/* SPDX-License-Identifier: GPL-2.0 */ /* * This file contains the 64-bit "server" PowerPC variant * of the low level exception handling including exception * vectors, exception return, part of the slb and stab * handling and other fixed offset specific things. * * This file is meant to be #included from head_64.S due to * position dependent assembly. * * Most of this originates from head_64.S and thus has the same * copyright history. * */ #include #include #include #include #include #include #include /* PACA save area offsets (exgen, exmc, etc) */ #define EX_R9 0 #define EX_R10 8 #define EX_R11 16 #define EX_R12 24 #define EX_R13 32 #define EX_DAR 40 #define EX_DSISR 48 #define EX_CCR 52 #define EX_CFAR 56 #define EX_PPR 64 #if defined(CONFIG_RELOCATABLE) #define EX_CTR 72 .if EX_SIZE != 10 .error "EX_SIZE is wrong" .endif #else .if EX_SIZE != 9 .error "EX_SIZE is wrong" .endif #endif /* * Following are fixed section helper macros. * * EXC_REAL_BEGIN/END - real, unrelocated exception vectors * EXC_VIRT_BEGIN/END - virt (AIL), unrelocated exception vectors * TRAMP_REAL_BEGIN - real, unrelocated helpers (virt may call these) * TRAMP_VIRT_BEGIN - virt, unreloc helpers (in practice, real can use) * TRAMP_KVM_BEGIN - KVM handlers, these are put into real, unrelocated * EXC_COMMON - After switching to virtual, relocated mode. */ #define EXC_REAL_BEGIN(name, start, size) \ FIXED_SECTION_ENTRY_BEGIN_LOCATION(real_vectors, exc_real_##start##_##name, start, size) #define EXC_REAL_END(name, start, size) \ FIXED_SECTION_ENTRY_END_LOCATION(real_vectors, exc_real_##start##_##name, start, size) #define EXC_VIRT_BEGIN(name, start, size) \ FIXED_SECTION_ENTRY_BEGIN_LOCATION(virt_vectors, exc_virt_##start##_##name, start, size) #define EXC_VIRT_END(name, start, size) \ FIXED_SECTION_ENTRY_END_LOCATION(virt_vectors, exc_virt_##start##_##name, start, size) #define EXC_COMMON_BEGIN(name) \ USE_TEXT_SECTION(); \ .balign IFETCH_ALIGN_BYTES; \ .global name; \ _ASM_NOKPROBE_SYMBOL(name); \ DEFINE_FIXED_SYMBOL(name); \ name: #define TRAMP_REAL_BEGIN(name) \ FIXED_SECTION_ENTRY_BEGIN(real_trampolines, name) #define TRAMP_VIRT_BEGIN(name) \ FIXED_SECTION_ENTRY_BEGIN(virt_trampolines, name) #ifdef CONFIG_KVM_BOOK3S_64_HANDLER #define TRAMP_KVM_BEGIN(name) \ TRAMP_VIRT_BEGIN(name) #else #define TRAMP_KVM_BEGIN(name) #endif #define EXC_REAL_NONE(start, size) \ FIXED_SECTION_ENTRY_BEGIN_LOCATION(real_vectors, exc_real_##start##_##unused, start, size); \ FIXED_SECTION_ENTRY_END_LOCATION(real_vectors, exc_real_##start##_##unused, start, size) #define EXC_VIRT_NONE(start, size) \ FIXED_SECTION_ENTRY_BEGIN_LOCATION(virt_vectors, exc_virt_##start##_##unused, start, size); \ FIXED_SECTION_ENTRY_END_LOCATION(virt_vectors, exc_virt_##start##_##unused, start, size) /* * We're short on space and time in the exception prolog, so we can't * use the normal LOAD_REG_IMMEDIATE macro to load the address of label. * Instead we get the base of the kernel from paca->kernelbase and or in the low * part of label. This requires that the label be within 64KB of kernelbase, and * that kernelbase be 64K aligned. */ #define LOAD_HANDLER(reg, label) \ ld reg,PACAKBASE(r13); /* get high part of &label */ \ ori reg,reg,FIXED_SYMBOL_ABS_ADDR(label) #define __LOAD_HANDLER(reg, label) \ ld reg,PACAKBASE(r13); \ ori reg,reg,(ABS_ADDR(label))@l /* * Branches from unrelocated code (e.g., interrupts) to labels outside * head-y require >64K offsets. */ #define __LOAD_FAR_HANDLER(reg, label) \ ld reg,PACAKBASE(r13); \ ori reg,reg,(ABS_ADDR(label))@l; \ addis reg,reg,(ABS_ADDR(label))@h /* Exception register prefixes */ #define EXC_HV_OR_STD 2 /* depends on HVMODE */ #define EXC_HV 1 #define EXC_STD 0 #if defined(CONFIG_RELOCATABLE) /* * If we support interrupts with relocation on AND we're a relocatable kernel, * we need to use CTR to get to the 2nd level handler. So, save/restore it * when required. */ #define SAVE_CTR(reg, area) mfctr reg ; std reg,area+EX_CTR(r13) #define GET_CTR(reg, area) ld reg,area+EX_CTR(r13) #define RESTORE_CTR(reg, area) ld reg,area+EX_CTR(r13) ; mtctr reg #else /* ...else CTR is unused and in register. */ #define SAVE_CTR(reg, area) #define GET_CTR(reg, area) mfctr reg #define RESTORE_CTR(reg, area) #endif /* * PPR save/restore macros used in exceptions-64s.S * Used for P7 or later processors */ #define SAVE_PPR(area, ra) \ BEGIN_FTR_SECTION_NESTED(940) \ ld ra,area+EX_PPR(r13); /* Read PPR from paca */ \ std ra,_PPR(r1); \ END_FTR_SECTION_NESTED(CPU_FTR_HAS_PPR,CPU_FTR_HAS_PPR,940) #define RESTORE_PPR_PACA(area, ra) \ BEGIN_FTR_SECTION_NESTED(941) \ ld ra,area+EX_PPR(r13); \ mtspr SPRN_PPR,ra; \ END_FTR_SECTION_NESTED(CPU_FTR_HAS_PPR,CPU_FTR_HAS_PPR,941) /* * Get an SPR into a register if the CPU has the given feature */ #define OPT_GET_SPR(ra, spr, ftr) \ BEGIN_FTR_SECTION_NESTED(943) \ mfspr ra,spr; \ END_FTR_SECTION_NESTED(ftr,ftr,943) /* * Set an SPR from a register if the CPU has the given feature */ #define OPT_SET_SPR(ra, spr, ftr) \ BEGIN_FTR_SECTION_NESTED(943) \ mtspr spr,ra; \ END_FTR_SECTION_NESTED(ftr,ftr,943) /* * Save a register to the PACA if the CPU has the given feature */ #define OPT_SAVE_REG_TO_PACA(offset, ra, ftr) \ BEGIN_FTR_SECTION_NESTED(943) \ std ra,offset(r13); \ END_FTR_SECTION_NESTED(ftr,ftr,943) /* * Branch to label using its 0xC000 address. This results in instruction * address suitable for MSR[IR]=0 or 1, which allows relocation to be turned * on using mtmsr rather than rfid. * * This could set the 0xc bits for !RELOCATABLE as an immediate, rather than * load KBASE for a slight optimisation. */ #define BRANCH_TO_C000(reg, label) \ __LOAD_FAR_HANDLER(reg, label); \ mtctr reg; \ bctr .macro INT_KVM_HANDLER name, vec, hsrr, area, skip TRAMP_KVM_BEGIN(\name\()_kvm) KVM_HANDLER \vec, \hsrr, \area, \skip .endm #ifdef CONFIG_KVM_BOOK3S_64_HANDLER #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE /* * If hv is possible, interrupts come into to the hv version * of the kvmppc_interrupt code, which then jumps to the PR handler, * kvmppc_interrupt_pr, if the guest is a PR guest. */ #define kvmppc_interrupt kvmppc_interrupt_hv #else #define kvmppc_interrupt kvmppc_interrupt_pr #endif .macro KVMTEST name, hsrr, n lbz r10,HSTATE_IN_GUEST(r13) cmpwi r10,0 bne \name\()_kvm .endm .macro KVM_HANDLER vec, hsrr, area, skip .if \skip cmpwi r10,KVM_GUEST_MODE_SKIP beq 89f .else BEGIN_FTR_SECTION_NESTED(947) ld r10,\area+EX_CFAR(r13) std r10,HSTATE_CFAR(r13) END_FTR_SECTION_NESTED(CPU_FTR_CFAR,CPU_FTR_CFAR,947) .endif BEGIN_FTR_SECTION_NESTED(948) ld r10,\area+EX_PPR(r13) std r10,HSTATE_PPR(r13) END_FTR_SECTION_NESTED(CPU_FTR_HAS_PPR,CPU_FTR_HAS_PPR,948) ld r10,\area+EX_R10(r13) std r12,HSTATE_SCRATCH0(r13) sldi r12,r9,32 /* HSRR variants have the 0x2 bit added to their trap number */ .if \hsrr == EXC_HV_OR_STD BEGIN_FTR_SECTION ori r12,r12,(\vec + 0x2) FTR_SECTION_ELSE ori r12,r12,(\vec) ALT_FTR_SECTION_END_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206) .elseif \hsrr ori r12,r12,(\vec + 0x2) .else ori r12,r12,(\vec) .endif #ifdef CONFIG_RELOCATABLE /* * KVM requires __LOAD_FAR_HANDLER beause kvmppc_interrupt lives * outside the head section. CONFIG_RELOCATABLE KVM expects CTR * to be saved in HSTATE_SCRATCH1. */ mfctr r9 std r9,HSTATE_SCRATCH1(r13) __LOAD_FAR_HANDLER(r9, kvmppc_interrupt) mtctr r9 ld r9,\area+EX_R9(r13) bctr #else ld r9,\area+EX_R9(r13) b kvmppc_interrupt #endif .if \skip 89: mtocrf 0x80,r9 ld r9,\area+EX_R9(r13) ld r10,\area+EX_R10(r13) .if \hsrr == EXC_HV_OR_STD BEGIN_FTR_SECTION b kvmppc_skip_Hinterrupt FTR_SECTION_ELSE b kvmppc_skip_interrupt ALT_FTR_SECTION_END_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206) .elseif \hsrr b kvmppc_skip_Hinterrupt .else b kvmppc_skip_interrupt .endif .endif .endm #else .macro KVMTEST name, hsrr, n .endm .macro KVM_HANDLER name, vec, hsrr, area, skip .endm #endif .macro INT_SAVE_SRR_AND_JUMP label, hsrr, set_ri ld r10,PACAKMSR(r13) /* get MSR value for kernel */ .if ! \set_ri xori r10,r10,MSR_RI /* Clear MSR_RI */ .endif .if \hsrr == EXC_HV_OR_STD BEGIN_FTR_SECTION mfspr r11,SPRN_HSRR0 /* save HSRR0 */ mfspr r12,SPRN_HSRR1 /* and HSRR1 */ mtspr SPRN_HSRR1,r10 FTR_SECTION_ELSE mfspr r11,SPRN_SRR0 /* save SRR0 */ mfspr r12,SPRN_SRR1 /* and SRR1 */ mtspr SPRN_SRR1,r10 ALT_FTR_SECTION_END_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206) .elseif \hsrr mfspr r11,SPRN_HSRR0 /* save HSRR0 */ mfspr r12,SPRN_HSRR1 /* and HSRR1 */ mtspr SPRN_HSRR1,r10 .else mfspr r11,SPRN_SRR0 /* save SRR0 */ mfspr r12,SPRN_SRR1 /* and SRR1 */ mtspr SPRN_SRR1,r10 .endif LOAD_HANDLER(r10, \label\()) .if \hsrr == EXC_HV_OR_STD BEGIN_FTR_SECTION mtspr SPRN_HSRR0,r10 HRFI_TO_KERNEL FTR_SECTION_ELSE mtspr SPRN_SRR0,r10 RFI_TO_KERNEL ALT_FTR_SECTION_END_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206) .elseif \hsrr mtspr SPRN_HSRR0,r10 HRFI_TO_KERNEL .else mtspr SPRN_SRR0,r10 RFI_TO_KERNEL .endif b . /* prevent speculative execution */ .endm /* INT_SAVE_SRR_AND_JUMP works for real or virt, this is faster but virt only */ .macro INT_VIRT_SAVE_SRR_AND_JUMP label, hsrr #ifdef CONFIG_RELOCATABLE .if \hsrr == EXC_HV_OR_STD BEGIN_FTR_SECTION mfspr r11,SPRN_HSRR0 /* save HSRR0 */ FTR_SECTION_ELSE mfspr r11,SPRN_SRR0 /* save SRR0 */ ALT_FTR_SECTION_END_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206) .elseif \hsrr mfspr r11,SPRN_HSRR0 /* save HSRR0 */ .else mfspr r11,SPRN_SRR0 /* save SRR0 */ .endif LOAD_HANDLER(r12, \label\()) mtctr r12 .if \hsrr == EXC_HV_OR_STD BEGIN_FTR_SECTION mfspr r12,SPRN_HSRR1 /* and HSRR1 */ FTR_SECTION_ELSE mfspr r12,SPRN_SRR1 /* and HSRR1 */ ALT_FTR_SECTION_END_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206) .elseif \hsrr mfspr r12,SPRN_HSRR1 /* and HSRR1 */ .else mfspr r12,SPRN_SRR1 /* and HSRR1 */ .endif li r10,MSR_RI mtmsrd r10,1 /* Set RI (EE=0) */ bctr #else .if \hsrr == EXC_HV_OR_STD BEGIN_FTR_SECTION mfspr r11,SPRN_HSRR0 /* save HSRR0 */ mfspr r12,SPRN_HSRR1 /* and HSRR1 */ FTR_SECTION_ELSE mfspr r11,SPRN_SRR0 /* save SRR0 */ mfspr r12,SPRN_SRR1 /* and SRR1 */ ALT_FTR_SECTION_END_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206) .elseif \hsrr mfspr r11,SPRN_HSRR0 /* save HSRR0 */ mfspr r12,SPRN_HSRR1 /* and HSRR1 */ .else mfspr r11,SPRN_SRR0 /* save SRR0 */ mfspr r12,SPRN_SRR1 /* and SRR1 */ .endif li r10,MSR_RI mtmsrd r10,1 /* Set RI (EE=0) */ b \label #endif .endm /* * This is the BOOK3S interrupt entry code macro. * * This can result in one of several things happening: * - Branch to the _common handler, relocated, in virtual mode. * These are normal interrupts (synchronous and asynchronous) handled by * the kernel. * - Branch to KVM, relocated but real mode interrupts remain in real mode. * These occur when HSTATE_IN_GUEST is set. The interrupt may be caused by * / intended for host or guest kernel, but KVM must always be involved * because the machine state is set for guest execution. * - Branch to the masked handler, unrelocated. * These occur when maskable asynchronous interrupts are taken with the * irq_soft_mask set. * - Branch to an "early" handler in real mode but relocated. * This is done if early=1. MCE and HMI use these to handle errors in real * mode. * - Fall through and continue executing in real, unrelocated mode. * This is done if early=2. */ .macro INT_HANDLER name, vec, ool=0, early=0, virt=0, hsrr=0, area=PACA_EXGEN, ri=1, dar=0, dsisr=0, bitmask=0, kvm=0 SET_SCRATCH0(r13) /* save r13 */ GET_PACA(r13) std r9,\area\()+EX_R9(r13) /* save r9 */ OPT_GET_SPR(r9, SPRN_PPR, CPU_FTR_HAS_PPR) HMT_MEDIUM std r10,\area\()+EX_R10(r13) /* save r10 - r12 */ OPT_GET_SPR(r10, SPRN_CFAR, CPU_FTR_CFAR) .if \ool .if !\virt b tramp_real_\name .pushsection .text TRAMP_REAL_BEGIN(tramp_real_\name) .else b tramp_virt_\name .pushsection .text TRAMP_VIRT_BEGIN(tramp_virt_\name) .endif .endif OPT_SAVE_REG_TO_PACA(\area\()+EX_PPR, r9, CPU_FTR_HAS_PPR) OPT_SAVE_REG_TO_PACA(\area\()+EX_CFAR, r10, CPU_FTR_CFAR) INTERRUPT_TO_KERNEL SAVE_CTR(r10, \area\()) mfcr r9 .if \kvm KVMTEST \name \hsrr \vec .endif .if \bitmask lbz r10,PACAIRQSOFTMASK(r13) andi. r10,r10,\bitmask /* Associate vector numbers with bits in paca->irq_happened */ .if \vec == 0x500 || \vec == 0xea0 li r10,PACA_IRQ_EE .elseif \vec == 0x900 li r10,PACA_IRQ_DEC .elseif \vec == 0xa00 || \vec == 0xe80 li r10,PACA_IRQ_DBELL .elseif \vec == 0xe60 li r10,PACA_IRQ_HMI .elseif \vec == 0xf00 li r10,PACA_IRQ_PMI .else .abort "Bad maskable vector" .endif .if \hsrr == EXC_HV_OR_STD BEGIN_FTR_SECTION bne masked_Hinterrupt FTR_SECTION_ELSE bne masked_interrupt ALT_FTR_SECTION_END_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206) .elseif \hsrr bne masked_Hinterrupt .else bne masked_interrupt .endif .endif std r11,\area\()+EX_R11(r13) std r12,\area\()+EX_R12(r13) /* * DAR/DSISR, SCRATCH0 must be read before setting MSR[RI], * because a d-side MCE will clobber those registers so is * not recoverable if they are live. */ GET_SCRATCH0(r10) std r10,\area\()+EX_R13(r13) .if \dar .if \hsrr mfspr r10,SPRN_HDAR .else mfspr r10,SPRN_DAR .endif std r10,\area\()+EX_DAR(r13) .endif .if \dsisr .if \hsrr mfspr r10,SPRN_HDSISR .else mfspr r10,SPRN_DSISR .endif stw r10,\area\()+EX_DSISR(r13) .endif .if \early == 2 /* nothing more */ .elseif \early mfctr r10 /* save ctr, even for !RELOCATABLE */ BRANCH_TO_C000(r11, \name\()_early_common) .elseif !\virt INT_SAVE_SRR_AND_JUMP \name\()_common, \hsrr, \ri .else INT_VIRT_SAVE_SRR_AND_JUMP \name\()_common, \hsrr .endif .if \ool .popsection .endif .endm /* * On entry r13 points to the paca, r9-r13 are saved in the paca, * r9 contains the saved CR, r11 and r12 contain the saved SRR0 and * SRR1, and relocation is on. * * If stack=0, then the stack is already set in r1, and r1 is saved in r10. * PPR save and CPU accounting is not done for the !stack case (XXX why not?) */ .macro INT_COMMON vec, area, stack, kuap, reconcile, dar, dsisr .if \stack andi. r10,r12,MSR_PR /* See if coming from user */ mr r10,r1 /* Save r1 */ subi r1,r1,INT_FRAME_SIZE /* alloc frame on kernel stack */ beq- 100f ld r1,PACAKSAVE(r13) /* kernel stack to use */ 100: tdgei r1,-INT_FRAME_SIZE /* trap if r1 is in userspace */ EMIT_BUG_ENTRY 100b,__FILE__,__LINE__,0 .endif std r9,_CCR(r1) /* save CR in stackframe */ std r11,_NIP(r1) /* save SRR0 in stackframe */ std r12,_MSR(r1) /* save SRR1 in stackframe */ std r10,0(r1) /* make stack chain pointer */ std r0,GPR0(r1) /* save r0 in stackframe */ std r10,GPR1(r1) /* save r1 in stackframe */ .if \stack .if \kuap kuap_save_amr_and_lock r9, r10, cr1, cr0 .endif beq 101f /* if from kernel mode */ ACCOUNT_CPU_USER_ENTRY(r13, r9, r10) SAVE_PPR(\area, r9) 101: .else .if \kuap kuap_save_amr_and_lock r9, r10, cr1 .endif .endif /* Save original regs values from save area to stack frame. */ ld r9,\area+EX_R9(r13) /* move r9, r10 to stackframe */ ld r10,\area+EX_R10(r13) std r9,GPR9(r1) std r10,GPR10(r1) ld r9,\area+EX_R11(r13) /* move r11 - r13 to stackframe */ ld r10,\area+EX_R12(r13) ld r11,\area+EX_R13(r13) std r9,GPR11(r1) std r10,GPR12(r1) std r11,GPR13(r1) .if \dar .if \dar == 2 ld r10,_NIP(r1) .else ld r10,\area+EX_DAR(r13) .endif std r10,_DAR(r1) .endif .if \dsisr .if \dsisr == 2 ld r10,_MSR(r1) lis r11,DSISR_SRR1_MATCH_64S@h and r10,r10,r11 .else lwz r10,\area+EX_DSISR(r13) .endif std r10,_DSISR(r1) .endif BEGIN_FTR_SECTION_NESTED(66) ld r10,\area+EX_CFAR(r13) std r10,ORIG_GPR3(r1) END_FTR_SECTION_NESTED(CPU_FTR_CFAR, CPU_FTR_CFAR, 66) GET_CTR(r10, \area) std r10,_CTR(r1) std r2,GPR2(r1) /* save r2 in stackframe */ SAVE_4GPRS(3, r1) /* save r3 - r6 in stackframe */ SAVE_2GPRS(7, r1) /* save r7, r8 in stackframe */ mflr r9 /* Get LR, later save to stack */ ld r2,PACATOC(r13) /* get kernel TOC into r2 */ std r9,_LINK(r1) lbz r10,PACAIRQSOFTMASK(r13) mfspr r11,SPRN_XER /* save XER in stackframe */ std r10,SOFTE(r1) std r11,_XER(r1) li r9,(\vec)+1 std r9,_TRAP(r1) /* set trap number */ li r10,0 ld r11,exception_marker@toc(r2) std r10,RESULT(r1) /* clear regs->result */ std r11,STACK_FRAME_OVERHEAD-16(r1) /* mark the frame */ .if \stack ACCOUNT_STOLEN_TIME .endif .if \reconcile RECONCILE_IRQ_STATE(r10, r11) .endif .endm /* * Restore all registers including H/SRR0/1 saved in a stack frame of a * standard exception. */ .macro EXCEPTION_RESTORE_REGS hsrr /* Move original SRR0 and SRR1 into the respective regs */ ld r9,_MSR(r1) .if \hsrr == EXC_HV_OR_STD .error "EXC_HV_OR_STD Not implemented for EXCEPTION_RESTORE_REGS" .endif .if \hsrr mtspr SPRN_HSRR1,r9 .else mtspr SPRN_SRR1,r9 .endif ld r9,_NIP(r1) .if \hsrr mtspr SPRN_HSRR0,r9 .else mtspr SPRN_SRR0,r9 .endif ld r9,_CTR(r1) mtctr r9 ld r9,_XER(r1) mtxer r9 ld r9,_LINK(r1) mtlr r9 ld r9,_CCR(r1) mtcr r9 REST_8GPRS(2, r1) REST_4GPRS(10, r1) REST_GPR(0, r1) /* restore original r1. */ ld r1,GPR1(r1) .endm #define RUNLATCH_ON \ BEGIN_FTR_SECTION \ ld r3, PACA_THREAD_INFO(r13); \ ld r4,TI_LOCAL_FLAGS(r3); \ andi. r0,r4,_TLF_RUNLATCH; \ beql ppc64_runlatch_on_trampoline; \ END_FTR_SECTION_IFSET(CPU_FTR_CTRL) /* * When the idle code in power4_idle puts the CPU into NAP mode, * it has to do so in a loop, and relies on the external interrupt * and decrementer interrupt entry code to get it out of the loop. * It sets the _TLF_NAPPING bit in current_thread_info()->local_flags * to