0xc000... location. * - Fixed location code must not call directly beyond the __end_interrupts * area when built with CONFIG_RELOCATABLE. LOAD_HANDLER / bctr sequence * must be used. * - LOAD_HANDLER targets must be within first 64K of physical 0 / * virtual 0xc00... * - Conditional branch targets must be within +/-32K of caller. * * "Virtual exceptions" run with relocation on (MSR_IR=1, MSR_DR=1), and * therefore don't have to run in physically located code or rfid to * virtual mode kernel code. However on relocatable kernels they do have * to branch to KERNELBASE offset because the rest of the kernel (outside * the exception vectors) may be located elsewhere. * * Virtual exceptions correspond with physical, except their entry points * are offset by 0xc000000000000000 and also tend to get an added 0x4000 * offset applied. Virtual exceptions are enabled with the Alternate * Interrupt Location (AIL) bit set in the LPCR. However this does not * guarantee they will be delivered virtually. Some conditions (see the ISA) * cause exceptions to be delivered in real mode. * * The scv instructions are a special case. They get a 0x3000 offset applied. * scv exceptions have unique reentrancy properties, see below. * * It's impossible to receive interrupts below 0x300 via AIL. * * KVM: None of the virtual exceptions are from the guest. Anything that * escalated to HV=1 from HV=0 is delivered via real mode handlers. * * * We layout physical memory as follows: * 0x0000 - 0x00ff : Secondary processor spin code * 0x0100 - 0x18ff : Real mode pSeries interrupt vectors * 0x1900 - 0x2fff : Real mode trampolines * 0x3000 - 0x58ff : Relon (IR=1,DR=1) mode pSeries interrupt vectors * 0x5900 - 0x6fff : Relon mode trampolines * 0x7000 - 0x7fff : FWNMI data area * 0x8000 - .... : Common interrupt handlers, remaining early * setup code, rest of kernel. * * We could reclaim 0x4000-0x42ff for real mode trampolines if the space * is necessary. Until then it's more consistent to explicitly put VIRT_NONE * vectors there. */ OPEN_FIXED_SECTION(real_vectors, 0x0100, 0x1900) OPEN_FIXED_SECTION(real_trampolines, 0x1900, 0x3000) OPEN_FIXED_SECTION(virt_vectors, 0x3000, 0x5900) OPEN_FIXED_SECTION(virt_trampolines, 0x5900, 0x7000) #ifdef CONFIG_PPC_POWERNV .globl start_real_trampolines .globl end_real_trampolines .globl start_virt_trampolines .globl end_virt_trampolines #endif #if defined(CONFIG_PPC_PSERIES) || defined(CONFIG_PPC_POWERNV) /* * Data area reserved for FWNMI option. * This address (0x7000) is fixed by the RPA. * pseries and powernv need to keep the whole page from * 0x7000 to 0x8000 free for use by the firmware */ ZERO_FIXED_SECTION(fwnmi_page, 0x7000, 0x8000) OPEN_TEXT_SECTION(0x8000) #else OPEN_TEXT_SECTION(0x7000) #endif USE_FIXED_SECTION(real_vectors) /* * This is the start of the interrupt handlers for pSeries * This code runs with relocation off. * Code from here to __end_interrupts gets copied down to real * address 0x100 when we are running a relocatable kernel. * Therefore any relative branches in this section must only * branch to labels in this section. */ .globl __start_interrupts __start_interrupts: /** * Interrupt 0x3000 - System Call Vectored Interrupt (syscall). * This is a synchronous interrupt invoked with the "scv" instruction. The * system call does not alter the HV bit, so it is directed to the OS. * * Handling: * scv instructions enter the kernel without changing EE, RI, ME, or HV. * In particular, this means we can take a maskable interrupt at any point * in the scv handler, which is unlike any other interrupt. This is solved * by treating the instruction addresses in the handler as being soft-masked, * by adding a SOFT_MASK_TABLE entry for them. * * AIL-0 mode scv exceptions go to 0x17000-0x17fff, but we set AIL-3 and * ensure scv is never executed with relocation off, which means AIL-0 * should never happen. * * Before leaving the following inside-__end_soft_masked text, at least of the * following must be true: * - MSR[PR]=1 (i.e., return to userspace) * - MSR_EE|MSR_RI is clear (no reentrant exceptions) * - Standard kernel environment is set up (stack, paca, etc) * * KVM: * These interrupts do not elevate HV 0->1, so HV is not involved. PR KVM * ensures that FSCR[SCV] is disabled whenever it has to force AIL off. * * Call convention: * * syscall register convention is in Documentation/powerpc/syscall64-abi.rst */ EXC_VIRT_BEGIN(system_call_vectored, 0x3000, 0x1000) /* SCV 0 */ mr r9,r13 GET_PACA(r13) mflr r11 mfctr r12 li r10,IRQS_ALL_DISABLED stb r10,PACAIRQSOFTMASK(r13) #ifdef CONFIG_RELOCATABLE b system_call_vectored_tramp #else b system_call_vectored_common #endif nop /* SCV 1 - 127 */ .rept 127 mr r9,r13 GET_PACA(r13) mflr r11 mfctr r12 li r10,IRQS_ALL_DISABLED stb r10,PACAIRQSOFTMASK(r13) li r0,-1 /* cause failure */ #ifdef CONFIG_RELOCATABLE b system_call_vectored_sigill_tramp #else b system_call_vectored_sigill #endif .endr EXC_VIRT_END(system_call_vectored, 0x3000, 0x1000) // Treat scv vectors as soft-masked, see comment above. // Use absolute values rather than labels here, so they don't get relocated, // because this code runs unrelocated. SOFT_MASK_TABLE(0xc000000000003000, 0xc000000000004000) #ifdef CONFIG_RELOCATABLE TRAMP_VIRT_BEGIN(system_call_vectored_tramp) __LOAD_HANDLER(r10, system_call_vectored_common, virt_trampolines) mtctr r10 bctr TRAMP_VIRT_BEGIN(system_call_vectored_sigill_tramp) __LOAD_HANDLER(r10, system_call_vectored_sigill, virt_trampolines) mtctr r10 bctr #endif /* No virt vectors corresponding with 0x0..0x100 */ EXC_VIRT_NONE(0x4000, 0x100) /** * Interrupt 0x100 - System Reset Interrupt (SRESET aka NMI). * This is a non-maskable, asynchronous interrupt always taken in real-mode. * It is caused by: * - Wake from power-saving state, on powernv. * - An NMI from another CPU, triggered by firmware or hypercall. * - As crash/debug signal injected from BMC, firmware or hypervisor. * * Handling: * Power-save wakeup is the only performance critical path, so this is * determined quickly as possible first. In this case volatile registers * can be discarded and SPRs like CFAR don't need to be read. * * If not a powersave wakeup, then it's run as a regular interrupt, however * it uses its own stack and PACA save area to preserve the regular kernel * environment for debugging. * * This interrupt is not maskable, so triggering it when MSR[RI] is clear, * or SCRATCH0 is in use, etc. may cause a crash. It's also not entirely * correct to switch to virtual mode to run the regular interrupt handler * because it might be interrupted when the MMU is in a bad state (e.g., SLB * is clear). * * FWNMI: * PAPR specifies a "fwnmi" facility which sends the sreset to a different * entry point with a different register set up. Some hypervisors will * send the sreset to 0x100 in the guest if it is not fwnmi capable. * * KVM: * Unlike most SRR interrupts, this may be taken by the host while executing * in a guest, so a KVM test is required. KVM will pull the CPU out of guest * mode and then raise the sreset. */ INT_DEFINE_BEGIN(system_reset) IVEC=0x100 IAREA=PACA_EXNMI IVIRT=0 /* no virt entry point */ ISTACK=0 IKVM_REAL=1 INT_DEFINE_END(system_reset) EXC_REAL_BEGIN(system_reset, 0x100, 0x100) #ifdef CONFIG_PPC_P7_NAP /* * If running native on arch 2.06 or later, check if we are waking up * from nap/sleep/winkle, and branch to idle handler. This tests SRR1 * bits 46:47. A non-0 value indicates that we are coming from a power * saving state. The idle wakeup handler initially runs in real mode, * but we branch to the 0xc000... address so we can turn on relocation * with mtmsrd later, after SPRs are restored. * * Careful to minimise cost for the fast path (idle wakeup) while * also avoiding clobbering CFAR for the debug path (non-idle). * * For the idle wake case volatile registers can be clobbered, which * is why we use those initially. If it turns out to not be an idle * wake, carefully put everything back the way it was, so we can use * common exception macros to handle it. */ BEGIN_FTR_SECTION SET_SCRATCH0(r13) GET_PACA(r13) std r3,PACA_EXNMI+0*8(r13) std r4,PACA_EXNMI+1*8(r13) std r5,PACA_EXNMI+2*8(r13) mfspr r3,SPRN_SRR1 mfocrf r4,0x80 rlwinm. r5,r3,47-31,30,31 bne+ system_reset_idle_wake /* Not powersave wakeup. Restore regs for regular interrupt handler. */ mtocrf 0x80,r4 ld r3,PACA_EXNMI+0*8(r13) ld r4,PACA_EXNMI+1*8(r13) ld r5,PACA_EXNMI+2*8(r13) GET_SCRATCH0(r13) END_FTR_SECTION_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206) #endif GEN_INT_ENTRY system_reset, virt=0 /* * In theory, we should not enable relocation here if it was disabled * in SRR1, because the MMU may not be configured to support it (e.g., * SLB may have been cleared). In practice, there should only be a few * small windows where that's the case, and sreset is considered to * be dangerous anyway. */ EXC_REAL_END(system_reset, 0x100, 0x100) EXC_VIRT_NONE(0x4100, 0x100) #ifdef CONFIG_PPC_P7_NAP TRAMP_REAL_BEGIN(system_reset_idle_wake) /* We are waking up from idle, so may clobber any volatile register */ cmpwi cr1,r5,2 bltlr cr1 /* no state loss, return to idle caller with r3=SRR1 */ __LOAD_FAR_HANDLER(r12, DOTSYM(idle_return_gpr_loss), real_trampolines) mtctr r12 bctr #endif #ifdef CONFIG_PPC_PSERIES /* * Vectors for the FWNMI option. Share common code. */ TRAMP_REAL_BEGIN(system_reset_fwnmi) GEN_INT_ENTRY system_reset, virt=0 #endif /* CONFIG_PPC_PSERIES */ EXC_COMMON_BEGIN(system_reset_common) __GEN_COMMON_ENTRY system_reset /* * Increment paca->in_nmi. When the interrupt entry wrapper later * enable MSR_RI, then SLB or MCE will be able to recover, but a nested * NMI will notice in_nmi and not recover because of the use of the NMI * stack. in_nmi reentrancy is tested in system_reset_exception. */ lhz r10,PACA_IN_NMI(r13) addi r10,r10,1 sth r10,PACA_IN_NMI(r13) mr r10,r1 ld r1,PACA_NMI_EMERG_SP(r13) subi r1,r1,INT_FRAME_SIZE __GEN_COMMON_BODY system_reset addi r3,r1,STACK_FRAME_OVERHEAD bl system_reset_exception /* Clear MSR_RI before setting SRR0 and SRR1. */ li r9,0 mtmsrd r9,1 /* * MSR_RI is clear, now we can decrement paca->in_nmi. */ lhz r10,PACA_IN_NMI(r13) subi r10,r10,1 sth r10,PACA_IN_NMI(r13) kuap_kernel_restore r9, r10 EXCEPTION_RESTORE_REGS RFI_TO_USER_OR_KERNEL /** * Interrupt 0x200 - Machine Check Interrupt (MCE). * This is a non-maskable interrupt always taken in real-mode. It can be * synchronous or asynchronous, caused by hardware or software, and it may be * taken in a power-saving state. * * Handling: * Similarly to system reset, this uses its own stack and PACA save area, * the difference is re-entrancy is allowed on the machine check stack. * * machine_check_early is run in real mode, and carefully decodes the * machine check and tries to handle it (e.g., flush the SLB if there was an * error detected there), determines if it was recoverable and logs the * event. * * This early code does not "reconcile" irq soft-mask state like SRESET or * regular interrupts do, so irqs_disabled() among other things may not work * properly (irq disable/enable already doesn't work because irq tracing can * not work in real mode). * * Then, depending on the execution context when the interrupt is taken, there * are 3 main actions: * - Executing in kernel mode. The event is queued with irq_work, which means * it is handled when it is next safe to do so (i.e., the kernel has enabled * interrupts), which could be immediately when the interrupt returns. This * avoids nasty issues like switching to virtual mode when the MMU is in a * bad state, or when executing OPAL code. (SRESET is exposed to such issues, * but it has different priorities). Check to see if the CPU was in power * save, and return via the wake up code if it was. * * - Executing in user mode. machine_check_exception is run like a normal * interrupt handler, which processes the data generated by the early handler. * * - Executing in guest mode. The interrupt is run with its KVM test, and * branches to KVM to deal with. KVM may queue the event for the host * to report later. * * This interrupt is not maskable, so if it triggers when MSR[RI] is clear, * or SCRATCH0 is in use, it may cause a crash. * * KVM: * See SRESET. */ INT_DEFINE_BEGIN(machine_check_early) IVEC=0x200 IAREA=PACA_EXMC IVIRT=0 /* no virt entry point */ IREALMODE_COMMON=1 ISTACK=0 IDAR=1 IDSISR=1 IKUAP=0 /* We don't touch AMR here, we never go to virtual mode */ INT_DEFINE_END(machine_check_early) INT_DEFINE_BEGIN(machine_check) IVEC=0x200 IAREA=PACA_EXMC IVIRT=0 /* no virt entry point */ IDAR=1 IDSISR=1 IKVM_REAL=1 INT_DEFINE_END(machine_check) EXC_REAL_BEGIN(machine_check, 0x200, 0x100) EARLY_BOOT_FIXUP GEN_INT_ENTRY machine_check_early, virt=0 EXC_REAL_END(machine_check, 0x200, 0x100) EXC_VIRT_NONE(0x4200, 0x100) #ifdef CONFIG_PPC_PSERIES TRAMP_REAL_BEGIN(machine_check_fwnmi) /* See comment at machine_check exception, don't turn on RI */ GEN_INT_ENTRY machine_check_early, virt=0 #endif #define MACHINE_CHECK_HANDLER_WINDUP \ /* Clear MSR_RI before setting SRR0 and SRR1. */\ li r9,0; \ mtmsrd r9,1; /* Clear MSR_RI */ \ /* Decrement paca->in_mce now RI is clear. */ \ lhz r12,PACA_IN_MCE(r13); \ subi r12,r12,1; \ sth r12,PACA_IN_MCE(r13); \ EXCEPTION_RESTORE_REGS EXC_COMMON_BEGIN(machine_check_early_common) __GEN_REALMODE_COMMON_ENTRY machine_check_early /* * Switch to mc_emergency stack and handle re-entrancy (we limit * the nested MCE upto level 4 to avoid stack overflow). * Save MCE registers srr1, srr0, dar and dsisr and then set ME=1 * * We use paca->in_mce to check whether this is the first entry or * nested machine check. We increment paca->in_mce to track nested * machine checks. * * If this is the first entry then set stack pointer to * paca->mc_emergency_sp, otherwise r1 is already pointing to * stack frame on mc_emergency stack. * * NOTE: We are here with MSR_ME=0 (off), which means we risk a * checkstop if we get another machine check exception before we do * rfid with MSR_ME=1. * * This interrupt can wake directly from idle. If that is the case, * the machine check is handled then the idle wakeup code is called * to restore state. */ lhz r10,PACA_IN_MCE(r13) cmpwi r10,0 /* Are we in nested machine check */ cmpwi cr1,r10,MAX_MCE_DEPTH /* Are we at maximum nesting */ addi r10,r10,1 /* increment paca->in_mce */ sth r10,PACA_IN_MCE(r13) mr r10,r1 /* Save r1 */ bne 1f /* First machine check entry */ ld r1,PACAMCEMERGSP(r13) /* Use MC emergency stack */ 1: /* Limit nested MCE to level 4 to avoid stack overflow */ bgt cr1,unrecoverable_mce /* Check if we hit limit of 4 */ subi r1,r1,INT_FRAME_SIZE /* alloc stack frame */ __GEN_COMMON_BODY machine_check_early BEGIN_FTR_SECTION bl enable_machine_check END_FTR_SECTION_IFSET(CPU_FTR_HVMODE) addi r3,r1,STACK_FRAME_OVERHEAD BEGIN_FTR_SECTION bl machine_check_early_boot END_FTR_SECTION(0, 1) // nop out after boot bl machine_check_early std r3,RESULT(r1) /* Save result */ ld r12,_MSR(r1) #ifdef CONFIG_PPC_P7_NAP /* * Check if thread was in power saving mode. We come here when any * of the following is true: * a. thread wasn't in power saving mode * b. thread was in power saving mode with no state loss, * supervisor state loss or hypervisor state loss. * * Go back to nap/sleep/winkle mode again if (b) is true. */ BEGIN_FTR_SECTION rlwinm. r11,r12,47-31,30,31 bne machine_check_idle_common END_FTR_SECTION_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206) #endif #ifdef CONFIG_KVM_BOOK3S_64_HANDLER /* * Check if we are coming from guest. If yes, then run the normal * exception handler which will take the * machine_check_kvm->kvm_interrupt branch to deliver the MC event * to guest. */ lbz r11,HSTATE_IN_GUEST(r13) cmpwi r11,0 /* Check if coming from guest */ bne mce_deliver /* continue if we are. */ #endif /* * Check if we are coming from userspace. If yes, then run the normal * exception handler which will deliver the MC event to this kernel. */ andi. r11,r12,MSR_PR /* See if coming from user. */ bne mce_deliver /* continue in V mode if we are. */ /* * At this point we are coming from kernel context. * Queue up the MCE event and return from the interrupt. * But before that, check if this is an un-recoverable exception. * If yes, then stay on emergency stack and panic. */ andi. r11,r12,MSR_RI beq unrecoverable_mce /* * Check if we have successfully handled/recovered from error, if not * then stay on emergency stack and panic. */ ld r3,RESULT(r1) /* Load result */ cmpdi r3,0 /* see if we handled MCE successfully */ beq unrecoverable_mce /* if !handled then panic */ /* * Return from MC interrupt. * Queue up the MCE event so that we can log it later, while * returning from kernel or opal call. */ bl machine_check_queue_event MACHINE_CHECK_HANDLER_WINDUP RFI_TO_KERNEL mce_deliver: /* * This is a host user or guest MCE. Restore