signal that it is in the loop and needs help to get out. */ #ifdef CONFIG_PPC_970_NAP #define FINISH_NAP \ BEGIN_FTR_SECTION \ ld r11, PACA_THREAD_INFO(r13); \ ld r9,TI_LOCAL_FLAGS(r11); \ andi. r10,r9,_TLF_NAPPING; \ bnel power4_fixup_nap; \ END_FTR_SECTION_IFSET(CPU_FTR_CAN_NAP) #else #define FINISH_NAP #endif #define EXC_COMMON(name, realvec, hdlr) \ EXC_COMMON_BEGIN(name); \ INT_COMMON realvec, PACA_EXGEN, 1, 1, 1, 0, 0 ; \ bl save_nvgprs; \ addi r3,r1,STACK_FRAME_OVERHEAD; \ bl hdlr; \ b ret_from_except /* * Like EXC_COMMON, but for exceptions that can occur in the idle task and * therefore need the special idle handling (finish nap and runlatch) */ #define EXC_COMMON_ASYNC(name, realvec, hdlr) \ EXC_COMMON_BEGIN(name); \ INT_COMMON realvec, PACA_EXGEN, 1, 1, 1, 0, 0 ; \ FINISH_NAP; \ RUNLATCH_ON; \ addi r3,r1,STACK_FRAME_OVERHEAD; \ bl hdlr; \ b ret_from_except_lite /* * There are a few constraints to be concerned with. * - Real mode exceptions code/data must be located at their physical location. * - Virtual mode exceptions must be mapped at their 0xc000... location. * - Fixed location code must not call directly beyond the __end_interrupts * area when built with CONFIG_RELOCATABLE. LOAD_HANDLER / bctr sequence * must be used. * - LOAD_HANDLER targets must be within first 64K of physical 0 / * virtual 0xc00... * - Conditional branch targets must be within +/-32K of caller. * * "Virtual exceptions" run with relocation on (MSR_IR=1, MSR_DR=1), and * therefore don't have to run in physically located code or rfid to * virtual mode kernel code. However on relocatable kernels they do have * to branch to KERNELBASE offset because the rest of the kernel (outside * the exception vectors) may be located elsewhere. * * Virtual exceptions correspond with physical, except their entry points * are offset by 0xc000000000000000 and also tend to get an added 0x4000 * offset applied. Virtual exceptions are enabled with the Alternate * Interrupt Location (AIL) bit set in the LPCR. However this does not * guarantee they will be delivered virtually. Some conditions (see the ISA) * cause exceptions to be delivered in real mode. * * It's impossible to receive interrupts below 0x300 via AIL. * * KVM: None of the virtual exceptions are from the guest. Anything that * escalated to HV=1 from HV=0 is delivered via real mode handlers. * * * We layout physical memory as follows: * 0x0000 - 0x00ff : Secondary processor spin code * 0x0100 - 0x18ff : Real mode pSeries interrupt vectors * 0x1900 - 0x3fff : Real mode trampolines * 0x4000 - 0x58ff : Relon (IR=1,DR=1) mode pSeries interrupt vectors * 0x5900 - 0x6fff : Relon mode trampolines * 0x7000 - 0x7fff : FWNMI data area * 0x8000 - .... : Common interrupt handlers, remaining early * setup code, rest of kernel. * * We could reclaim 0x4000-0x42ff for real mode trampolines if the space * is necessary. Until then it's more consistent to explicitly put VIRT_NONE * vectors there. */ OPEN_FIXED_SECTION(real_vectors, 0x0100, 0x1900) OPEN_FIXED_SECTION(real_trampolines, 0x1900, 0x4000) OPEN_FIXED_SECTION(virt_vectors, 0x4000, 0x5900) OPEN_FIXED_SECTION(virt_trampolines, 0x5900, 0x7000) #ifdef CONFIG_PPC_POWERNV .globl start_real_trampolines .globl end_real_trampolines .globl start_virt_trampolines .globl end_virt_trampolines #endif #if defined(CONFIG_PPC_PSERIES) || defined(CONFIG_PPC_POWERNV) /* * Data area reserved for FWNMI option. * This address (0x7000) is fixed by the RPA. * pseries and powernv need to keep the whole page from * 0x7000 to 0x8000 free for use by the firmware */ ZERO_FIXED_SECTION(fwnmi_page, 0x7000, 0x8000) OPEN_TEXT_SECTION(0x8000) #else OPEN_TEXT_SECTION(0x7000) #endif USE_FIXED_SECTION(real_vectors) /* * This is the start of the interrupt handlers for pSeries * This code runs with relocation off. * Code from here to __end_interrupts gets copied down to real * address 0x100 when we are running a relocatable kernel. * Therefore any relative branches in this section must only * branch to labels in this section. */ .globl __start_interrupts __start_interrupts: /* No virt vectors corresponding with 0x0..0x100 */ EXC_VIRT_NONE(0x4000, 0x100) EXC_REAL_BEGIN(system_reset, 0x100, 0x100) #ifdef CONFIG_PPC_P7_NAP /* * If running native on arch 2.06 or later, check if we are waking up * from nap/sleep/winkle, and branch to idle handler. This tests SRR1 * bits 46:47. A non-0 value indicates that we are coming from a power * saving state. The idle wakeup handler initially runs in real mode, * but we branch to the 0xc000... address so we can turn on relocation * with mtmsrd later, after SPRs are restored. * * Careful to minimise cost for the fast path (idle wakeup) while * also avoiding clobbering CFAR for the debug path (non-idle). * * For the idle wake case volatile registers can be clobbered, which * is why we use those initially. If it turns out to not be an idle * wake, carefully put everything back the way it was, so we can use * common exception macros to handle it. */ BEGIN_FTR_SECTION SET_SCRATCH0(r13) GET_PACA(r13) std r3,PACA_EXNMI+0*8(r13) std r4,PACA_EXNMI+1*8(r13) std r5,PACA_EXNMI+2*8(r13) mfspr r3,SPRN_SRR1 mfocrf r4,0x80 rlwinm. r5,r3,47-31,30,31 bne+ system_reset_idle_wake /* Not powersave wakeup. Restore regs for regular interrupt handler. */ mtocrf 0x80,r4 ld r3,PACA_EXNMI+0*8(r13) ld r4,PACA_EXNMI+1*8(r13) ld r5,PACA_EXNMI+2*8(r13) GET_SCRATCH0(r13) END_FTR_SECTION_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206) #endif INT_HANDLER system_reset, 0x100, area=PACA_EXNMI, ri=0, kvm=1 /* * MSR_RI is not enabled, because PACA_EXNMI and nmi stack is * being used, so a nested NMI exception would corrupt it. * * In theory, we should not enable relocation here if it was disabled * in SRR1, because the MMU may not be configured to support it (e.g., * SLB may have been cleared). In practice, there should only be a few * small windows where that's the case, and sreset is considered to * be dangerous anyway. */ EXC_REAL_END(system_reset, 0x100, 0x100) EXC_VIRT_NONE(0x4100, 0x100) INT_KVM_HANDLER system_reset 0x100, EXC_STD, PACA_EXNMI, 0 #ifdef CONFIG_PPC_P7_NAP TRAMP_REAL_BEGIN(system_reset_idle_wake) /* We are waking up from idle, so may clobber any volatile register */ cmpwi cr1,r5,2 bltlr cr1 /* no state loss, return to idle caller with r3=SRR1 */ BRANCH_TO_C000(r12, DOTSYM(idle_return_gpr_loss)) #endif #ifdef CONFIG_PPC_PSERIES /* * Vectors for the FWNMI option. Share common code. */ TRAMP_REAL_BEGIN(system_reset_fwnmi) /* See comment at system_reset exception, don't turn on RI */ INT_HANDLER system_reset, 0x100, area=PACA_EXNMI, ri=0 #endif /* CONFIG_PPC_PSERIES */ EXC_COMMON_BEGIN(system_reset_common) /* * Increment paca->in_nmi then enable MSR_RI. SLB or MCE will be able * to recover, but nested NMI will notice in_nmi and not recover * because of the use of the NMI stack. in_nmi reentrancy is tested in * system_reset_exception. */ lhz r10,PACA_IN_NMI(r13) addi r10,r10,1 sth r10,PACA_IN_NMI(r13) li r10,MSR_RI mtmsrd r10,1 mr r10,r1 ld r1,PACA_NMI_EMERG_SP(r13) subi r1,r1,INT_FRAME_SIZE INT_COMMON 0x100, PACA_EXNMI, 0, 1, 0, 0, 0 bl save_nvgprs /* * Set IRQS_ALL_DISABLED unconditionally so arch_irqs_disabled does * the right thing. We do not want to reconcile because that goes * through irq tracing which we don't want in NMI. * * Save PACAIRQHAPPENED because some code will do a hard disable * (e.g., xmon). So we want to restore this back to where it was * when we return. DAR is unused in the stack, so save it there. */ li r10,IRQS_ALL_DISABLED stb r10,PACAIRQSOFTMASK(r13) lbz r10,PACAIRQHAPPENED(r13) std r10,_DAR(r1) addi r3,r1,STACK_FRAME_OVERHEAD bl system_reset_exception /* Clear MSR_RI before setting SRR0 and SRR1. */ li r9,0 mtmsrd r9,1 /* * MSR_RI is clear, now we can decrement paca->in_nmi. */ lhz r10,PACA_IN_NMI(r13) subi r10,r10,1 sth r10,PACA_IN_NMI(r13) /* * Restore soft mask settings. */ ld r10,_DAR(r1) stb r10,PACAIRQHAPPENED(r13) ld r10,SOFTE(r1) stb r10,PACAIRQSOFTMASK(r13) EXCEPTION_RESTORE_REGS EXC_STD RFI_TO_USER_OR_KERNEL EXC_REAL_BEGIN(machine_check, 0x200, 0x100) INT_HANDLER machine_check, 0x200, early=1, area=PACA_EXMC, dar=1, dsisr=1 /* * MSR_RI is not enabled, because PACA_EXMC is being used, so a * nested machine check corrupts it. machine_check_common enables * MSR_RI. */ EXC_REAL_END(machine_check, 0x200, 0x100) EXC_VIRT_NONE(0x4200, 0x100) #ifdef CONFIG_PPC_PSERIES TRAMP_REAL_BEGIN(machine_check_fwnmi) /* See comment at machine_check exception, don't turn on RI */ INT_HANDLER machine_check, 0x200, early=1, area=PACA_EXMC, dar=1, dsisr=1 #endif INT_KVM_HANDLER machine_check 