all registers, then * run the "late" handler. For host user, this will run the * machine_check_exception handler in virtual mode like a normal * interrupt handler. For guest, this will trigger the KVM test * and branch to the KVM interrupt similarly to other interrupts. */ BEGIN_FTR_SECTION ld r10,ORIG_GPR3(r1) mtspr SPRN_CFAR,r10 END_FTR_SECTION_IFSET(CPU_FTR_CFAR) MACHINE_CHECK_HANDLER_WINDUP GEN_INT_ENTRY machine_check, virt=0 EXC_COMMON_BEGIN(machine_check_common) /* * Machine check is different because we use a different * save area: PACA_EXMC instead of PACA_EXGEN. */ GEN_COMMON machine_check addi r3,r1,STACK_FRAME_OVERHEAD bl machine_check_exception_async b interrupt_return_srr #ifdef CONFIG_PPC_P7_NAP /* * This is an idle wakeup. Low level machine check has already been * done. Queue the event then call the idle code to do the wake up. */ EXC_COMMON_BEGIN(machine_check_idle_common) bl machine_check_queue_event /* * GPR-loss wakeups are relatively straightforward, because the * idle sleep code has saved all non-volatile registers on its * own stack, and r1 in PACAR1. * * For no-loss wakeups the r1 and lr registers used by the * early machine check handler have to be restored first. r2 is * the kernel TOC, so no need to restore it. * * Then decrement MCE nesting after finishing with the stack. */ ld r3,_MSR(r1) ld r4,_LINK(r1) ld r1,GPR1(r1) lhz r11,PACA_IN_MCE(r13) subi r11,r11,1 sth r11,PACA_IN_MCE(r13) mtlr r4 rlwinm r10,r3,47-31,30,31 cmpwi cr1,r10,2 bltlr cr1 /* no state loss, return to idle caller with r3=SRR1 */ b idle_return_gpr_loss #endif EXC_COMMON_BEGIN(unrecoverable_mce) /* * We are going down. But there are chances that we might get hit by * another MCE during panic path and we may run into unstable state * with no way out. Hence, turn ME bit off while going down, so that * when another MCE is hit during panic path, system will checkstop * and hypervisor will get restarted cleanly by SP. */ BEGIN_FTR_SECTION li r10,0 /* clear MSR_RI */ mtmsrd r10,1 bl disable_machine_check END_FTR_SECTION_IFSET(CPU_FTR_HVMODE) ld r10,PACAKMSR(r13) li r3,MSR_ME andc r10,r10,r3 mtmsrd r10 lhz r12,PACA_IN_MCE(r13) subi r12,r12,1 sth r12,PACA_IN_MCE(r13) /* * Invoke machine_check_exception to print MCE event and panic. * This is the NMI version of the handler because we are called from * the early handler which is a true NMI. */ addi r3,r1,STACK_FRAME_OVERHEAD bl machine_check_exception /* * We will not reach here. Even if we did, there is no way out. * Call unrecoverable_exception and die. */ addi r3,r1,STACK_FRAME_OVERHEAD bl unrecoverable_exception b . /** * Interrupt 0x300 - Data Storage Interrupt (DSI). * This is a synchronous interrupt generated due to a data access exception, * e.g., a load orstore which does not have a valid page table entry with * permissions. DAWR matches also fault here, as do RC updates, and minor misc * errors e.g., copy/paste, AMO, certain invalid CI accesses, etc. * * Handling: * - Hash MMU * Go to do_hash_fault, which attempts to fill the HPT from an entry in the * Linux page table. Hash faults can hit in kernel mode in a fairly * arbitrary state (e.g., interrupts disabled, locks held) when accessing * "non-bolted" regions, e.g., vmalloc space. However these should always be * backed by Linux page table entries. * * If no entry is found the Linux page fault handler is invoked (by * do_hash_fault). Linux page faults can happen in kernel mode due to user * copy operations of course. * * KVM: The KVM HDSI handler may perform a load with MSR[DR]=1 in guest * MMU context, which may cause a DSI in the host, which must go to the * KVM handler. MSR[IR] is not enabled, so the real-mode handler will * always be used regardless of AIL setting. * * - Radix MMU * The hardware loads from the Linux page table directly, so a fault goes * immediately to Linux page fault. * * Conditions like DAWR match are handled on the way in to Linux page fault. */ INT_DEFINE_BEGIN(data_access) IVEC=0x300 IDAR=1 IDSISR=1 IKVM_REAL=1 INT_DEFINE_END(data_access) EXC_REAL_BEGIN(data_access, 0x300, 0x80) GEN_INT_ENTRY data_access, virt=0 EXC_REAL_END(data_access, 0x300, 0x80) EXC_VIRT_BEGIN(data_access, 0x4300, 0x80) GEN_INT_ENTRY data_access, virt=1 EXC_VIRT_END(data_access, 0x4300, 0x80) EXC_COMMON_BEGIN(data_access_common) GEN_COMMON data_access ld r4,_DSISR(r1) addi r3,r1,STACK_FRAME_OVERHEAD andis. r0,r4,DSISR_DABRMATCH@h bne- 1f #ifdef CONFIG_PPC_64S_HASH_MMU BEGIN_MMU_FTR_SECTION bl do_hash_fault MMU_FTR_SECTION_ELSE bl do_page_fault ALT_MMU_FTR_SECTION_END_IFCLR(MMU_FTR_TYPE_RADIX) #else bl do_page_fault #endif b interrupt_return_srr 1: bl do_break /* * do_break() may have changed the NV GPRS while handling a breakpoint. * If so, we need to restore them with their updated values. */ REST_NVGPRS(r1) b interrupt_return_srr /** * Interrupt 0x380 - Data Segment Interrupt (DSLB). * This is a synchronous interrupt in response to an MMU fault missing SLB * entry for HPT, or an address outside RPT translation range. * * Handling: * - HPT: * This refills the SLB, or reports an access fault similarly to a bad page * fault. When coming from user-mode, the SLB handler may access any kernel * data, though it may itself take a DSLB. When coming from kernel mode, * recursive faults must be avoided so access is restricted to the kernel * image text/data, kernel stack, and any data allocated below * ppc64_bolted_size (first segment). The kernel handler must avoid stomping * on user-handler data structures. * * KVM: Same as 0x300, DSLB must test for KVM guest. */ INT_DEFINE_BEGIN(data_access_slb) IVEC=0x380 IDAR=1 IKVM_REAL=1 INT_DEFINE_END(data_access_slb) EXC_REAL_BEGIN(data_access_slb, 0x380, 0x80) GEN_INT_ENTRY data_access_slb, virt=0 EXC_REAL_END(data_access_slb, 0x380, 0x80) EXC_VIRT_BEGIN(data_access_slb, 0x4380, 0x80) GEN_INT_ENTRY data_access_slb, virt=1 EXC_VIRT_END(data_access_slb, 0x4380, 0x80) EXC_COMMON_BEGIN(data_access_slb_common) GEN_COMMON data_access_slb #ifdef CONFIG_PPC_64S_HASH_MMU BEGIN_MMU_FTR_SECTION /* HPT case, do SLB fault */ addi r3,r1,STACK_FRAME_OVERHEAD bl do_slb_fault cmpdi r3,0 bne- 1f b fast_interrupt_return_srr 1: /* Error case */ MMU_FTR_SECTION_ELSE /* Radix case, access is outside page table range */ li r3,-EFAULT ALT_MMU_FTR_SECTION_END_IFCLR(MMU_FTR_TYPE_RADIX) #else li r3,-EFAULT #endif std r3,RESULT(r1) addi r3,r1,STACK_FRAME_OVERHEAD bl do_bad_segment_interrupt b interrupt_return_srr /** * Interrupt 0x400 - Instruction Storage Interrupt (ISI). * This is a synchronous interrupt in response to an MMU fault due to an * instruction fetch. * * Handling: * Similar to DSI, though in response to fetch. The faulting address is found * in SRR0 (rather than DAR), and status in SRR1 (rather than DSISR). */ INT_DEFINE_BEGIN(instruction_access) IVEC=0x400 IISIDE=1 IDAR=1 IDSISR=1 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE IKVM_REAL=1 #endif INT_DEFINE_END(instruction_access) EXC_REAL_BEGIN(instruction_access, 0x400, 0x80) GEN_INT_ENTRY instruction_access, virt=0 EXC_REAL_END(instruction_access, 0x400, 0x80) EXC_VIRT_BEGIN(instruction_access, 0x4400, 0x80) GEN_INT_ENTRY instruction_access, virt=1 EXC_VIRT_END(instruction_access, 0x4400, 0x80) EXC_COMMON_BEGIN(instruction_access_common) GEN_COMMON instruction_access addi r3,r1,STACK_FRAME_OVERHEAD #ifdef CONFIG_PPC_64S_HASH_MMU BEGIN_MMU_FTR_SECTION bl do_hash_fault MMU_FTR_SECTION_ELSE bl do_page_fault ALT_MMU_FTR_SECTION_END_IFCLR(MMU_FTR_TYPE_RADIX) #else bl do_page_fault #endif b interrupt_return_srr /** * Interrupt 0x480 - Instruction Segment Interrupt (ISLB). * This is a synchronous interrupt in response to an MMU fault due to an * instruction fetch. * * Handling: * Similar to DSLB, though in response to fetch. The faulting address is found * in SRR0 (rather than DAR). */ INT_DEFINE_BEGIN(instruction_access_slb) IVEC=0x480 IISIDE=1 IDAR=1 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE IKVM_REAL=1 #endif INT_DEFINE_END(instruction_access_slb) EXC_REAL_BEGIN(instruction_access_slb, 0x480, 0x80) GEN_INT_ENTRY instruction_access_slb, virt=0 EXC_REAL_END(instruction_access_slb, 0x480, 0x80) EXC_VIRT_BEGIN(instruction_access_slb, 0x4480, 0x80) GEN_INT_ENTRY instruction_access_slb, virt=1 EXC_VIRT_END(instruction_access_slb, 0x4480, 0x80) EXC_COMMON_BEGIN(instruction_access_slb_common) GEN_COMMON instruction_access_slb #ifdef CONFIG_PPC_64S_HASH_MMU BEGIN_MMU_FTR_SECTION /* HPT case, do SLB fault */ addi r3,r1,STACK_FRAME_OVERHEAD bl do_slb_fault cmpdi r3,0 bne- 1f b fast_interrupt_return_srr 1: /* Error case */ MMU_FTR_SECTION_ELSE /* Radix case, access is outside page table range */ li r3,-EFAULT ALT_MMU_FTR_SECTION_END_IFCLR(MMU_FTR_TYPE_RADIX) #else li r3,-EFAULT #endif std r3,RESULT(r1) addi r3,r1,STACK_FRAME_OVERHEAD bl do_bad_segment_interrupt b interrupt_return_srr /** * Interrupt 0x500 - External Interrupt. * This is an asynchronous maskable interrupt in response to an "external * exception" from the interrupt controller or hypervisor (e.g., device * interrupt). It is maskable in hardware by clearing MSR[EE], and * soft-maskable with IRQS_DISABLED mask (i.e., local_irq_disable()). * * When running in HV mode, Linux sets up the LPCR[LPES] bit such that * interrupts are delivered with HSRR registers, guests use SRRs, which * reqiures IHSRR_IF_HVMODE. * * On bare metal POWER9 and later, Linux sets the LPCR[HVICE] bit such that * external interrupts are delivered as Hypervisor Virtualization Interrupts * rather than External Interrupts. * * Handling: * This calls into Linux IRQ handler. NVGPRs are not saved to reduce overhead, * because registers at the time of the interrupt are not so important as it is * asynchronous. * * If soft masked, the masked handler will note the pending interrupt for * replay, and clear MSR[EE] in the interrupted context. * * CFAR is not required because this is an asynchronous interrupt that in * general won't have much bearing on the state of the CPU, with the possible * exception of crash/debug IPIs, but those are generally moving to use SRESET * IPIs. Unless this is an HV interrupt and KVM HV is possible, in which case * it may be exiting the guest and need CFAR to be saved. */ INT_DEFINE_BEGIN(hardware_interrupt) IVEC=0x500 IHSRR_IF_HVMODE=1 IMASK=IRQS_DISABLED IKVM_REAL=1 IKVM_VIRT=1 ICFAR=0 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE ICFAR_IF_HVMODE=1 #endif INT_DEFINE_END(hardware_interrupt) EXC_REAL_BEGIN(hardware_interrupt, 0x500, 0x100) GEN_INT_ENTRY hardware_interrupt, virt=0 EXC_REAL_END(hardware_interrupt, 0x500, 0x100) EXC_VIRT_BEGIN(hardware_interrupt, 0x4500, 0x100) GEN_INT_ENTRY hardware_interrupt, virt=1 EXC_VIRT_END(hardware_interrupt, 0x4500, 0x100) EXC_COMMON_BEGIN(hardware_interrupt_common) GEN_COMMON hardware_interrupt addi r3,r1,STACK_FRAME_OVERHEAD bl do_IRQ BEGIN_FTR_SECTION b interrupt_return_hsrr FTR_SECTION_ELSE b interrupt_return_srr ALT_FTR_SECTION_END_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206) /** * Interrupt 0x600 - Alignment Interrupt * This is a synchronous interrupt in response to data alignment fault. */ INT_DEFINE_BEGIN(alignment) IVEC=0x600 IDAR=1 IDSISR=1 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE IKVM_REAL=1 #endif INT_DEFINE_END(alignment) EXC_REAL_BEGIN(alignment, 0x600, 0x100) GEN_INT_ENTRY alignment, virt=0 EXC_REAL_END(alignment, 0x600, 0x100) EXC_VIRT_BEGIN(alignment, 0x4600, 0x100) GEN_INT_ENTRY alignment, virt=1 EXC_VIRT_END(alignment, 0x4600, 0x100) EXC_COMMON_BEGIN(alignment_common) GEN_COMMON alignment addi r3,r1,STACK_FRAME_OVERHEAD bl alignment_exception REST_NVGPRS(r1) /* instruction emulation may change GPRs */ b interrupt_return_srr /** * Interrupt 0x700 - Program Interrupt (program check). * This is a synchronous interrupt in response to various instruction faults: * traps, privilege errors, TM errors, floating point exceptions. * * Handling: * This interrupt may use the "emergency stack" in some cases when being taken * from kernel context, which complicates handling. */ INT_DEFINE_BEGIN(program_check) IVEC=0x700 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE IKVM_REAL=1 #endif INT_DEFINE_END(program_check) EXC_REAL_BEGIN(program_check, 0x700, 0x100) EARLY_BOOT_FIXUP GEN_INT_ENTRY program_check, virt=0 EXC_REAL_END(program_check, 0x700, 0x100) EXC_VIRT_BEGIN(program_check, 0x4700, 0x100) GEN_INT_ENTRY program_check, virt=1 EXC_VIRT_END(program_check, 0x4700, 0x100) EXC_COMMON_BEGIN(program_check_common) __GEN_COMMON_ENTRY program_check /* * It's possible to receive a TM Bad Thing type program check with * userspace register values (in particular r1), but with SRR1 reporting * that we came from the kernel. Normally that would confuse the bad * stack logic, and we would report a bad kernel stack pointer. Instead * we switch to the emergency stack if we're taking a TM Bad Thing from * the kernel. */ andi. r10,r12,MSR_PR bne .Lnormal_stack /* If userspace, go normal path */ andis. r10,r12,(SRR1_PROGTM)@h bne .Lemergency_stack /* If TM, emergency */ cmpdi r1,-INT_FRAME_SIZE /* check if r1 is in userspace */ blt .Lnormal_stack /* normal path if not */ /* Use the emergency stack */ .Lemergency_stack: andi. r10,r12,MSR_PR /* Set CR0 correctly for label */ /* 3 in EXCEPTION_PROLOG_COMMON */ mr r10,r1 /* Save r1 */ ld r1,PACAEMERGSP(r13) /* Use emergency stack */ subi r1,r1,INT_FRAME_SIZE /* alloc stack frame */ __ISTACK(program_check)=0 __GEN_COMMON_BODY program_check b .Ldo_program_check .Lnormal_stack: __ISTACK(program_check)=1 __GEN_COMMON_BODY program_check .Ldo_program_check: addi r3,r1,STACK_FRAME_OVERHEAD bl program_check_exception REST_NVGPRS(r1) /* instruction emulation may change GPRs */ b interrupt_return_srr /* * Interrupt 0x800 - Floating-Point Unavailable Interrupt. * This is a synchronous interrupt in response to executing an fp instruction * with MSR[FP]=0. * * Handling: * This will load FP registers and enable the FP bit if coming from userspace, * otherwise report a bad kernel use of FP. */ INT_DEFINE_BEGIN(fp_unavailable) IVEC=0x800 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE IKVM_REAL=1 #endif INT_DEFINE_END(fp_unavailable) EXC_REAL_BEGIN(fp_unavailable, 0x800, 0x100) GEN_INT_ENTRY fp_unavailable, virt=0 EXC_REAL_END(fp_unavailable, 0x800, 0x100) EXC_VIRT_BEGIN(fp_unavailable, 0x4800, 0x100) GEN_INT_ENTRY fp_unavailable, virt=1 EXC_VIRT_END(fp_unavailable, 0x4800, 0x100) EXC_COMMON_BEGIN(fp_unavailable_common) GEN_COMMON fp_unavailable bne 1f /* if from user, just load it up */ addi r3,r1,STACK_FRAME_OVERHEAD bl kernel_fp_unavailable_exception 0: trap EMIT_BUG_ENTRY 0b, __FILE__, __LINE__, 0 1: #ifdef CONFIG_PPC_TRANSACTIONAL_MEM BEGIN_FTR_SECTION /* Test if 2 TM state bits are zero. If non-zero (ie. userspace was in * transaction), go do TM stuff */ rldicl. r0, r12, (64-MSR_TS_LG), (64-2) bne- 2f END_FTR_SECTION_IFSET(CPU_FTR_TM) #endif bl load_up_fpu b fast_interrupt_return_srr #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 2: /* User process was in a transaction */ addi r3,r1,STACK_FRAME_OVERHEAD bl fp_unavailable_tm b interrupt_return_srr #endif /** * Interrupt 0x900 - Decrementer Interrupt. * This is an asynchronous interrupt in response to a decrementer exception * (e.g., DEC has wrapped below zero). It is maskable in hardware by clearing * MSR[EE], and soft-maskable with IRQS_DISABLED mask (i.e., * local_irq_disable()). * * Handling: * This calls into Linux timer handler. NVGPRs are not saved (see 0x500). * * If soft masked, the masked handler will note the pending interrupt for * replay, and bump the decrementer to a high value, leaving MSR[EE] enabled * in the interrupted context. * If PPC_WATCHDOG is configured, the soft masked handler will actually set * things back up to run soft_nmi_interrupt as a regular interrupt handler * on the emergency stack. * * CFAR is not required because this is asynchronous (see hardware_interrupt). * A watchdog interrupt may like to have CFAR, but usually the interesting * branch is long gone by that point (e.g., infinite loop). */ INT_DEFINE_BEGIN(decrementer) IVEC=0x900 IMASK=IRQS_DISABLED #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE IKVM_REAL=1 #endif ICFAR=0 INT_DEFINE_END(decrementer) EXC_REAL_BEGIN(decrementer, 0x900, 0x80) GEN_INT_ENTRY decrementer, virt=0 EXC_REAL_END(decrementer, 0x900, 0x80) EXC_VIRT_BEGIN(decrementer, 0x4900, 0x80) GEN_INT_ENTRY decrementer, virt=1 EXC_VIRT_END(decrementer, 0x4900, 0x80) EXC_COMMON_BEGIN(decrementer_common) GEN_COMMON decrementer addi r3,r1,STACK_FRAME_OVERHEAD bl timer_interrupt b interrupt_return_srr /** * Interrupt 0x980 - Hypervisor Decrementer Interrupt. * This is an asynchronous interrupt, similar to 0x900 but for the HDEC * register. * * Handling: * Linux does not use this outside KVM where it's used to keep a host timer * while