0x200, EXC_STD, PACA_EXMC, 1 #define MACHINE_CHECK_HANDLER_WINDUP \ /* Clear MSR_RI before setting SRR0 and SRR1. */\ li r9,0; \ mtmsrd r9,1; /* Clear MSR_RI */ \ /* Decrement paca->in_mce now RI is clear. */ \ lhz r12,PACA_IN_MCE(r13); \ subi r12,r12,1; \ sth r12,PACA_IN_MCE(r13); \ EXCEPTION_RESTORE_REGS EXC_STD EXC_COMMON_BEGIN(machine_check_early_common) mtctr r10 /* Restore ctr */ mfspr r11,SPRN_SRR0 mfspr r12,SPRN_SRR1 /* * Switch to mc_emergency stack and handle re-entrancy (we limit * the nested MCE upto level 4 to avoid stack overflow). * Save MCE registers srr1, srr0, dar and dsisr and then set ME=1 * * We use paca->in_mce to check whether this is the first entry or * nested machine check. We increment paca->in_mce to track nested * machine checks. * * If this is the first entry then set stack pointer to * paca->mc_emergency_sp, otherwise r1 is already pointing to * stack frame on mc_emergency stack. * * NOTE: We are here with MSR_ME=0 (off), which means we risk a * checkstop if we get another machine check exception before we do * rfid with MSR_ME=1. * * This interrupt can wake directly from idle. If that is the case, * the machine check is handled then the idle wakeup code is called * to restore state. */ lhz r10,PACA_IN_MCE(r13) cmpwi r10,0 /* Are we in nested machine check */ cmpwi cr1,r10,MAX_MCE_DEPTH /* Are we at maximum nesting */ addi r10,r10,1 /* increment paca->in_mce */ sth r10,PACA_IN_MCE(r13) mr r10,r1 /* Save r1 */ bne 1f /* First machine check entry */ ld r1,PACAMCEMERGSP(r13) /* Use MC emergency stack */ 1: /* Limit nested MCE to level 4 to avoid stack overflow */ bgt cr1,unrecoverable_mce /* Check if we hit limit of 4 */ subi r1,r1,INT_FRAME_SIZE /* alloc stack frame */ /* We don't touch AMR here, we never go to virtual mode */ INT_COMMON 0x200, PACA_EXMC, 0, 0, 0, 1, 1 BEGIN_FTR_SECTION bl enable_machine_check END_FTR_SECTION_IFSET(CPU_FTR_HVMODE) li r10,MSR_RI mtmsrd r10,1 bl save_nvgprs addi r3,r1,STACK_FRAME_OVERHEAD bl machine_check_early std r3,RESULT(r1) /* Save result */ ld r12,_MSR(r1) #ifdef CONFIG_PPC_P7_NAP /* * Check if thread was in power saving mode. We come here when any * of the following is true: * a. thread wasn't in power saving mode * b. thread was in power saving mode with no state loss, * supervisor state loss or hypervisor state loss. * * Go back to nap/sleep/winkle mode again if (b) is true. */ BEGIN_FTR_SECTION rlwinm. r11,r12,47-31,30,31 bne machine_check_idle_common END_FTR_SECTION_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206) #endif #ifdef CONFIG_KVM_BOOK3S_64_HANDLER /* * Check if we are coming from guest. If yes, then run the normal * exception handler which will take the * machine_check_kvm->kvmppc_interrupt branch to deliver the MC event * to guest. */ lbz r11,HSTATE_IN_GUEST(r13) cmpwi r11,0 /* Check if coming from guest */ bne mce_deliver /* continue if we are. */ #endif /* * Check if we are coming from userspace. If yes, then run the normal * exception handler which will deliver the MC event to this kernel. */ andi. r11,r12,MSR_PR /* See if coming from user. */ bne mce_deliver /* continue in V mode if we are. */ /* * At this point we are coming from kernel context. * Queue up the MCE event and return from the interrupt. * But before that, check if this is an un-recoverable exception. * If yes, then stay on emergency stack and panic. */ andi. r11,r12,MSR_RI beq unrecoverable_mce /* * Check if we have successfully handled/recovered from error, if not * then stay on emergency stack and panic. */ ld r3,RESULT(r1) /* Load result */ cmpdi r3,0 /* see if we handled MCE successfully */ beq unrecoverable_mce /* if !handled then panic */ /* * Return from MC interrupt. * Queue up the MCE event so that we can log it later, while * returning from kernel or opal call. */ bl machine_check_queue_event MACHINE_CHECK_HANDLER_WINDUP RFI_TO_KERNEL mce_deliver: /* * This is a host user or guest MCE. Restore all registers, then * run the "late" handler. For host user, this will run the * machine_check_exception handler in virtual mode like a normal * interrupt handler. For guest, this will trigger the KVM test * and branch to the KVM interrupt similarly to other interrupts. */ BEGIN_FTR_SECTION ld r10,ORIG_GPR3(r1) mtspr SPRN_CFAR,r10 END_FTR_SECTION_IFSET(CPU_FTR_CFAR) MACHINE_CHECK_HANDLER_WINDUP /* See comment at machine_check exception, don't turn on RI */ INT_HANDLER machine_check, 0x200, area=PACA_EXMC, ri=0, dar=1, dsisr=1, kvm=1 EXC_COMMON_BEGIN(machine_check_common) /* * Machine check is different because we use a different * save area: PACA_EXMC instead of PACA_EXGEN. */ INT_COMMON 0x200, PACA_EXMC, 1, 1, 1, 1, 1 FINISH_NAP /* Enable MSR_RI when finished with PACA_EXMC */ li r10,MSR_RI mtmsrd r10,1 bl save_nvgprs addi r3,r1,STACK_FRAME_OVERHEAD bl machine_check_exception b ret_from_except #ifdef CONFIG_PPC_P7_NAP /* * This is an idle wakeup. Low level machine check has already been * done. Queue the event then call the idle code to do the wake up. */ EXC_COMMON_BEGIN(machine_check_idle_common) bl machine_check_queue_event /* * We have not used any non-volatile GPRs here, and as a rule * most exception code including machine check does not. * Therefore PACA_NAPSTATELOST does not need to be set. Idle * wakeup will restore volatile registers. * * Load the original SRR1 into r3 for pnv_powersave_wakeup_mce. * * Then decrement MCE nesting after finishing with the stack. */ ld r3,_MSR(r1) ld r4,_LINK(r1) lhz r11,PACA_IN_MCE(r13) subi r11,r11,1 sth r11,PACA_IN_MCE(r13) mtlr r4 rlwinm r10,r3,47-31,30,31 cmpwi cr1,r10,2 bltlr cr1 /* no state loss, return to idle caller */ b idle_return_gpr_loss #endif EXC_COMMON_BEGIN(unrecoverable_mce) /* * We are going down. But there are chances that we might get hit by * another MCE during panic path and we may run into unstable state * with no way out. Hence, turn ME bit off while going down, so that * when another MCE is hit during panic path, system will checkstop * and hypervisor will get restarted cleanly by SP. */ BEGIN_FTR_SECTION li r10,0 /* clear MSR_RI */ mtmsrd r10,1 bl disable_machine_check END_FTR_SECTION_IFSET(CPU_FTR_HVMODE) ld r10,PACAKMSR(r13) li r3,MSR_ME andc r10,r10,r3 mtmsrd r10 /* Invoke machine_check_exception to print MCE event and panic. */ addi r3,r1,STACK_FRAME_OVERHEAD bl machine_check_exception /* * We will not reach here. Even if we did, there is no way out. * Call unrecoverable_exception and die. */ addi r3,r1,STACK_FRAME_OVERHEAD bl unrecoverable_exception b . EXC_REAL_BEGIN(data_access, 0x300, 0x80) INT_HANDLER data_access, 0x300, ool=1, dar=1, dsisr=1, kvm=1 EXC_REAL_END(data_access, 0x300, 0x80) EXC_VIRT_BEGIN(data_access, 0x4300, 0x80) INT_HANDLER data_access, 0x300, virt=1, dar=1, dsisr=1 EXC_VIRT_END(data_access, 0x4300, 0x80) INT_KVM_HANDLER data_access, 0x300, EXC_STD, PACA_EXGEN, 1 EXC_COMMON_BEGIN(data_access_common) /* * Here r13 points to the paca, r9 contains the saved CR, * SRR0 and SRR1 are saved in r11 and r12, * r9 - r13 are saved in paca->exgen. * EX_DAR and EX_DSISR have saved DAR/DSISR */ INT_COMMON 0x300, PACA_EXGEN, 1, 1, 1, 1, 1 ld r4,_DAR(r1) ld r5,_DSISR(r1) BEGIN_MMU_FTR_SECTION ld r6,_MSR(r1) li r3,0x300 b do_hash_page /* Try to handle as hpte fault */ MMU_FTR_SECTION_ELSE b handle_page_fault ALT_MMU_FTR_SECTION_END_IFCLR(MMU_FTR_TYPE_RADIX) EXC_REAL_BEGIN(data_access_slb, 0x380, 0x80) INT_HANDLER data_access_slb, 0x380, ool=1, area=PACA_EXSLB, dar=1, kvm=1 EXC_REAL_END(data_access_slb, 0x380, 0x80) EXC_VIRT_BEGIN(data_access_slb, 0x4380, 0x80) INT_HANDLER data_access_slb, 0x380, virt=1, area=PACA_EXSLB, dar=1 EXC_VIRT_END(data_access_slb, 0x4380, 0x80) INT_KVM_HANDLER data_access_slb, 0x380, EXC_STD, PACA_EXSLB, 1 EXC_COMMON_BEGIN(data_access_slb_common) INT_COMMON 0x380, PACA_EXSLB, 1, 1, 0, 1, 0 ld r4,_DAR(r1) addi r3,r1,STACK_FRAME_OVERHEAD BEGIN_MMU_FTR_SECTION /* HPT case, do SLB fault */ bl do_slb_fault cmpdi r3,0 bne- 1f b fast_exception_return 1: /* Error case */ MMU_FTR_SECTION_ELSE /* Radix case, access is outside page table range */ li r3,-EFAULT ALT_MMU_FTR_SECTION_END_IFCLR(MMU_FTR_TYPE_RADIX) std r3,RESULT(r1) bl save_nvgprs RECONCILE_IRQ_STATE(r10, r11) ld r4,_DAR(r1) ld r5,RESULT(r1) addi r3,r1,STACK_FRAME_OVERHEAD bl do_bad_slb_fault b ret_from_except EXC_REAL_BEGIN(instruction_access, 0x400, 0x80) INT_HANDLER instruction_access, 0x400, kvm=1 EXC_REAL_END(instruction_access, 0x400, 0x80) EXC_VIRT_BEGIN(instruction_access, 0x4400, 0x80) INT_HANDLER instruction_access, 0x400, virt=1 EXC_VIRT_END(instruction_access, 0x4400, 0x80) INT_KVM_HANDLER instruction_access, 0x400, EXC_STD, PACA_EXGEN, 