the guest is given control of DEC. It should normally be caught by * the KVM test and routed there. */ INT_DEFINE_BEGIN(hdecrementer) IVEC=0x980 IHSRR=1 ISTACK=0 IKVM_REAL=1 IKVM_VIRT=1 INT_DEFINE_END(hdecrementer) EXC_REAL_BEGIN(hdecrementer, 0x980, 0x80) GEN_INT_ENTRY hdecrementer, virt=0 EXC_REAL_END(hdecrementer, 0x980, 0x80) EXC_VIRT_BEGIN(hdecrementer, 0x4980, 0x80) GEN_INT_ENTRY hdecrementer, virt=1 EXC_VIRT_END(hdecrementer, 0x4980, 0x80) EXC_COMMON_BEGIN(hdecrementer_common) __GEN_COMMON_ENTRY hdecrementer /* * Hypervisor decrementer interrupts not caught by the KVM test * shouldn't occur but are sometimes left pending on exit from a KVM * guest. We don't need to do anything to clear them, as they are * edge-triggered. * * Be careful to avoid touching the kernel stack. */ li r10,0 stb r10,PACAHSRR_VALID(r13) ld r10,PACA_EXGEN+EX_CTR(r13) mtctr r10 mtcrf 0x80,r9 ld r9,PACA_EXGEN+EX_R9(r13) ld r10,PACA_EXGEN+EX_R10(r13) ld r11,PACA_EXGEN+EX_R11(r13) ld r12,PACA_EXGEN+EX_R12(r13) ld r13,PACA_EXGEN+EX_R13(r13) HRFI_TO_KERNEL /** * Interrupt 0xa00 - Directed Privileged Doorbell Interrupt. * This is an asynchronous interrupt in response to a msgsndp doorbell. * It is maskable in hardware by clearing MSR[EE], and soft-maskable with * IRQS_DISABLED mask (i.e., local_irq_disable()). * * Handling: * Guests may use this for IPIs between threads in a core if the * hypervisor supports it. NVGPRS are not saved (see 0x500). * * If soft masked, the masked handler will note the pending interrupt for * replay, leaving MSR[EE] enabled in the interrupted context because the * doorbells are edge triggered. * * CFAR is not required, similarly to hardware_interrupt. */ INT_DEFINE_BEGIN(doorbell_super) IVEC=0xa00 IMASK=IRQS_DISABLED #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE IKVM_REAL=1 #endif ICFAR=0 INT_DEFINE_END(doorbell_super) EXC_REAL_BEGIN(doorbell_super, 0xa00, 0x100) GEN_INT_ENTRY doorbell_super, virt=0 EXC_REAL_END(doorbell_super, 0xa00, 0x100) EXC_VIRT_BEGIN(doorbell_super, 0x4a00, 0x100) GEN_INT_ENTRY doorbell_super, virt=1 EXC_VIRT_END(doorbell_super, 0x4a00, 0x100) EXC_COMMON_BEGIN(doorbell_super_common) GEN_COMMON doorbell_super addi r3,r1,STACK_FRAME_OVERHEAD #ifdef CONFIG_PPC_DOORBELL bl doorbell_exception #else bl unknown_async_exception #endif b interrupt_return_srr EXC_REAL_NONE(0xb00, 0x100) EXC_VIRT_NONE(0x4b00, 0x100) /** * Interrupt 0xc00 - System Call Interrupt (syscall, hcall). * This is a synchronous interrupt invoked with the "sc" instruction. The * system call is invoked with "sc 0" and does not alter the HV bit, so it * is directed to the currently running OS. The hypercall is invoked with * "sc 1" and it sets HV=1, so it elevates to hypervisor. * * In HPT, sc 1 always goes to 0xc00 real mode. In RADIX, sc 1 can go to * 0x4c00 virtual mode. * * Handling: * If the KVM test fires then it was due to a hypercall and is accordingly * routed to KVM. Otherwise this executes a normal Linux system call. * * Call convention: * * syscall and hypercalls register conventions are documented in * Documentation/powerpc/syscall64-abi.rst and * Documentation/powerpc/papr_hcalls.rst respectively. * * The intersection of volatile registers that don't contain possible * inputs is: cr0, xer, ctr. We may use these as scratch regs upon entry * without saving, though xer is not a good idea to use, as hardware may * interpret some bits so it may be costly to change them. */ INT_DEFINE_BEGIN(system_call) IVEC=0xc00 IKVM_REAL=1 IKVM_VIRT=1 ICFAR=0 INT_DEFINE_END(system_call) .macro SYSTEM_CALL virt #ifdef CONFIG_KVM_BOOK3S_64_HANDLER /* * There is a little bit of juggling to get syscall and hcall * working well. Save r13 in ctr to avoid using SPRG scratch * register. * * Userspace syscalls have already saved the PPR, hcalls must save * it before setting HMT_MEDIUM. */ mtctr r13 GET_PACA(r13) std r10,PACA_EXGEN+EX_R10(r13) INTERRUPT_TO_KERNEL KVMTEST system_call kvm_hcall /* uses r10, branch to kvm_hcall */ mfctr r9 #else mr r9,r13 GET_PACA(r13) INTERRUPT_TO_KERNEL #endif #ifdef CONFIG_PPC_FAST_ENDIAN_SWITCH BEGIN_FTR_SECTION cmpdi r0,0x1ebe beq- 1f END_FTR_SECTION_IFSET(CPU_FTR_REAL_LE) #endif /* We reach here with PACA in r13, r13 in r9. */ mfspr r11,SPRN_SRR0 mfspr r12,SPRN_SRR1 HMT_MEDIUM .if ! \virt __LOAD_HANDLER(r10, system_call_common_real, real_vectors) mtctr r10 bctr .else #ifdef CONFIG_RELOCATABLE __LOAD_HANDLER(r10, system_call_common, virt_vectors) mtctr r10 bctr #else b system_call_common #endif .endif #ifdef CONFIG_PPC_FAST_ENDIAN_SWITCH /* Fast LE/BE switch system call */ 1: mfspr r12,SPRN_SRR1 xori r12,r12,MSR_LE mtspr SPRN_SRR1,r12 mr r13,r9 RFI_TO_USER /* return to userspace */ b . /* prevent speculative execution */ #endif .endm EXC_REAL_BEGIN(system_call, 0xc00, 0x100) SYSTEM_CALL 0 EXC_REAL_END(system_call, 0xc00, 0x100) EXC_VIRT_BEGIN(system_call, 0x4c00, 0x100) SYSTEM_CALL 1 EXC_VIRT_END(system_call, 0x4c00, 0x100) #ifdef CONFIG_KVM_BOOK3S_64_HANDLER TRAMP_REAL_BEGIN(kvm_hcall) std r9,PACA_EXGEN+EX_R9(r13) std r11,PACA_EXGEN+EX_R11(r13) std r12,PACA_EXGEN+EX_R12(r13) mfcr r9 mfctr r10 std r10,PACA_EXGEN+EX_R13(r13) li r10,0 std r10,PACA_EXGEN+EX_CFAR(r13) std r10,PACA_EXGEN+EX_CTR(r13) /* * Save the PPR (on systems that support it) before changing to * HMT_MEDIUM. That allows the KVM code to save that value into the * guest state (it is the guest's PPR value). */ BEGIN_FTR_SECTION mfspr r10,SPRN_PPR std r10,PACA_EXGEN+EX_PPR(r13) END_FTR_SECTION_IFSET(CPU_FTR_HAS_PPR) HMT_MEDIUM #ifdef CONFIG_RELOCATABLE /* * Requires __LOAD_FAR_HANDLER beause kvmppc_hcall lives * outside the head section. */ __LOAD_FAR_HANDLER(r10, kvmppc_hcall, real_trampolines) mtctr r10 bctr #else b kvmppc_hcall #endif #endif /** * Interrupt 0xd00 - Trace Interrupt. * This is a synchronous interrupt in response to instruction step or * breakpoint faults. */ INT_DEFINE_BEGIN(single_step) IVEC=0xd00 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE IKVM_REAL=1 #endif INT_DEFINE_END(single_step) EXC_REAL_BEGIN(single_step, 0xd00, 0x100) GEN_INT_ENTRY single_step, virt=0 EXC_REAL_END(single_step, 0xd00, 0x100) EXC_VIRT_BEGIN(single_step, 0x4d00, 0x100) GEN_INT_ENTRY single_step, virt=1 EXC_VIRT_END(single_step, 0x4d00, 0x100) EXC_COMMON_BEGIN(single_step_common) GEN_COMMON single_step addi r3,r1,STACK_FRAME_OVERHEAD bl single_step_exception b interrupt_return_srr /** * Interrupt 0xe00 - Hypervisor Data Storage Interrupt (HDSI). * This is a synchronous interrupt in response to an MMU fault caused by a * guest data access. * * Handling: * This should always get routed to KVM. In radix MMU mode, this is caused * by a guest nested radix access that can't be performed due to the * partition scope page table. In hash mode, this can be caused by guests * running with translation disabled (virtual real mode) or with VPM enabled. * KVM will update the page table structures or disallow the access. */ INT_DEFINE_BEGIN(h_data_storage) IVEC=0xe00 IHSRR=1 IDAR=1 IDSISR=1 IKVM_REAL=1 IKVM_VIRT=1 INT_DEFINE_END(h_data_storage) EXC_REAL_BEGIN(h_data_storage, 0xe00, 0x20) GEN_INT_ENTRY h_data_storage, virt=0, ool=1 EXC_REAL_END(h_data_storage, 0xe00, 0x20) EXC_VIRT_BEGIN(h_data_storage, 0x4e00, 0x20) GEN_INT_ENTRY h_data_storage, virt=1, ool=1 EXC_VIRT_END(h_data_storage, 0x4e00, 0x20) EXC_COMMON_BEGIN(h_data_storage_common) GEN_COMMON h_data_storage addi r3,r1,STACK_FRAME_OVERHEAD BEGIN_MMU_FTR_SECTION bl do_bad_page_fault_segv MMU_FTR_SECTION_ELSE bl unknown_exception ALT_MMU_FTR_SECTION_END_IFSET(MMU_FTR_TYPE_RADIX) b interrupt_return_hsrr /** * Interrupt 0xe20 - Hypervisor Instruction Storage Interrupt (HISI). * This is a synchronous interrupt in response to an MMU fault caused by a * guest instruction fetch, similar to HDSI. */ INT_DEFINE_BEGIN(h_instr_storage) IVEC=0xe20 IHSRR=1 IKVM_REAL=1 IKVM_VIRT=1 INT_DEFINE_END(h_instr_storage) EXC_REAL_BEGIN(h_instr_storage, 0xe20, 0x20) GEN_INT_ENTRY h_instr_storage, virt=0, ool=1 EXC_REAL_END(h_instr_storage, 0xe20, 0x20) EXC_VIRT_BEGIN(h_instr_storage, 0x4e20, 0x20) GEN_INT_ENTRY h_instr_storage, virt=1, ool=1 EXC_VIRT_END(h_instr_storage, 0x4e20, 0x20) EXC_COMMON_BEGIN(h_instr_storage_common) GEN_COMMON h_instr_storage addi r3,r1,STACK_FRAME_OVERHEAD bl unknown_exception b interrupt_return_hsrr /** * Interrupt 0xe40 - Hypervisor Emulation Assistance Interrupt. */ INT_DEFINE_BEGIN(emulation_assist) IVEC=0xe40 IHSRR=1 IKVM_REAL=1 IKVM_VIRT=1 INT_DEFINE_END(emulation_assist) EXC_REAL_BEGIN(emulation_assist, 0xe40, 0x20) GEN_INT_ENTRY emulation_assist, virt=0, ool=1 EXC_REAL_END(emulation_assist, 0xe40, 0x20) EXC_VIRT_BEGIN(emulation_assist, 0x4e40, 0x20) GEN_INT_ENTRY emulation_assist, virt=1, ool=1 EXC_VIRT_END(emulation_assist, 0x4e40, 0x20) EXC_COMMON_BEGIN(emulation_assist_common) GEN_COMMON emulation_assist addi r3,r1,STACK_FRAME_OVERHEAD bl emulation_assist_interrupt REST_NVGPRS(r1) /* instruction emulation may change GPRs */ b interrupt_return_hsrr /** * Interrupt 0xe60 - Hypervisor Maintenance Interrupt (HMI). * This is an asynchronous interrupt caused by a Hypervisor Maintenance * Exception. It is always taken in real mode but uses HSRR registers * unlike SRESET and MCE. * * It is maskable in hardware by clearing MSR[EE], and partially soft-maskable * with IRQS_DISABLED mask (i.e., local_irq_disable()). * * Handling: * This is a special case, this is handled similarly to machine checks, with an * initial real mode handler that is not soft-masked, which attempts to fix the * problem. Then a regular handler which is soft-maskable and reports the * problem. * * The emergency stack is used for the early real mode handler. * * XXX: unclear why MCE and HMI schemes could not be made common, e.g., * either use soft-masking for the MCE, or use irq_work for the HMI. * * KVM: * Unlike MCE, this calls into KVM without calling the real mode handler * first. */ INT_DEFINE_BEGIN(hmi_exception_early) IVEC=0xe60 IHSRR=1 IREALMODE_COMMON=1 ISTACK=0 IKUAP=0 /* We don't touch AMR here, we never go to virtual mode */ IKVM_REAL=1 INT_DEFINE_END(hmi_exception_early) INT_DEFINE_BEGIN(hmi_exception) IVEC=0xe60 IHSRR=1 IMASK=IRQS_DISABLED IKVM_REAL=1 INT_DEFINE_END(hmi_exception) EXC_REAL_BEGIN(hmi_exception, 0xe60, 0x20) GEN_INT_ENTRY hmi_exception_early, virt=0, ool=1 EXC_REAL_END(hmi_exception, 0xe60, 0x20) EXC_VIRT_NONE(0x4e60, 0x20) EXC_COMMON_BEGIN(hmi_exception_early_common) __GEN_REALMODE_COMMON_ENTRY hmi_exception_early mr r10,r1 /* Save r1 */ ld r1,PACAEMERGSP(r13) /* Use emergency stack for realmode */ subi r1,r1,INT_FRAME_SIZE /* alloc stack frame */ __GEN_COMMON_BODY hmi_exception_early addi r3,r1,STACK_FRAME_OVERHEAD bl hmi_exception_realmode cmpdi cr0,r3,0 bne 1f EXCEPTION_RESTORE_REGS hsrr=1 HRFI_TO_USER_OR_KERNEL 1: /* * Go to virtual mode and pull the HMI event information from * firmware. */ EXCEPTION_RESTORE_REGS hsrr=1 GEN_INT_ENTRY hmi_exception, virt=0 EXC_COMMON_BEGIN(hmi_exception_common) GEN_COMMON hmi_exception addi r3,r1,STACK_FRAME_OVERHEAD bl handle_hmi_exception b interrupt_return_hsrr /** * Interrupt 0xe80 - Directed Hypervisor Doorbell Interrupt. * This is an asynchronous interrupt in response to a msgsnd doorbell. * Similar to the 0xa00 doorbell but for host rather than guest. * * CFAR is not required (similar to doorbell_interrupt), unless KVM HV * is enabled, in which case it may be a guest exit. Most PowerNV kernels * include KVM support so it would be nice if this could be dynamically * patched out if KVM was not currently running any guests. */ INT_DEFINE_BEGIN(h_doorbell) IVEC=0xe80 IHSRR=1 IMASK=IRQS_DISABLED IKVM_REAL=1 IKVM_VIRT=1 #ifndef CONFIG_KVM_BOOK3S_HV_POSSIBLE ICFAR=0 #endif INT_DEFINE_END(h_doorbell) EXC_REAL_BEGIN(h_doorbell, 0xe80, 0x20) GEN_INT_ENTRY h_doorbell, virt=0, ool=1 EXC_REAL_END(h_doorbell, 0xe80, 0x20) EXC_VIRT_BEGIN(h_doorbell, 0x4e80, 0x20) GEN_INT_ENTRY h_doorbell, virt=1, ool=1 EXC_VIRT_END(h_doorbell, 0x4e80, 0x20) EXC_COMMON_BEGIN(h_doorbell_common) GEN_COMMON h_doorbell addi r3,r1,STACK_FRAME_OVERHEAD #ifdef CONFIG_PPC_DOORBELL bl doorbell_exception #else bl unknown_async_exception #endif b interrupt_return_hsrr /** * Interrupt 0xea0 - Hypervisor Virtualization Interrupt. * This is an asynchronous interrupt in response to an "external exception". * Similar to 0x500 but for host only. * * Like h_doorbell, CFAR is only required for KVM HV because this can be * a guest exit. */ INT_DEFINE_BEGIN(h_virt_irq) IVEC=0xea0 IHSRR=1 IMASK=IRQS_DISABLED IKVM_REAL=1 IKVM_VIRT=1 #ifndef CONFIG_KVM_BOOK3S_HV_POSSIBLE ICFAR=0 #endif INT_DEFINE_END(h_virt_irq) EXC_REAL_BEGIN(h_virt_irq, 0xea0, 0x20) GEN_INT_ENTRY h_virt_irq, virt=0, ool=1 EXC_REAL_END(h_virt_irq, 0xea0, 0x20) EXC_VIRT_BEGIN(h_virt_irq, 0x4ea0, 0x20) GEN_INT_ENTRY h_virt_irq, virt=1, ool=1 EXC_VIRT_END(h_virt_irq, 0x4ea0, 0x20) EXC_COMMON_BEGIN(h_virt_irq_common) GEN_COMMON h_virt_irq addi r3,r1,STACK_FRAME_OVERHEAD bl do_IRQ b interrupt_return_hsrr EXC_REAL_NONE(0xec0, 0x20) EXC_VIRT_NONE(0x4ec0, 0x20) EXC_REAL_NONE(0xee0, 0x20) EXC_VIRT_NONE(0x4ee0, 0x20) /* * Interrupt 0xf00 - Performance Monitor Interrupt (PMI, PMU). * This is an asynchronous interrupt in response to a PMU exception. * It is maskable in hardware by clearing MSR[EE], and soft-maskable with * IRQS_PMI_DISABLED mask (NOTE: NOT local_irq_disable()). * * Handling: * This calls into the perf subsystem. * * Like the watchdog soft-nmi, it appears an NMI interrupt to Linux, in that it * runs under local_irq_disable. However it may be soft-masked in * powerpc-specific code. * * If soft masked, the masked handler will note the pending interrupt for * replay, and clear MSR[EE] in the interrupted context. * * CFAR is not used by perf interrupts so not required. */ INT_DEFINE_BEGIN(performance_monitor) IVEC=0xf00 IMASK=IRQS_PMI_DISABLED #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE IKVM_REAL=1 #endif ICFAR=0 INT_DEFINE_END(performance_monitor) EXC_REAL_BEGIN(performance_monitor, 0xf00, 0x20) GEN_INT_ENTRY performance_monitor, virt=0, ool=1 EXC_REAL_END(performance_monitor, 0xf00, 0x20) EXC_VIRT_BEGIN(performance_monitor, 0x4f00, 0x20) GEN_INT_ENTRY performance_monitor, virt=1, ool=1 EXC_VIRT_END(performance_monitor, 0x4f00, 0x20) EXC_COMMON_BEGIN(performance_monitor_common) GEN_COMMON performance_monitor addi r3,r1,STACK_FRAME_OVERHEAD lbz r4,PACAIRQSOFTMASK(r13) cmpdi r4,IRQS_ENABLED bne 1f bl performance_monitor_exception_async b interrupt_return_srr 1: bl performance_monitor_exception_nmi /* Clear MSR_RI before setting SRR0 and SRR1. */ li r9,0 mtmsrd r9,1 kuap_kernel_restore r9, r10 EXCEPTION_RESTORE_REGS hsrr=0 RFI_TO_KERNEL /** * Interrupt 0xf20 - Vector Unavailable Interrupt. * This is a synchronous interrupt in response to * executing a vector (or altivec) instruction with MSR[VEC]=0. * Similar to FP unavailable. */ INT_DEFINE_BEGIN(altivec_unavailable) IVEC=0xf20 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE IKVM_REAL=1 #endif INT_DEFINE_END(altivec_unavailable) EXC_REAL_BEGIN(altivec_unavailable, 0xf20, 0x20) GEN_INT_ENTRY altivec_unavailable, virt=0, ool=1 EXC_REAL_END(altivec_unavailable, 0xf20, 0x20) EXC_VIRT_BEGIN(altivec_unavailable, 0x4f20, 0x20) GEN_INT_ENTRY altivec_unavailable, virt=1, ool=1 EXC_VIRT_END(altivec_unavailable, 0x4f20, 0x20) EXC_COMMON_BEGIN(altivec_unavailable_common) GEN_COMMON altivec_unavailable #ifdef CONFIG_ALTIVEC BEGIN_FTR_SECTION beq 1f #ifdef CONFIG_PPC_TRANSACTIONAL_MEM BEGIN_FTR_SECTION_NESTED(69) /* Test if 2 TM state bits are zero. If non-zero (ie. userspace was in * transaction), go do TM stuff */ rldicl. r0, r12, (64-MSR_TS_LG), (64-2) bne- 2f END_FTR_SECTION_NESTED(CPU_FTR_TM, CPU_FTR_TM, 69) #endif bl load_up_altivec b fast_interrupt_return_srr #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 2: /* User process was in a transaction */ addi r3,r1,STACK_FRAME_OVERHEAD bl altivec_unavailable_tm b interrupt_return_srr #endif 1: END_FTR_SECTION_IFSET(CPU_FTR_ALTIVEC) #endif addi r3,r1,STACK_FRAME_OVERHEAD bl altivec_unavailable_exception b interrupt_return_srr /** * Interrupt 0xf40 - VSX Unavailable Interrupt. * This is a synchronous interrupt in response to * executing a VSX instruction with MSR[VSX]=0. * Similar to FP unavailable. */ INT_DEFINE_BEGIN(vsx_unavailable) IVEC=0xf40 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE IKVM_REAL=1 #endif INT_DEFINE_END(vsx_unavailable) EXC_REAL_BEGIN(vsx_unavailable, 0xf40, 0x20) GEN_INT_ENTRY vsx_unavailable, virt=0, ool=1 EXC_REAL_END(vsx_unavailable, 0xf40, 0x20) EXC_VIRT_BEGIN(vsx_unavailable, 0x4f40, 0x20) GEN_INT_ENTRY vsx_unavailable, virt=1, ool=1 EXC_VIRT_END(vsx_unavailable, 0x4f40, 0x20) EXC_COMMON_BEGIN(vsx_unavailable_common) GEN_COMMON vsx_unavailable #ifdef CONFIG_VSX BEGIN_FTR_SECTION beq 1f #ifdef CONFIG_PPC_TRANSACTIONAL_MEM BEGIN_FTR_SECTION_NESTED(69) /* Test