0 EXC_COMMON_BEGIN(instruction_access_common) INT_COMMON 0x400, PACA_EXGEN, 1, 1, 1, 2, 2 ld r4,_DAR(r1) ld r5,_DSISR(r1) BEGIN_MMU_FTR_SECTION ld r6,_MSR(r1) li r3,0x400 b do_hash_page /* Try to handle as hpte fault */ MMU_FTR_SECTION_ELSE b handle_page_fault ALT_MMU_FTR_SECTION_END_IFCLR(MMU_FTR_TYPE_RADIX) EXC_REAL_BEGIN(instruction_access_slb, 0x480, 0x80) INT_HANDLER instruction_access_slb, 0x480, area=PACA_EXSLB, kvm=1 EXC_REAL_END(instruction_access_slb, 0x480, 0x80) EXC_VIRT_BEGIN(instruction_access_slb, 0x4480, 0x80) INT_HANDLER instruction_access_slb, 0x480, virt=1, area=PACA_EXSLB EXC_VIRT_END(instruction_access_slb, 0x4480, 0x80) INT_KVM_HANDLER instruction_access_slb, 0x480, EXC_STD, PACA_EXSLB, 0 EXC_COMMON_BEGIN(instruction_access_slb_common) INT_COMMON 0x480, PACA_EXSLB, 1, 1, 0, 2, 0 ld r4,_DAR(r1) addi r3,r1,STACK_FRAME_OVERHEAD BEGIN_MMU_FTR_SECTION /* HPT case, do SLB fault */ bl do_slb_fault cmpdi r3,0 bne- 1f b fast_exception_return 1: /* Error case */ MMU_FTR_SECTION_ELSE /* Radix case, access is outside page table range */ li r3,-EFAULT ALT_MMU_FTR_SECTION_END_IFCLR(MMU_FTR_TYPE_RADIX) std r3,RESULT(r1) bl save_nvgprs RECONCILE_IRQ_STATE(r10, r11) ld r4,_DAR(r1) ld r5,RESULT(r1) addi r3,r1,STACK_FRAME_OVERHEAD bl do_bad_slb_fault b ret_from_except EXC_REAL_BEGIN(hardware_interrupt, 0x500, 0x100) INT_HANDLER hardware_interrupt, 0x500, hsrr=EXC_HV_OR_STD, bitmask=IRQS_DISABLED, kvm=1 EXC_REAL_END(hardware_interrupt, 0x500, 0x100) EXC_VIRT_BEGIN(hardware_interrupt, 0x4500, 0x100) INT_HANDLER hardware_interrupt, 0x500, virt=1, hsrr=EXC_HV_OR_STD, bitmask=IRQS_DISABLED, kvm=1 EXC_VIRT_END(hardware_interrupt, 0x4500, 0x100) INT_KVM_HANDLER hardware_interrupt, 0x500, EXC_HV_OR_STD, PACA_EXGEN, 0 EXC_COMMON_ASYNC(hardware_interrupt_common, 0x500, do_IRQ) EXC_REAL_BEGIN(alignment, 0x600, 0x100) INT_HANDLER alignment, 0x600, dar=1, dsisr=1, kvm=1 EXC_REAL_END(alignment, 0x600, 0x100) EXC_VIRT_BEGIN(alignment, 0x4600, 0x100) INT_HANDLER alignment, 0x600, virt=1, dar=1, dsisr=1 EXC_VIRT_END(alignment, 0x4600, 0x100) INT_KVM_HANDLER alignment, 0x600, EXC_STD, PACA_EXGEN, 0 EXC_COMMON_BEGIN(alignment_common) INT_COMMON 0x600, PACA_EXGEN, 1, 1, 1, 1, 1 bl save_nvgprs addi r3,r1,STACK_FRAME_OVERHEAD bl alignment_exception b ret_from_except EXC_REAL_BEGIN(program_check, 0x700, 0x100) INT_HANDLER program_check, 0x700, kvm=1 EXC_REAL_END(program_check, 0x700, 0x100) EXC_VIRT_BEGIN(program_check, 0x4700, 0x100) INT_HANDLER program_check, 0x700, virt=1 EXC_VIRT_END(program_check, 0x4700, 0x100) INT_KVM_HANDLER program_check, 0x700, EXC_STD, PACA_EXGEN, 0 EXC_COMMON_BEGIN(program_check_common) /* * It's possible to receive a TM Bad Thing type program check with * userspace register values (in particular r1), but with SRR1 reporting * that we came from the kernel. Normally that would confuse the bad * stack logic, and we would report a bad kernel stack pointer. Instead * we switch to the emergency stack if we're taking a TM Bad Thing from * the kernel. */ andi. r10,r12,MSR_PR bne 2f /* If userspace, go normal path */ andis. r10,r12,(SRR1_PROGTM)@h bne 1f /* If TM, emergency */ cmpdi r1,-INT_FRAME_SIZE /* check if r1 is in userspace */ blt 2f /* normal path if not */ /* Use the emergency stack */ 1: andi. r10,r12,MSR_PR /* Set CR0 correctly for label */ /* 3 in EXCEPTION_PROLOG_COMMON */ mr r10,r1 /* Save r1 */ ld r1,PACAEMERGSP(r13) /* Use emergency stack */ subi r1,r1,INT_FRAME_SIZE /* alloc stack frame */ INT_COMMON 0x700, PACA_EXGEN, 0, 1, 1, 0, 0 b 3f 2: INT_COMMON 0x700, PACA_EXGEN, 1, 1, 1, 0, 0 3: bl save_nvgprs addi r3,r1,STACK_FRAME_OVERHEAD bl program_check_exception b ret_from_except EXC_REAL_BEGIN(fp_unavailable, 0x800, 0x100) INT_HANDLER fp_unavailable, 0x800, kvm=1 EXC_REAL_END(fp_unavailable, 0x800, 0x100) EXC_VIRT_BEGIN(fp_unavailable, 0x4800, 0x100) INT_HANDLER fp_unavailable, 0x800, virt=1 EXC_VIRT_END(fp_unavailable, 0x4800, 0x100) INT_KVM_HANDLER fp_unavailable, 0x800, EXC_STD, PACA_EXGEN, 0 EXC_COMMON_BEGIN(fp_unavailable_common) INT_COMMON 0x800, PACA_EXGEN, 1, 1, 0, 0, 0 bne 1f /* if from user, just load it up */ bl save_nvgprs RECONCILE_IRQ_STATE(r10, r11) addi r3,r1,STACK_FRAME_OVERHEAD bl kernel_fp_unavailable_exception 0: trap EMIT_BUG_ENTRY 0b, __FILE__, __LINE__, 0 1: #ifdef CONFIG_PPC_TRANSACTIONAL_MEM BEGIN_FTR_SECTION /* Test if 2 TM state bits are zero. If non-zero (ie. userspace was in * transaction), go do TM stuff */ rldicl. r0, r12, (64-MSR_TS_LG), (64-2) bne- 2f END_FTR_SECTION_IFSET(CPU_FTR_TM) #endif bl load_up_fpu b fast_exception_return #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 2: /* User process was in a transaction */ bl save_nvgprs RECONCILE_IRQ_STATE(r10, r11) addi r3,r1,STACK_FRAME_OVERHEAD bl fp_unavailable_tm b ret_from_except #endif EXC_REAL_BEGIN(decrementer, 0x900, 0x80) INT_HANDLER decrementer, 0x900, ool=1, bitmask=IRQS_DISABLED, kvm=1 EXC_REAL_END(decrementer, 0x900, 0x80) EXC_VIRT_BEGIN(decrementer, 0x4900, 0x80) INT_HANDLER decrementer, 0x900, virt=1, bitmask=IRQS_DISABLED EXC_VIRT_END(decrementer, 0x4900, 0x80) INT_KVM_HANDLER decrementer, 0x900, EXC_STD, PACA_EXGEN, 0 EXC_COMMON_ASYNC(decrementer_common, 0x900, timer_interrupt) EXC_REAL_BEGIN(hdecrementer, 0x980, 0x80) INT_HANDLER hdecrementer, 0x980, hsrr=EXC_HV, kvm=1 EXC_REAL_END(hdecrementer, 0x980, 0x80) EXC_VIRT_BEGIN(hdecrementer, 0x4980, 0x80) INT_HANDLER hdecrementer, 0x980, virt=1, hsrr=EXC_HV, kvm=1 EXC_VIRT_END(hdecrementer, 0x4980, 0x80) INT_KVM_HANDLER hdecrementer, 0x980, EXC_HV, PACA_EXGEN, 0 EXC_COMMON(hdecrementer_common, 0x980, hdec_interrupt) EXC_REAL_BEGIN(doorbell_super, 0xa00, 0x100) INT_HANDLER doorbell_super, 0xa00, bitmask=IRQS_DISABLED, kvm=1 EXC_REAL_END(doorbell_super, 0xa00, 0x100) EXC_VIRT_BEGIN(doorbell_super, 0x4a00, 0x100) INT_HANDLER doorbell_super, 0xa00, virt=1, bitmask=IRQS_DISABLED EXC_VIRT_END(doorbell_super, 0x4a00, 0x100) INT_KVM_HANDLER doorbell_super, 0xa00, EXC_STD, PACA_EXGEN, 0 #ifdef CONFIG_PPC_DOORBELL EXC_COMMON_ASYNC(doorbell_super_common, 0xa00, doorbell_exception) #else EXC_COMMON_ASYNC(doorbell_super_common, 0xa00, unknown_exception) #endif EXC_REAL_NONE(0xb00, 0x100) EXC_VIRT_NONE(0x4b00, 0x100) /* * system call / hypercall (0xc00, 0x4c00) * * The system call exception is invoked with "sc 0" and does not alter HV bit. * * The hypercall is invoked with "sc 1" and sets HV=1. * * In HPT, sc 1 always goes to 0xc00 real mode. In RADIX, sc 1 can go to * 0x4c00 virtual mode. * * Call convention: * * syscall register convention is in Documentation/powerpc/syscall64-abi.rst * * For hypercalls, the register convention is as follows: * r0 volatile * r1-2 nonvolatile * r3 volatile parameter and return value for status * r4-r10 volatile input and output value * r11 volatile hypercall number and output value * r12 volatile input and output value * r13-r31 nonvolatile * LR nonvolatile * CTR volatile * XER volatile * CR0-1 CR5-7 volatile * CR2-4 nonvolatile * Other registers nonvolatile * * The intersection of volatile registers that don't contain possible * inputs is: cr0, xer, ctr. We may use these as scratch regs upon entry * without saving, though xer is not a good idea to use, as hardware may * interpret some bits so it may be costly to change them. */ .macro SYSTEM_CALL virt #ifdef CONFIG_KVM_BOOK3S_64_HANDLER /* * There is a little bit of juggling to get syscall and hcall * working well. Save r13 in ctr to avoid using SPRG scratch * register. * * Userspace syscalls have already saved the PPR, hcalls must save * it before setting HMT_MEDIUM. */ mtctr r13 GET_PACA(r13) std r10,PACA_EXGEN+EX_R10(r13) INTERRUPT_TO_KERNEL KVMTEST system_call EXC_STD 0xc00 /* uses r10, branch to system_call_kvm */ mfctr r9 #else mr r9,r13 GET_PACA(r13) INTERRUPT_TO_KERNEL #endif #ifdef CONFIG_PPC_FAST_ENDIAN_SWITCH BEGIN_FTR_SECTION cmpdi r0,0x1ebe beq- 1f END_FTR_SECTION_IFSET(CPU_FTR_REAL_LE) #endif /* We reach here with PACA in r13, r13 in r9. */ mfspr r11,SPRN_SRR0 mfspr r12,SPRN_SRR1 HMT_MEDIUM .if ! \virt __LOAD_HANDLER(r10, system_call_common) mtspr SPRN_SRR0,r10 ld r10,PACAKMSR(r13) mtspr SPRN_SRR1,r10 RFI_TO_KERNEL b . /* prevent speculative execution */ .else li r10,MSR_RI mtmsrd r10,1 /* Set RI (EE=0) */ #ifdef CONFIG_RELOCATABLE __LOAD_HANDLER(r10, system_call_common) mtctr r10 bctr #else b system_call_common #endif .endif #ifdef CONFIG_PPC_FAST_ENDIAN_SWITCH /* Fast LE/BE switch system call */ 1: mfspr r12,SPRN_SRR1 xori r12,r12,MSR_LE mtspr SPRN_SRR1,r12 mr r13,r9 RFI_TO_USER /* return to userspace */ b . /* prevent speculative execution */ #endif .endm EXC_REAL_BEGIN(system_call, 