if 2 TM state bits are zero. If non-zero (ie. userspace was in * transaction), go do TM stuff */ rldicl. r0, r12, (64-MSR_TS_LG), (64-2) bne- 2f END_FTR_SECTION_NESTED(CPU_FTR_TM, CPU_FTR_TM, 69) #endif b load_up_vsx #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 2: /* User process was in a transaction */ addi r3,r1,STACK_FRAME_OVERHEAD bl vsx_unavailable_tm b interrupt_return_srr #endif 1: END_FTR_SECTION_IFSET(CPU_FTR_VSX) #endif addi r3,r1,STACK_FRAME_OVERHEAD bl vsx_unavailable_exception b interrupt_return_srr /** * Interrupt 0xf60 - Facility Unavailable Interrupt. * This is a synchronous interrupt in response to * executing an instruction without access to the facility that can be * resolved by the OS (e.g., FSCR, MSR). * Similar to FP unavailable. */ INT_DEFINE_BEGIN(facility_unavailable) IVEC=0xf60 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE IKVM_REAL=1 #endif INT_DEFINE_END(facility_unavailable) EXC_REAL_BEGIN(facility_unavailable, 0xf60, 0x20) GEN_INT_ENTRY facility_unavailable, virt=0, ool=1 EXC_REAL_END(facility_unavailable, 0xf60, 0x20) EXC_VIRT_BEGIN(facility_unavailable, 0x4f60, 0x20) GEN_INT_ENTRY facility_unavailable, virt=1, ool=1 EXC_VIRT_END(facility_unavailable, 0x4f60, 0x20) EXC_COMMON_BEGIN(facility_unavailable_common) GEN_COMMON facility_unavailable addi r3,r1,STACK_FRAME_OVERHEAD bl facility_unavailable_exception REST_NVGPRS(r1) /* instruction emulation may change GPRs */ b interrupt_return_srr /** * Interrupt 0xf60 - Hypervisor Facility Unavailable Interrupt. * This is a synchronous interrupt in response to * executing an instruction without access to the facility that can only * be resolved in HV mode (e.g., HFSCR). * Similar to FP unavailable. */ INT_DEFINE_BEGIN(h_facility_unavailable) IVEC=0xf80 IHSRR=1 IKVM_REAL=1 IKVM_VIRT=1 INT_DEFINE_END(h_facility_unavailable) EXC_REAL_BEGIN(h_facility_unavailable, 0xf80, 0x20) GEN_INT_ENTRY h_facility_unavailable, virt=0, ool=1 EXC_REAL_END(h_facility_unavailable, 0xf80, 0x20) EXC_VIRT_BEGIN(h_facility_unavailable, 0x4f80, 0x20) GEN_INT_ENTRY h_facility_unavailable, virt=1, ool=1 EXC_VIRT_END(h_facility_unavailable, 0x4f80, 0x20) EXC_COMMON_BEGIN(h_facility_unavailable_common) GEN_COMMON h_facility_unavailable addi r3,r1,STACK_FRAME_OVERHEAD bl facility_unavailable_exception REST_NVGPRS(r1) /* XXX Shouldn't be necessary in practice */ b interrupt_return_hsrr EXC_REAL_NONE(0xfa0, 0x20) EXC_VIRT_NONE(0x4fa0, 0x20) EXC_REAL_NONE(0xfc0, 0x20) EXC_VIRT_NONE(0x4fc0, 0x20) EXC_REAL_NONE(0xfe0, 0x20) EXC_VIRT_NONE(0x4fe0, 0x20) EXC_REAL_NONE(0x1000, 0x100) EXC_VIRT_NONE(0x5000, 0x100) EXC_REAL_NONE(0x1100, 0x100) EXC_VIRT_NONE(0x5100, 0x100) #ifdef CONFIG_CBE_RAS INT_DEFINE_BEGIN(cbe_system_error) IVEC=0x1200 IHSRR=1 INT_DEFINE_END(cbe_system_error) EXC_REAL_BEGIN(cbe_system_error, 0x1200, 0x100) GEN_INT_ENTRY cbe_system_error, virt=0 EXC_REAL_END(cbe_system_error, 0x1200, 0x100) EXC_VIRT_NONE(0x5200, 0x100) EXC_COMMON_BEGIN(cbe_system_error_common) GEN_COMMON cbe_system_error addi r3,r1,STACK_FRAME_OVERHEAD bl cbe_system_error_exception b interrupt_return_hsrr #else /* CONFIG_CBE_RAS */ EXC_REAL_NONE(0x1200, 0x100) EXC_VIRT_NONE(0x5200, 0x100) #endif /** * Interrupt 0x1300 - Instruction Address Breakpoint Interrupt. * This has been removed from the ISA before 2.01, which is the earliest * 64-bit BookS ISA supported, however the G5 / 970 implements this * interrupt with a non-architected feature available through the support * processor interface. */ INT_DEFINE_BEGIN(instruction_breakpoint) IVEC=0x1300 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE IKVM_REAL=1 #endif INT_DEFINE_END(instruction_breakpoint) EXC_REAL_BEGIN(instruction_breakpoint, 0x1300, 0x100) GEN_INT_ENTRY instruction_breakpoint, virt=0 EXC_REAL_END(instruction_breakpoint, 0x1300, 0x100) EXC_VIRT_BEGIN(instruction_breakpoint, 0x5300, 0x100) GEN_INT_ENTRY instruction_breakpoint, virt=1 EXC_VIRT_END(instruction_breakpoint, 0x5300, 0x100) EXC_COMMON_BEGIN(instruction_breakpoint_common) GEN_COMMON instruction_breakpoint addi r3,r1,STACK_FRAME_OVERHEAD bl instruction_breakpoint_exception b interrupt_return_srr EXC_REAL_NONE(0x1400, 0x100) EXC_VIRT_NONE(0x5400, 0x100) /** * Interrupt 0x1500 - Soft Patch Interrupt * * Handling: * This is an implementation specific interrupt which can be used for a * range of exceptions. * * This interrupt handler is unique in that it runs the denormal assist * code even for guests (and even in guest context) without going to KVM, * for speed. POWER9 does not raise denorm exceptions, so this special case * could be phased out in future to reduce special cases. */ INT_DEFINE_BEGIN(denorm_exception) IVEC=0x1500 IHSRR=1 IBRANCH_TO_COMMON=0 IKVM_REAL=1 INT_DEFINE_END(denorm_exception) EXC_REAL_BEGIN(denorm_exception, 0x1500, 0x100) GEN_INT_ENTRY denorm_exception, virt=0 #ifdef CONFIG_PPC_DENORMALISATION andis. r10,r12,(HSRR1_DENORM)@h /* denorm? */ bne+ denorm_assist #endif GEN_BRANCH_TO_COMMON denorm_exception, virt=0 EXC_REAL_END(denorm_exception, 0x1500, 0x100) #ifdef CONFIG_PPC_DENORMALISATION EXC_VIRT_BEGIN(denorm_exception, 0x5500, 0x100) GEN_INT_ENTRY denorm_exception, virt=1 andis. r10,r12,(HSRR1_DENORM)@h /* denorm? */ bne+ denorm_assist GEN_BRANCH_TO_COMMON denorm_exception, virt=1 EXC_VIRT_END(denorm_exception, 0x5500, 0x100) #else EXC_VIRT_NONE(0x5500, 0x100) #endif #ifdef CONFIG_PPC_DENORMALISATION TRAMP_REAL_BEGIN(denorm_assist) BEGIN_FTR_SECTION /* * To denormalise we need to move a copy of the register to itself. * For POWER6 do that here for all FP regs. */ mfmsr r10 ori r10,r10,(MSR_FP|MSR_FE0|MSR_FE1) xori r10,r10,(MSR_FE0|MSR_FE1) mtmsrd r10 sync .Lreg=0 .rept 32 fmr .Lreg,.Lreg .Lreg=.Lreg+1 .endr FTR_SECTION_ELSE /* * To denormalise we need to move a copy of the register to itself. * For POWER7 do that here for the first 32 VSX registers only. */ mfmsr r10 oris r10,r10,MSR_VSX@h mtmsrd r10 sync .Lreg=0 .rept 32 XVCPSGNDP(.Lreg,.Lreg,.Lreg) .Lreg=.Lreg+1 .endr ALT_FTR_SECTION_END_IFCLR(CPU_FTR_ARCH_206) BEGIN_FTR_SECTION b denorm_done END_FTR_SECTION_IFCLR(CPU_FTR_ARCH_207S) /* * To denormalise we need to move a copy of the register to itself. * For POWER8 we need to do that for all 64 VSX registers */ .Lreg=32 .rept 32 XVCPSGNDP(.Lreg,.Lreg,.Lreg) .Lreg=.Lreg+1 .endr denorm_done: mfspr r11,SPRN_HSRR0 subi r11,r11,4 mtspr SPRN_HSRR0,r11 mtcrf 0x80,r9 ld r9,PACA_EXGEN+EX_R9(r13) BEGIN_FTR_SECTION ld r10,PACA_EXGEN+EX_PPR(r13) mtspr SPRN_PPR,r10 END_FTR_SECTION_IFSET(CPU_FTR_HAS_PPR) BEGIN_FTR_SECTION ld r10,PACA_EXGEN+EX_CFAR(r13) mtspr SPRN_CFAR,r10 END_FTR_SECTION_IFSET(CPU_FTR_CFAR) li r10,0 stb r10,PACAHSRR_VALID(r13) ld r10,PACA_EXGEN+EX_R10(r13) ld r11,PACA_EXGEN+EX_R11(r13) ld r12,PACA_EXGEN+EX_R12(r13) ld r13,PACA_EXGEN+EX_R13(r13) HRFI_TO_UNKNOWN b . #endif EXC_COMMON_BEGIN(denorm_exception_common) GEN_COMMON denorm_exception addi r3,r1,STACK_FRAME_OVERHEAD bl unknown_exception b interrupt_return_hsrr #ifdef CONFIG_CBE_RAS INT_DEFINE_BEGIN(cbe_maintenance) IVEC=0x1600 IHSRR=1 INT_DEFINE_END(cbe_maintenance) EXC_REAL_BEGIN(cbe_maintenance, 0x1600, 0x100) GEN_INT_ENTRY cbe_maintenance, virt=0 EXC_REAL_END(cbe_maintenance, 0x1600, 0x100) EXC_VIRT_NONE(0x5600, 0x100) EXC_COMMON_BEGIN(cbe_maintenance_common) GEN_COMMON cbe_maintenance addi r3,r1,STACK_FRAME_OVERHEAD bl cbe_maintenance_exception b interrupt_return_hsrr #else /* CONFIG_CBE_RAS */ EXC_REAL_NONE(0x1600, 0x100) EXC_VIRT_NONE(0x5600, 0x100) #endif INT_DEFINE_BEGIN(altivec_assist) IVEC=0x1700 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE IKVM_REAL=1 #endif INT_DEFINE_END(altivec_assist) EXC_REAL_BEGIN(altivec_assist, 0x1700, 0x100) GEN_INT_ENTRY altivec_assist, virt=0 EXC_REAL_END(altivec_assist, 0x1700, 0x100) EXC_VIRT_BEGIN(altivec_assist, 0x5700, 0x100) GEN_INT_ENTRY altivec_assist, virt=1 EXC_VIRT_END(altivec_assist, 0x5700, 0x100) EXC_COMMON_BEGIN(altivec_assist_common) GEN_COMMON altivec_assist addi r3,r1,STACK_FRAME_OVERHEAD #ifdef CONFIG_ALTIVEC bl altivec_assist_exception REST_NVGPRS(r1) /* instruction emulation may change GPRs */ #else bl unknown_exception #endif b interrupt_return_srr #ifdef CONFIG_CBE_RAS INT_DEFINE_BEGIN(cbe_thermal) IVEC=0x1800 IHSRR=1 INT_DEFINE_END(cbe_thermal) EXC_REAL_BEGIN(cbe_thermal, 0x1800, 0x100) GEN_INT_ENTRY cbe_thermal, virt=0 EXC_REAL_END(cbe_thermal, 0x1800, 0x100) EXC_VIRT_NONE(0x5800, 0x100) EXC_COMMON_BEGIN(cbe_thermal_common) GEN_COMMON