0xc00, 0x100) SYSTEM_CALL 0 EXC_REAL_END(system_call, 0xc00, 0x100) EXC_VIRT_BEGIN(system_call, 0x4c00, 0x100) SYSTEM_CALL 1 EXC_VIRT_END(system_call, 0x4c00, 0x100) #ifdef CONFIG_KVM_BOOK3S_64_HANDLER /* * This is a hcall, so register convention is as above, with these * differences: * r13 = PACA * ctr = orig r13 * orig r10 saved in PACA */ TRAMP_KVM_BEGIN(system_call_kvm) /* * Save the PPR (on systems that support it) before changing to * HMT_MEDIUM. That allows the KVM code to save that value into the * guest state (it is the guest's PPR value). */ OPT_GET_SPR(r10, SPRN_PPR, CPU_FTR_HAS_PPR) HMT_MEDIUM OPT_SAVE_REG_TO_PACA(PACA_EXGEN+EX_PPR, r10, CPU_FTR_HAS_PPR) mfctr r10 SET_SCRATCH0(r10) std r9,PACA_EXGEN+EX_R9(r13) mfcr r9 KVM_HANDLER 0xc00, EXC_STD, PACA_EXGEN, 0 #endif EXC_REAL_BEGIN(single_step, 0xd00, 0x100) INT_HANDLER single_step, 0xd00, kvm=1 EXC_REAL_END(single_step, 0xd00, 0x100) EXC_VIRT_BEGIN(single_step, 0x4d00, 0x100) INT_HANDLER single_step, 0xd00, virt=1 EXC_VIRT_END(single_step, 0x4d00, 0x100) INT_KVM_HANDLER single_step, 0xd00, EXC_STD, PACA_EXGEN, 0 EXC_COMMON(single_step_common, 0xd00, single_step_exception) EXC_REAL_BEGIN(h_data_storage, 0xe00, 0x20) INT_HANDLER h_data_storage, 0xe00, ool=1, hsrr=EXC_HV, dar=1, dsisr=1, kvm=1 EXC_REAL_END(h_data_storage, 0xe00, 0x20) EXC_VIRT_BEGIN(h_data_storage, 0x4e00, 0x20) INT_HANDLER h_data_storage, 0xe00, ool=1, virt=1, hsrr=EXC_HV, dar=1, dsisr=1, kvm=1 EXC_VIRT_END(h_data_storage, 0x4e00, 0x20) INT_KVM_HANDLER h_data_storage, 0xe00, EXC_HV, PACA_EXGEN, 1 EXC_COMMON_BEGIN(h_data_storage_common) INT_COMMON 0xe00, PACA_EXGEN, 1, 1, 1, 1, 1 bl save_nvgprs addi r3,r1,STACK_FRAME_OVERHEAD BEGIN_MMU_FTR_SECTION ld r4,_DAR(r1) li r5,SIGSEGV bl bad_page_fault MMU_FTR_SECTION_ELSE bl unknown_exception ALT_MMU_FTR_SECTION_END_IFSET(MMU_FTR_TYPE_RADIX) b ret_from_except EXC_REAL_BEGIN(h_instr_storage, 0xe20, 0x20) INT_HANDLER h_instr_storage, 0xe20, ool=1, hsrr=EXC_HV, kvm=1 EXC_REAL_END(h_instr_storage, 0xe20, 0x20) EXC_VIRT_BEGIN(h_instr_storage, 0x4e20, 0x20) INT_HANDLER h_instr_storage, 0xe20, ool=1, virt=1, hsrr=EXC_HV, kvm=1 EXC_VIRT_END(h_instr_storage, 0x4e20, 0x20) INT_KVM_HANDLER h_instr_storage, 0xe20, EXC_HV, PACA_EXGEN, 0 EXC_COMMON(h_instr_storage_common, 0xe20, unknown_exception) EXC_REAL_BEGIN(emulation_assist, 0xe40, 0x20) INT_HANDLER emulation_assist, 0xe40, ool=1, hsrr=EXC_HV, kvm=1 EXC_REAL_END(emulation_assist, 0xe40, 0x20) EXC_VIRT_BEGIN(emulation_assist, 0x4e40, 0x20) INT_HANDLER emulation_assist, 0xe40, ool=1, virt=1, hsrr=EXC_HV, kvm=1 EXC_VIRT_END(emulation_assist, 0x4e40, 0x20) INT_KVM_HANDLER emulation_assist, 0xe40, EXC_HV, PACA_EXGEN, 0 EXC_COMMON(emulation_assist_common, 0xe40, emulation_assist_interrupt) /* * hmi_exception trampoline is a special case. It jumps to hmi_exception_early * first, and then eventaully from there to the trampoline to get into virtual * mode. */ EXC_REAL_BEGIN(hmi_exception, 0xe60, 0x20) INT_HANDLER hmi_exception, 0xe60, ool=1, early=1, hsrr=EXC_HV, ri=0, kvm=1 EXC_REAL_END(hmi_exception, 0xe60, 0x20) EXC_VIRT_NONE(0x4e60, 0x20) INT_KVM_HANDLER hmi_exception, 0xe60, EXC_HV, PACA_EXGEN, 0 EXC_COMMON_BEGIN(hmi_exception_early_common) mtctr r10 /* Restore ctr */ mfspr r11,SPRN_HSRR0 /* Save HSRR0 */ mfspr r12,SPRN_HSRR1 /* Save HSRR1 */ mr r10,r1 /* Save r1 */ ld r1,PACAEMERGSP(r13) /* Use emergency stack for realmode */ subi r1,r1,INT_FRAME_SIZE /* alloc stack frame */ /* We don't touch AMR here, we never go to virtual mode */ INT_COMMON 0xe60, PACA_EXGEN, 0, 0, 0, 0, 0 addi r3,r1,STACK_FRAME_OVERHEAD bl hmi_exception_realmode cmpdi cr0,r3,0 bne 1f EXCEPTION_RESTORE_REGS EXC_HV HRFI_TO_USER_OR_KERNEL 1: /* * Go to virtual mode and pull the HMI event information from * firmware. */ EXCEPTION_RESTORE_REGS EXC_HV INT_HANDLER hmi_exception, 0xe60, hsrr=EXC_HV, bitmask=IRQS_DISABLED, kvm=1 EXC_COMMON_BEGIN(hmi_exception_common) INT_COMMON 0xe60, PACA_EXGEN, 1, 1, 1, 0, 0 FINISH_NAP RUNLATCH_ON bl save_nvgprs addi r3,r1,STACK_FRAME_OVERHEAD bl handle_hmi_exception b ret_from_except EXC_REAL_BEGIN(h_doorbell, 0xe80, 0x20) INT_HANDLER h_doorbell, 0xe80, ool=1, hsrr=EXC_HV, bitmask=IRQS_DISABLED, kvm=1 EXC_REAL_END(h_doorbell, 0xe80, 0x20) EXC_VIRT_BEGIN(h_doorbell, 0x4e80, 0x20) INT_HANDLER h_doorbell, 0xe80, ool=1, virt=1, hsrr=EXC_HV, bitmask=IRQS_DISABLED, kvm=1 EXC_VIRT_END(h_doorbell, 0x4e80, 0x20) INT_KVM_HANDLER h_doorbell, 0xe80, EXC_HV, PACA_EXGEN, 0 #ifdef CONFIG_PPC_DOORBELL EXC_COMMON_ASYNC(h_doorbell_common, 0xe80, doorbell_exception) #else EXC_COMMON_ASYNC(h_doorbell_common, 0xe80, unknown_exception) #endif EXC_REAL_BEGIN(h_virt_irq, 0xea0, 0x20) INT_HANDLER h_virt_irq, 0xea0, ool=1, hsrr=EXC_HV, bitmask=IRQS_DISABLED, kvm=1 EXC_REAL_END(h_virt_irq, 0xea0, 0x20) EXC_VIRT_BEGIN(h_virt_irq, 0x4ea0, 0x20) INT_HANDLER h_virt_irq, 0xea0, ool=1, virt=1, hsrr=EXC_HV, bitmask=IRQS_DISABLED, kvm=1 EXC_VIRT_END(h_virt_irq, 0x4ea0, 0x20) INT_KVM_HANDLER h_virt_irq, 0xea0, EXC_HV, PACA_EXGEN, 0 EXC_COMMON_ASYNC(h_virt_irq_common, 0xea0, do_IRQ) EXC_REAL_NONE(0xec0, 0x20) EXC_VIRT_NONE(0x4ec0, 0x20) EXC_REAL_NONE(0xee0, 0x20) EXC_VIRT_NONE(0x4ee0, 0x20) EXC_REAL_BEGIN(performance_monitor, 0xf00, 0x20) INT_HANDLER performance_monitor, 0xf00, ool=1, bitmask=IRQS_PMI_DISABLED, kvm=1 EXC_REAL_END(performance_monitor, 0xf00, 0x20) EXC_VIRT_BEGIN(performance_monitor, 0x4f00, 0x20) INT_HANDLER performance_monitor, 0xf00, ool=1, virt=1, bitmask=IRQS_PMI_DISABLED EXC_VIRT_END(performance_monitor, 0x4f00, 0x20) INT_KVM_HANDLER performance_monitor, 0xf00, EXC_STD, PACA_EXGEN, 0 EXC_COMMON_ASYNC(performance_monitor_common, 0xf00, performance_monitor_exception) EXC_REAL_BEGIN(altivec_unavailable, 0xf20, 0x20) INT_HANDLER altivec_unavailable, 0xf20, ool=1, kvm=1 EXC_REAL_END(altivec_unavailable, 0xf20, 0x20) EXC_VIRT_BEGIN(altivec_unavailable, 0x4f20, 0x20) INT_HANDLER altivec_unavailable, 0xf20, ool=1, virt=1 EXC_VIRT_END(altivec_unavailable, 0x4f20, 0x20) INT_KVM_HANDLER altivec_unavailable, 0xf20, EXC_STD, PACA_EXGEN, 0 EXC_COMMON_BEGIN(altivec_unavailable_common) INT_COMMON 0xf20, PACA_EXGEN, 1, 1, 0, 0, 0 #ifdef CONFIG_ALTIVEC BEGIN_FTR_SECTION beq 1f #ifdef CONFIG_PPC_TRANSACTIONAL_MEM BEGIN_FTR_SECTION_NESTED(69) /* Test if 2 TM state bits are zero. If non-zero (ie. userspace was in * transaction), go do TM stuff */ rldicl. r0, r12, (64-MSR_TS_LG), (64-2) bne- 2f END_FTR_SECTION_NESTED(CPU_FTR_TM, CPU_FTR_TM, 69) #endif bl load_up_altivec b fast_exception_return #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 2: /* User process was in a transaction */ bl save_nvgprs RECONCILE_IRQ_STATE(r10, r11) addi r3,r1,STACK_FRAME_OVERHEAD bl altivec_unavailable_tm b ret_from_except #endif 1: END_FTR_SECTION_IFSET(CPU_FTR_ALTIVEC) #endif bl save_nvgprs RECONCILE_IRQ_STATE(r10, r11) addi r3,r1,STACK_FRAME_OVERHEAD bl altivec_unavailable_exception b ret_from_except EXC_REAL_BEGIN(vsx_unavailable, 0xf40, 0x20) INT_HANDLER vsx_unavailable, 0xf40, ool=1, kvm=1 EXC_REAL_END(vsx_unavailable, 0xf40, 0x20) EXC_VIRT_BEGIN(vsx_unavailable, 0x4f40, 0x20) INT_HANDLER vsx_unavailable, 0xf40, ool=1, virt=1 EXC_VIRT_END(vsx_unavailable, 0x4f40, 0x20) INT_KVM_HANDLER vsx_unavailable, 0xf40, EXC_STD, PACA_EXGEN, 0 EXC_COMMON_BEGIN(vsx_unavailable_common) INT_COMMON 0xf40, PACA_EXGEN, 1, 1, 0, 0, 0 #ifdef CONFIG_VSX BEGIN_FTR_SECTION beq 1f #ifdef CONFIG_PPC_TRANSACTIONAL_MEM BEGIN_FTR_SECTION_NESTED(69) /* Test if 2 TM state bits are zero. If non-zero (ie. userspace was in * transaction), go do TM stuff */ rldicl. r0, r12, (64-MSR_TS_LG), (64-2) bne- 2f END_FTR_SECTION_NESTED(CPU_FTR_TM, CPU_FTR_TM, 69) #endif b load_up_vsx #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 2: /* User process was in a transaction */ bl save_nvgprs RECONCILE_IRQ_STATE(r10, r11) addi r3,r1,STACK_FRAME_OVERHEAD bl vsx_unavailable_tm b ret_from_except #endif 1: END_FTR_SECTION_IFSET(CPU_FTR_VSX) #endif bl save_nvgprs RECONCILE_IRQ_STATE(r10, r11) addi r3,r1,STACK_FRAME_OVERHEAD bl vsx_unavailable_exception b ret_from_except EXC_REAL_BEGIN(facility_unavailable, 0xf60, 0x20) INT_HANDLER facility_unavailable, 0xf60, ool=1, kvm=1 EXC_REAL_END(facility_unavailable, 0xf60, 0x20) EXC_VIRT_BEGIN(facility_unavailable, 0x4f60, 0x20) INT_HANDLER facility_unavailable, 0xf60, ool=1, virt=1 EXC_VIRT_END(facility_unavailable, 0x4f60, 0x20) INT_KVM_HANDLER facility_unavailable, 0xf60, EXC_STD, PACA_EXGEN, 0 EXC_COMMON(facility_unavailable_common, 0xf60, facility_unavailable_exception) EXC_REAL_BEGIN(h_facility_unavailable, 0xf80, 0x20) INT_HANDLER h_facility_unavailable, 0xf80, ool=1, hsrr=EXC_HV, kvm=1 EXC_REAL_END(h_facility_unavailable, 0xf80, 0x20) EXC_VIRT_BEGIN(h_facility_unavailable, 0x4f80, 0x20) INT_HANDLER h_facility_unavailable, 0xf80, ool=1, virt=1, hsrr=EXC_HV, kvm=1 EXC_VIRT_END(h_facility_unavailable, 0x4f80, 0x20) INT_KVM_HANDLER h_facility_unavailable, 0xf80, EXC_HV, PACA_EXGEN, 0 EXC_COMMON(h_facility_unavailable_common, 0xf80, facility_unavailable_exception) EXC_REAL_NONE(0xfa0, 0x20) EXC_VIRT_NONE(0x4fa0, 0x20) EXC_REAL_NONE(0xfc0, 0x20) EXC_VIRT_NONE(0x4fc0, 0x20) EXC_REAL_NONE(0xfe0, 0x20) EXC_VIRT_NONE(0x4fe0, 0x20) EXC_REAL_NONE(0x1000, 0x100) EXC_VIRT_NONE(0x5000, 0x100) EXC_REAL_NONE(0x1100, 0x100) EXC_VIRT_NONE(0x5100, 0x100) #ifdef CONFIG_CBE_RAS EXC_REAL_BEGIN(cbe_system_error, 0x1200, 0x100) INT_HANDLER cbe_system_error, 0x1200, ool=1, hsrr=EXC_HV, kvm=1 EXC_REAL_END(cbe_system_error, 0x1200, 0x100) EXC_VIRT_NONE(0x5200, 0x100) INT_KVM_HANDLER cbe_system_error, 0x1200, EXC_HV, PACA_EXGEN, 1 EXC_COMMON(cbe_system_error_common, 0x1200, cbe_system_error_exception) #else /* CONFIG_CBE_RAS */ EXC_REAL_NONE(0x1200, 0x100) EXC_VIRT_NONE(0x5200, 0x100) #endif EXC_REAL_BEGIN(instruction_breakpoint, 0x1300, 0x100) INT_HANDLER instruction_breakpoint, 0x1300, kvm=1 EXC_REAL_END(instruction_breakpoint, 0x1300, 0x100) EXC_VIRT_BEGIN(instruction_breakpoint, 0x5300, 0x100) INT_HANDLER instruction_breakpoint, 0x1300, virt=1 EXC_VIRT_END(instruction_breakpoint, 0x5300, 0x100) INT_KVM_HANDLER instruction_breakpoint, 0x1300, EXC_STD, PACA_EXGEN, 1 EXC_COMMON(instruction_breakpoint_common, 0x1300, instruction_breakpoint_exception) EXC_REAL_NONE(0x1400, 0x100) EXC_VIRT_NONE(0x5400, 0x100) EXC_REAL_BEGIN(denorm_exception_hv, 0x1500, 0x100) INT_HANDLER denorm_exception_hv, 0x1500, early=2, hsrr=EXC_HV #ifdef CONFIG_PPC_DENORMALISATION mfspr r10,SPRN_HSRR1 andis. r10,r10,(HSRR1_DENORM)@h /* denorm? */ bne+ denorm_assist #endif KVMTEST denorm_exception_hv, EXC_HV 0x1500 INT_SAVE_SRR_AND_JUMP denorm_common, EXC_HV, 1 EXC_REAL_END(denorm_exception_hv, 0x1500, 0x100) #ifdef CONFIG_PPC_DENORMALISATION EXC_VIRT_BEGIN(denorm_exception, 0x5500, 0x100) INT_HANDLER denorm_exception, 0x1500, 0, 2, 1, EXC_HV, PACA_EXGEN, 1, 0, 0, 0, 0 mfspr r10,SPRN_HSRR1 andis. r10,r10,(HSRR1_DENORM)@h /* denorm? */ bne+ denorm_assist INT_VIRT_SAVE_SRR_AND_JUMP denorm_common, EXC_HV EXC_VIRT_END(denorm_exception, 0x5500, 0x100) #else EXC_VIRT_NONE(0x5500, 0x100) #endif INT_KVM_HANDLER denorm_exception_hv, 0x1500, EXC_HV, PACA_EXGEN, 0 #ifdef CONFIG_PPC_DENORMALISATION TRAMP_REAL_BEGIN(denorm_assist) BEGIN_FTR_SECTION /* * To denormalise we need to move a copy of the register to itself. * For POWER6 do that here for all FP regs. */ mfmsr r10 ori r10,r10,(MSR_FP|MSR_FE0|MSR_FE1) xori r10,r10,(MSR_FE0|MSR_FE1) mtmsrd r10 sync .Lreg=0 .rept 32 fmr .Lreg,.Lreg .Lreg=.Lreg+1 .endr FTR_SECTION_ELSE /* * To denormalise we need to move a copy of the register to itself. * For POWER7 do that here for the first 32 VSX registers only. */ mfmsr r10 oris r10,r10,MSR_VSX@h mtmsrd r10 sync .Lreg=0 .rept 32 XVCPSGNDP(.Lreg,.Lreg,.Lreg) .Lreg=.Lreg+1 .endr ALT_FTR_SECTION_END_IFCLR(CPU_FTR_ARCH_206) BEGIN_FTR_SECTION b denorm_done END_FTR_SECTION_IFCLR(CPU_FTR_ARCH_207S) /* * To denormalise we need to move a copy of the register to itself. * For POWER8 we need to do that for all 64 VSX registers */ .Lreg=32 .rept 32 XVCPSGNDP(.Lreg,.Lreg,.Lreg) .Lreg=.Lreg+1 .endr denorm_done: mfspr r11,SPRN_HSRR0 subi r11,r11,4 mtspr SPRN_HSRR0,r11 mtcrf 0x80,r9 ld r9,PACA_EXGEN+EX_R9(r13) RESTORE_PPR_PACA(PACA_EXGEN, r10) BEGIN_FTR_SECTION ld r10,PACA_EXGEN+EX_CFAR(r13) mtspr SPRN_CFAR,r10 END_FTR_SECTION_IFSET(CPU_FTR_CFAR) ld r10,PACA_EXGEN+EX_R10(r13) ld r11,PACA_EXGEN+EX_R11(r13) ld r12,PACA_EXGEN+EX_R12(r13) ld r13,PACA_EXGEN+EX_R13(r13) HRFI_TO_UNKNOWN b . #endif EXC_COMMON(denorm_common, 0x1500, unknown_exception) #ifdef CONFIG_CBE_RAS EXC_REAL_BEGIN(cbe_maintenance, 0x1600, 0x100) INT_HANDLER cbe_maintenance, 0x1600, ool=1, hsrr=EXC_HV, kvm=1 EXC_REAL_END(cbe_maintenance, 0x1600, 0x100) EXC_VIRT_NONE(0x5600, 0x100) INT_KVM_HANDLER cbe_maintenance, 0x1600, EXC_HV, PACA_EXGEN, 1 EXC_COMMON(cbe_maintenance_common, 0x1600, cbe_maintenance_exception) #else /* CONFIG_CBE_RAS */ EXC_REAL_NONE(0x1600, 0x100) EXC_VIRT_NONE(0x5600, 0x100) #endif EXC_REAL_BEGIN(altivec_assist, 0x1700, 0x100) INT_HANDLER altivec_assist, 0x1700, kvm=1 EXC_REAL_END(altivec_assist, 0x1700, 0x100) EXC_VIRT_BEGIN(altivec_assist, 0x5700, 0x100) INT_HANDLER altivec_assist, 0x1700, virt=1 EXC_VIRT_END(altivec_assist, 0x5700, 0x100) INT_KVM_HANDLER altivec_assist, 0x1700, EXC_STD, PACA_EXGEN, 0 #ifdef CONFIG_ALTIVEC EXC_COMMON(altivec_assist_common, 0x1700, altivec_assist_exception) #else EXC_COMMON(altivec_assist_common, 0x1700, unknown_exception) #endif #ifdef CONFIG_CBE_RAS EXC_REAL_BEGIN(cbe_thermal, 0x1800, 0x100) INT_HANDLER cbe_thermal, 0x1800, ool=1, hsrr=EXC_HV, kvm=1 EXC_REAL_END(cbe_thermal, 0x1800, 0x100) EXC_VIRT_NONE(0x5800, 0x100) INT_KVM_HANDLER cbe_thermal, 0x1800, EXC_HV, PACA_EXGEN, 1 EXC_COMMON(cbe_thermal_common, 0x1800, cbe_thermal_exception) #else /* CONFIG_CBE_RAS */ EXC_REAL_NONE(0x1800, 0x100) EXC_VIRT_NONE(0x5800, 0x100) #endif #ifdef CONFIG_PPC_WATCHDOG #define MASKED_DEC_HANDLER_LABEL 3f #define MASKED_DEC_HANDLER(_H) \ 3: /* soft-nmi */ \ std r12,PACA_EXGEN+EX_R12(r13); \ GET_SCRATCH0(r10); \ std r10,PACA_EXGEN+EX_R13(r13); \ INT_SAVE_SRR_AND_JUMP soft_nmi_common, _H, 1 /* * Branch to soft_nmi_interrupt using the emergency stack. The emergency * stack is one that is usable by maskable interrupts so long as MSR_EE * remains off. It is used for recovery when something has corrupted the * normal kernel stack, for example. The "soft NMI" must not use the process * stack because we want irq disabled sections to avoid touching the stack * at all (other than PMU interrupts), so use the emergency stack for this, * and run it entirely with interrupts hard disabled. */ EXC_COMMON_BEGIN(soft_nmi_common) mr r10,r1 ld r1,PACAEMERGSP(r13) subi r1,r1,INT_FRAME_SIZE INT_COMMON 0x900, PACA_EXGEN, 0, 1, 1, 0, 0 bl save_nvgprs addi r3,r1,STACK_FRAME_OVERHEAD bl soft_nmi_interrupt b ret_from_except #else /* CONFIG_PPC_WATCHDOG */ #define MASKED_DEC_HANDLER_LABEL 2f /* normal return */ #define MASKED_DEC_HANDLER(_H) #endif /* CONFIG_PPC_WATCHDOG */ /* * An interrupt came in while soft-disabled. We set paca->irq_happened, then: * - If it was a decrementer interrupt, we bump the dec to max and and return. * - If it was a doorbell we return immediately since doorbells are edge * triggered and won't automatically refire. * - If it was a HMI we return immediately since we handled it in realmode * and it won't refire. * - Else it is one of PACA_IRQ_MUST_HARD_MASK, so hard disable and return. * This is called with r10 containing the value to OR to the paca field. */ .macro MASKED_INTERRUPT hsrr .if \hsrr masked_Hinterrupt: .else masked_interrupt: .endif std r11,PACA_EXGEN+EX_R11(r13) lbz r11,PACAIRQHAPPENED(r13) or r11,r11,r10 stb r11,PACAIRQHAPPENED(r13) cmpwi r10,PACA_IRQ_DEC bne 1f lis r10,0x7fff ori r10,r10,0xffff mtspr SPRN_DEC,r10 b MASKED_DEC_HANDLER_LABEL 1: andi. r10,r10,PACA_IRQ_MUST_HARD_MASK beq 2f .if \hsrr mfspr r10,SPRN_HSRR1 xori r10,r10,MSR_EE /* clear MSR_EE */ mtspr SPRN_HSRR1,r10 .else mfspr r10,SPRN_SRR1 xori r10,r10,MSR_EE /* clear MSR_EE */ mtspr SPRN_SRR1,r10 .endif ori r11,r11,PACA_IRQ_HARD_DIS stb r11,PACAIRQHAPPENED(r13) 2: /* done */ mtcrf 0x80,r9 std r1,PACAR1(r13) ld r9,PACA_EXGEN+EX_R9(r13) ld r10,PACA_EXGEN+EX_R10(r13) ld r11,PACA_EXGEN+EX_R11(r13) /* returns to kernel where r13 must be set up, so don't restore it */ .if \hsrr HRFI_TO_KERNEL .else RFI_TO_KERNEL .endif b . MASKED_DEC_HANDLER(\hsrr\()) .endm TRAMP_REAL_BEGIN(stf_barrier_fallback) std r9,PACA_EXRFI+EX_R9(r13) std r10,PACA_EXRFI+EX_R10(r13) sync ld r9,PACA_EXRFI+EX_R9(r13) ld r10,PACA_EXRFI+EX_R10(r13) ori 31,31,0 .rept 14 b 1f 1: .endr blr TRAMP_REAL_BEGIN(rfi_flush_fallback) SET_SCRATCH0(r13); GET_PACA(r13); std r1,PACA_EXRFI+EX_R12(r13) ld r1,PACAKSAVE(r13) std r9,PACA_EXRFI+EX_R9(r13) std r10,PACA_EXRFI+EX_R10(r13) std r11,PACA_EXRFI+EX_R11(r13) mfctr r9 ld r10,PACA_RFI_FLUSH_FALLBACK_AREA(r13) ld r11,PACA_L1D_FLUSH_SIZE(r13) srdi r11,r11,(7 + 3) /* 128 byte lines, unrolled 8x */ mtctr r11 DCBT_BOOK3S_STOP_ALL_STREAM_IDS(r11) /* Stop prefetch streams */ /* order ld/st prior to dcbt stop all streams with flushing */ sync /* * The load adresses are at staggered offsets within cachelines, * which suits some pipelines better (on others it should not * hurt). */ 1: ld r11,(0x80 + 8)*0(r10) ld r11,(0x80 + 8)*1(r10) ld r11,(0x80 + 8)*2(r10) ld