cbe_thermal addi r3,r1,STACK_FRAME_OVERHEAD bl cbe_thermal_exception b interrupt_return_hsrr #else /* CONFIG_CBE_RAS */ EXC_REAL_NONE(0x1800, 0x100) EXC_VIRT_NONE(0x5800, 0x100) #endif #ifdef CONFIG_PPC_WATCHDOG INT_DEFINE_BEGIN(soft_nmi) IVEC=0x900 ISTACK=0 ICFAR=0 INT_DEFINE_END(soft_nmi) /* * Branch to soft_nmi_interrupt using the emergency stack. The emergency * stack is one that is usable by maskable interrupts so long as MSR_EE * remains off. It is used for recovery when something has corrupted the * normal kernel stack, for example. The "soft NMI" must not use the process * stack because we want irq disabled sections to avoid touching the stack * at all (other than PMU interrupts), so use the emergency stack for this, * and run it entirely with interrupts hard disabled. */ EXC_COMMON_BEGIN(soft_nmi_common) mr r10,r1 ld r1,PACAEMERGSP(r13) subi r1,r1,INT_FRAME_SIZE __GEN_COMMON_BODY soft_nmi addi r3,r1,STACK_FRAME_OVERHEAD bl soft_nmi_interrupt /* Clear MSR_RI before setting SRR0 and SRR1. */ li r9,0 mtmsrd r9,1 kuap_kernel_restore r9, r10 EXCEPTION_RESTORE_REGS hsrr=0 RFI_TO_KERNEL #endif /* CONFIG_PPC_WATCHDOG */ /* * An interrupt came in while soft-disabled. We set paca->irq_happened, then: * - If it was a decrementer interrupt, we bump the dec to max and return. * - If it was a doorbell we return immediately since doorbells are edge * triggered and won't automatically refire. * - If it was a HMI we return immediately since we handled it in realmode * and it won't refire. * - Else it is one of PACA_IRQ_MUST_HARD_MASK, so hard disable and return. * This is called with r10 containing the value to OR to the paca field. */ .macro MASKED_INTERRUPT hsrr=0 .if \hsrr masked_Hinterrupt: .else masked_interrupt: .endif stw r9,PACA_EXGEN+EX_CCR(r13) #ifdef CONFIG_PPC_IRQ_SOFT_MASK_DEBUG /* * Ensure there was no previous MUST_HARD_MASK interrupt or * HARD_DIS setting. If this does fire, the interrupt is still * masked and MSR[EE] will be cleared on return, so no need to * panic, but somebody probably enabled MSR[EE] under * PACA_IRQ_HARD_DIS, mtmsr(mfmsr() | MSR_x) being a common * cause. */ lbz r9,PACAIRQHAPPENED(r13) andi. r9,r9,(PACA_IRQ_MUST_HARD_MASK|PACA_IRQ_HARD_DIS) 0: tdnei r9,0 EMIT_WARN_ENTRY 0b,__FILE__,__LINE__,(BUGFLAG_WARNING | BUGFLAG_ONCE) #endif lbz r9,PACAIRQHAPPENED(r13) or r9,r9,r10 stb r9,PACAIRQHAPPENED(r13) .if ! \hsrr cmpwi r10,PACA_IRQ_DEC bne 1f LOAD_REG_IMMEDIATE(r9, 0x7fffffff) mtspr SPRN_DEC,r9 #ifdef CONFIG_PPC_WATCHDOG lwz r9,PACA_EXGEN+EX_CCR(r13) b soft_nmi_common #else b 2f #endif .endif 1: andi. r10,r10,PACA_IRQ_MUST_HARD_MASK beq 2f xori r12,r12,MSR_EE /* clear MSR_EE */ .if \hsrr mtspr SPRN_HSRR1,r12 .else mtspr SPRN_SRR1,r12 .endif ori r9,r9,PACA_IRQ_HARD_DIS stb r9,PACAIRQHAPPENED(r13) 2: /* done */ li r9,0 .if \hsrr stb r9,PACAHSRR_VALID(r13) .else stb r9,PACASRR_VALID(r13) .endif SEARCH_RESTART_TABLE cmpdi r12,0 beq 3f .if \hsrr mtspr SPRN_HSRR0,r12 .else mtspr SPRN_SRR0,r12 .endif 3: ld r9,PACA_EXGEN+EX_CTR(r13) mtctr r9 lwz r9,PACA_EXGEN+EX_CCR(r13) mtcrf 0x80,r9 std r1,PACAR1(r13) ld r9,PACA_EXGEN+EX_R9(r13) ld r10,PACA_EXGEN+EX_R10(r13) ld r11,PACA_EXGEN+EX_R11(r13) ld r12,PACA_EXGEN+EX_R12(r13) ld r13,PACA_EXGEN+EX_R13(r13) /* May return to masked low address where r13 is not set up */ .if \hsrr HRFI_TO_KERNEL .else RFI_TO_KERNEL .endif b . .endm TRAMP_REAL_BEGIN(stf_barrier_fallback) std r9,PACA_EXRFI+EX_R9(r13) std r10,PACA_EXRFI+EX_R10(r13) sync ld r9,PACA_EXRFI+EX_R9(r13) ld r10,PACA_EXRFI+EX_R10(r13) ori 31,31,0 .rept 14 b 1f 1: .endr blr /* Clobbers r10, r11, ctr */ .macro L1D_DISPLACEMENT_FLUSH ld r10,PACA_RFI_FLUSH_FALLBACK_AREA(r13) ld r11,PACA_L1D_FLUSH_SIZE(r13) srdi r11,r11,(7 + 3) /* 128 byte lines, unrolled 8x */ mtctr r11 DCBT_BOOK3S_STOP_ALL_STREAM_IDS(r11) /* Stop prefetch streams */ /* order ld/st prior to dcbt stop all streams with flushing */ sync /* * The load addresses are at staggered offsets within cachelines, * which suits some pipelines better (on others it should not * hurt). */ 1: ld r11,(0x80 + 8)*0(r10) ld r11,(0x80 + 8)*1(r10) ld r11,(0x80 + 8)*2(r10) ld r11,(0x80 + 8)*3(r10) ld r11,(0x80 + 8)*4(r10) ld r11,(0x80 + 8)*5(r10) ld r11,(0x80 + 8)*6(r10) ld r11,(0x80 + 8)*7(r10) addi r10,r10,0x80*8 bdnz 1b .endm TRAMP_REAL_BEGIN(entry_flush_fallback) std r9,PACA_EXRFI+EX_R9(r13) std r10,PACA_EXRFI+EX_R10(r13) std r11,PACA_EXRFI+EX_R11(r13) mfctr r9 L1D_DISPLACEMENT_FLUSH mtctr r9 ld r9,PACA_EXRFI+EX_R9(r13) ld r10,PACA_EXRFI+EX_R10(r13) ld r11,PACA_EXRFI+EX_R11(r13) blr /* * The SCV entry flush happens with interrupts enabled, so it must disable * to prevent EXRFI being clobbered by NMIs (e.g., soft_nmi_common). r10 * (containing LR) does not need to be preserved here because scv entry * puts 0 in the pt_regs, CTR can be clobbered for the same reason. */ TRAMP_REAL_BEGIN(scv_entry_flush_fallback) li r10,0 mtmsrd r10,1 lbz r10,PACAIRQHAPPENED(r13) ori r10,r10,PACA_IRQ_HARD_DIS stb r10,PACAIRQHAPPENED(r13) std r11,PACA_EXRFI+EX_R11(r13) L1D_DISPLACEMENT_FLUSH ld r11,PACA_EXRFI+EX_R11(r13) li r10,MSR_RI mtmsrd r10,1 blr TRAMP_REAL_BEGIN(rfi_flush_fallback) SET_SCRATCH0(r13); GET_PACA(r13); std r1,PACA_EXRFI+EX_R12(r13) ld r1,PACAKSAVE(r13) std r9,PACA_EXRFI+EX_R9(r13) std r10,PACA_EXRFI+EX_R10(r13) std r11,PACA_EXRFI+EX_R11(r13) mfctr r9 L1D_DISPLACEMENT_FLUSH mtctr r9 ld r9,PACA_EXRFI+EX_R9(r13) ld r10,PACA_EXRFI+EX_R10(r13) ld r11,PACA_EXRFI+EX_R11(r13) ld r1,PACA_EXRFI+EX_R12(r13) GET_SCRATCH0(r13); rfid TRAMP_REAL_BEGIN(hrfi_flush_fallback) SET_SCRATCH0(r13); GET_PACA(r13); std r1,PACA_EXRFI+EX_R12(r13) ld r1,PACAKSAVE(r13) std r9,PACA_EXRFI+EX_R9(r13) std r10,PACA_EXRFI+EX_R10(r13) std r11,PACA_EXRFI+EX_R11(r13) mfctr r9 L1D_DISPLACEMENT_FLUSH mtctr r9 ld r9,PACA_EXRFI+EX_R9(r13) ld r10,PACA_EXRFI+EX_R10(r13) ld r11,PACA_EXRFI+EX_R11(r13) ld r1,PACA_EXRFI+EX_R12(r13) GET_SCRATCH0(r13); hrfid TRAMP_REAL_BEGIN(rfscv_flush_fallback) /* system call volatile */ mr r7,r13 GET_PACA(r13); mr r8,r1 ld r1,PACAKSAVE(r13) mfctr r9 ld r10,PACA_RFI_FLUSH_FALLBACK_AREA(r13) ld r11,PACA_L1D_FLUSH_SIZE(r13) srdi r11,r11,(7 + 3) /* 128 byte lines, unrolled 8x */ mtctr r11 DCBT_BOOK3S_STOP_ALL_STREAM_IDS(r11) /* Stop prefetch streams */ /* order ld/st prior to dcbt stop all streams with flushing */ sync /* * The load adresses are at staggered offsets within cachelines, * which suits some pipelines better (on others it should not * hurt). */ 1: ld r11,(0x80 + 8)*0(r10) ld r11,(0x80 + 8)*1(r10) ld r11,(0x80 + 8)*2(r10) ld r11,(0x80 + 8)*3(r10) ld r11,(0x80 + 8)*4(r10) ld r11,(0x80 + 8)*5(r10) ld r11,(0x80 + 8)*6(r10) ld r11,(0x80 + 8)*7(r10) addi r10,r10,0x80*8 bdnz 1b mtctr r9 li r9,0 li r10,0 li r11,0 mr r1,r8 mr r13,r7 RFSCV USE_TEXT_SECTION() #ifdef CONFIG_KVM_BOOK3S_64_HANDLER kvm_interrupt: /* * The conditional branch in KVMTEST can't reach all the way, * make a stub. */ b kvmppc_interrupt #endif _GLOBAL(do_uaccess_flush) UACCESS_FLUSH_FIXUP_SECTION nop nop nop blr L1D_DISPLACEMENT_FLUSH blr _ASM_NOKPROBE_SYMBOL(do_uaccess_flush) EXPORT_SYMBOL(do_uaccess_flush) MASKED_INTERRUPT MASKED_INTERRUPT hsrr=1 USE_FIXED_SECTION(virt_trampolines) /* * All code below __end_soft_masked is treated as soft-masked. If * any code runs here with MSR[EE]=1, it must then cope with pending * soft interrupt being raised (i.e., by ensuring it is replayed). * * The __end_interrupts marker must be past the out-of-line (OOL) * handlers, so that they are copied to real address 0x100 when running * a relocatable kernel. This ensures they can be reached from the short * trampoline handlers (like 0x4f00, 0x4f20, etc.) which branch * directly, without using LOAD_HANDLER(). */ .align 7 .globl __end_interrupts __end_interrupts: DEFINE_FIXED_SYMBOL(__end_interrupts, virt_trampolines) CLOSE_FIXED_SECTION(real_vectors); CLOSE_FIXED_SECTION(real_trampolines); CLOSE_FIXED_SECTION(virt_vectors); CLOSE_FIXED_SECTION(virt_trampolines); USE_TEXT_SECTION() /* MSR[RI] should be clear because this uses SRR[01] */ _GLOBAL(enable_machine_check) mflr r0 bcl 20,31,$+4 0: mflr r3 addi r3,r3,(1f - 0b) mtspr SPRN_SRR0,r3 mfmsr r3 ori r3,r3,MSR_ME mtspr SPRN_SRR1,r3 RFI_TO_KERNEL 1: mtlr r0 blr /* MSR[RI] should be clear because this uses SRR[01] */ disable_machine_check: mflr r0 bcl 20,31,$+4 0: mflr r3 addi r3,r3,(1f - 0b) mtspr SPRN_SRR0,r3 mfmsr r3 li r4,MSR_ME andc r3,r3,r4 mtspr SPRN_SRR1,r3 RFI_TO_KERNEL 1: mtlr r0 blr