r11,(0x80 + 8)*3(r10) ld r11,(0x80 + 8)*4(r10) ld r11,(0x80 + 8)*5(r10) ld r11,(0x80 + 8)*6(r10) ld r11,(0x80 + 8)*7(r10) addi r10,r10,0x80*8 bdnz 1b mtctr r9 ld r9,PACA_EXRFI+EX_R9(r13) ld r10,PACA_EXRFI+EX_R10(r13) ld r11,PACA_EXRFI+EX_R11(r13) ld r1,PACA_EXRFI+EX_R12(r13) GET_SCRATCH0(r13); rfid TRAMP_REAL_BEGIN(hrfi_flush_fallback) SET_SCRATCH0(r13); GET_PACA(r13); std r1,PACA_EXRFI+EX_R12(r13) ld r1,PACAKSAVE(r13) std r9,PACA_EXRFI+EX_R9(r13) std r10,PACA_EXRFI+EX_R10(r13) std r11,PACA_EXRFI+EX_R11(r13) mfctr r9 ld r10,PACA_RFI_FLUSH_FALLBACK_AREA(r13) ld r11,PACA_L1D_FLUSH_SIZE(r13) srdi r11,r11,(7 + 3) /* 128 byte lines, unrolled 8x */ mtctr r11 DCBT_BOOK3S_STOP_ALL_STREAM_IDS(r11) /* Stop prefetch streams */ /* order ld/st prior to dcbt stop all streams with flushing */ sync /* * The load adresses are at staggered offsets within cachelines, * which suits some pipelines better (on others it should not * hurt). */ 1: ld r11,(0x80 + 8)*0(r10) ld r11,(0x80 + 8)*1(r10) ld r11,(0x80 + 8)*2(r10) ld r11,(0x80 + 8)*3(r10) ld r11,(0x80 + 8)*4(r10) ld r11,(0x80 + 8)*5(r10) ld r11,(0x80 + 8)*6(r10) ld r11,(0x80 + 8)*7(r10) addi r10,r10,0x80*8 bdnz 1b mtctr r9 ld r9,PACA_EXRFI+EX_R9(r13) ld r10,PACA_EXRFI+EX_R10(r13) ld r11,PACA_EXRFI+EX_R11(r13) ld r1,PACA_EXRFI+EX_R12(r13) GET_SCRATCH0(r13); hrfid /* * Real mode exceptions actually use this too, but alternate * instruction code patches (which end up in the common .text area) * cannot reach these if they are put there. */ USE_FIXED_SECTION(virt_trampolines) MASKED_INTERRUPT EXC_STD MASKED_INTERRUPT EXC_HV #ifdef CONFIG_KVM_BOOK3S_64_HANDLER TRAMP_REAL_BEGIN(kvmppc_skip_interrupt) /* * Here all GPRs are unchanged from when the interrupt happened * except for r13, which is saved in SPRG_SCRATCH0. */ mfspr r13, SPRN_SRR0 addi r13, r13, 4 mtspr SPRN_SRR0, r13 GET_SCRATCH0(r13) RFI_TO_KERNEL b . TRAMP_REAL_BEGIN(kvmppc_skip_Hinterrupt) /* * Here all GPRs are unchanged from when the interrupt happened * except for r13, which is saved in SPRG_SCRATCH0. */ mfspr r13, SPRN_HSRR0 addi r13, r13, 4 mtspr SPRN_HSRR0, r13 GET_SCRATCH0(r13) HRFI_TO_KERNEL b . #endif /* * Ensure that any handlers that get invoked from the exception prologs * above are below the first 64KB (0x10000) of the kernel image because * the prologs assemble the addresses of these handlers using the * LOAD_HANDLER macro, which uses an ori instruction. */ /*** Common interrupt handlers ***/ /* * Relocation-on interrupts: A subset of the interrupts can be delivered * with IR=1/DR=1, if AIL==2 and MSR.HV won't be changed by delivering * it. Addresses are the same as the original interrupt addresses, but * offset by 0xc000000000004000. * It's impossible to receive interrupts below 0x300 via this mechanism. * KVM: None of these traps are from the guest ; anything that escalated * to HV=1 from HV=0 is delivered via real mode handlers. */ /* * This uses the standard macro, since the original 0x300 vector * only has extra guff for STAB-based processors -- which never * come here. */ EXC_COMMON_BEGIN(ppc64_runlatch_on_trampoline) b __ppc64_runlatch_on USE_FIXED_SECTION(virt_trampolines) /* * The __end_interrupts marker must be past the out-of-line (OOL) * handlers, so that they are copied to real address 0x100 when running * a relocatable kernel. This ensures they can be reached from the short * trampoline handlers (like 0x4f00, 0x4f20, etc.) which branch * directly, without using LOAD_HANDLER(). */ .align 7 .globl __end_interrupts __end_interrupts: DEFINE_FIXED_SYMBOL(__end_interrupts) #ifdef CONFIG_PPC_970_NAP EXC_COMMON_BEGIN(power4_fixup_nap) andc r9,r9,r10 std r9,TI_LOCAL_FLAGS(r11) ld r10,_LINK(r1) /* make idle task do the */ std r10,_NIP(r1) /* equivalent of a blr */ blr #endif CLOSE_FIXED_SECTION(real_vectors); CLOSE_FIXED_SECTION(real_trampolines); CLOSE_FIXED_SECTION(virt_vectors); CLOSE_FIXED_SECTION(virt_trampolines); USE_TEXT_SECTION() /* MSR[RI] should be clear because this uses SRR[01] */ enable_machine_check: mflr r0 bcl 20,31,$+4 0: mflr r3 addi r3,r3,(1f - 0b) mtspr SPRN_SRR0,r3 mfmsr r3 ori r3,r3,MSR_ME mtspr SPRN_SRR1,r3 RFI_TO_KERNEL 1: mtlr r0 blr /* MSR[RI] should be clear because this uses SRR[01] */ disable_machine_check: mflr r0 bcl 20,31,$+4 0: mflr r3 addi r3,r3,(1f - 0b) mtspr SPRN_SRR0,r3 mfmsr r3 li r4,MSR_ME andc r3,r3,r4 mtspr SPRN_SRR1,r3 RFI_TO_KERNEL 1: mtlr r0 blr /* * Hash table stuff */ .balign IFETCH_ALIGN_BYTES do_hash_page: #ifdef CONFIG_PPC_BOOK3S_64 lis r0,(DSISR_BAD_FAULT_64S | DSISR_DABRMATCH | DSISR_KEYFAULT)@h ori r0,r0,DSISR_BAD_FAULT_64S@l and. r0,r5,r0 /* weird error? */ bne- handle_page_fault /* if not, try to insert a HPTE */ ld r11, PACA_THREAD_INFO(r13) lwz r0,TI_PREEMPT(r11) /* If we're in an "NMI" */ andis. r0,r0,NMI_MASK@h /* (i.e. an irq when soft-disabled) */ bne 77f /* then don't call hash_page now */ /* * r3 contains the trap number * r4 contains the faulting address * r5 contains dsisr * r6 msr * * at return r3 = 0 for success, 1 for page fault, negative for error */ bl __hash_page /* build HPTE if possible */ cmpdi r3,0 /* see if __hash_page succeeded */ /* Success */ beq fast_exc_return_irq /* Return from exception on success */ /* Error */ blt- 13f /* Reload DAR/DSISR into r4/r5 for the DABR check below */ ld r4,_DAR(r1) ld r5,_DSISR(r1) #endif /* CONFIG_PPC_BOOK3S_64 */ /* Here we have a page fault that hash_page can't handle. */ handle_page_fault: 11: andis. r0,r5,DSISR_DABRMATCH@h bne- handle_dabr_fault addi r3,r1,STACK_FRAME_OVERHEAD bl do_page_fault cmpdi r3,0 beq+ ret_from_except_lite bl save_nvgprs mr r5,r3 addi r3,r1,STACK_FRAME_OVERHEAD ld r4,_DAR(r1) bl bad_page_fault b ret_from_except /* We have a data breakpoint exception - handle it */ handle_dabr_fault: bl save_nvgprs ld r4,_DAR(r1) ld r5,_DSISR(r1) addi r3,r1,STACK_FRAME_OVERHEAD bl do_break /* * do_break() may have changed the NV GPRS while handling a breakpoint. * If so, we need to restore them with their updated values. Don't use * ret_from_except_lite here. */ b ret_from_except #ifdef CONFIG_PPC_BOOK3S_64 /* We have a page fault that hash_page could handle but HV refused * the PTE insertion */ 13: bl save_nvgprs mr r5,r3 addi r3,r1,STACK_FRAME_OVERHEAD ld r4,_DAR(r1) bl low_hash_fault b ret_from_except #endif /* * We come here as a result of a DSI at a point where we don't want * to call hash_page, such as when we are accessing memory (possibly * user memory) inside a PMU interrupt that occurred while interrupts * were soft-disabled. We want to invoke the exception handler for * the access, or panic if there isn't a handler. */ 77: bl save_nvgprs addi r3,r1,STACK_FRAME_OVERHEAD li r5,SIGSEGV bl bad_page_fault b ret_from_except /* * When doorbell is triggered from system reset wakeup, the message is * not cleared, so it would fire again when EE is enabled. * * When coming from local_irq_enable, there may be the same problem if * we were hard disabled. * * Execute msgclr to clear pending exceptions before handling it. */ h_doorbell_common_msgclr: LOAD_REG_IMMEDIATE(r3, PPC_DBELL_MSGTYPE << (63-36)) PPC_MSGCLR(3) b h_doorbell_common doorbell_super_common_msgclr: LOAD_REG_IMMEDIATE(r3, PPC_DBELL_MSGTYPE << (63-36)) PPC_MSGCLRP(3) b doorbell_super_common /* * Called from arch_local_irq_enable when an interrupt needs * to be resent. r3 contains 0x500, 0x900, 0xa00 or 0xe80 to indicate * which kind of interrupt. MSR:EE is already off. We generate a * stackframe like if a real interrupt had happened. * * Note: While MSR:EE is off, we need to make sure that _MSR * in the generated frame has EE set to 1 or the exception * handler will not properly re-enable them. * * Note that we don't specify LR as the NIP (return address) for * the interrupt because that would unbalance the return branch * predictor. */ _GLOBAL(__replay_interrupt) /* We are going to jump to the exception common code which * will retrieve various register values from the PACA which * we don't give a damn about, so we don't bother storing them. */ mfmsr r12 LOAD_REG_ADDR(r11, replay_interrupt_return) mfcr r9 ori r12,r12,MSR_EE cmpwi r3,0x900 beq decrementer_common cmpwi r3,0x500 BEGIN_FTR_SECTION beq h_virt_irq_common FTR_SECTION_ELSE beq hardware_interrupt_common ALT_FTR_SECTION_END_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_300) cmpwi r3,0xf00 beq performance_monitor_common BEGIN_FTR_SECTION cmpwi r3,0xa00 beq h_doorbell_common_msgclr cmpwi r3,0xe60 beq hmi_exception_common FTR_SECTION_ELSE cmpwi r3,0xa00 beq doorbell_super_common_msgclr ALT_FTR_SECTION_END_IFSET(CPU_FTR_HVMODE) replay_interrupt_return: blr _ASM_NOKPROBE_SYMBOL(__replay_interrupt)