// SPDX-License-Identifier: GPL-2.0-or-later /* Kernel module help for PPC. Copyright (C) 2001 Rusty Russell. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include /* Count how many different relocations (different symbol, different addend) */ static unsigned int count_relocs(const Elf32_Rela *rela, unsigned int num) { unsigned int i, r_info, r_addend, _count_relocs; _count_relocs = 0; r_info = 0; r_addend = 0; for (i = 0; i < num; i++) /* Only count 24-bit relocs, others don't need stubs */ if (ELF32_R_TYPE(rela[i].r_info) == R_PPC_REL24 && (r_info != ELF32_R_SYM(rela[i].r_info) || r_addend != rela[i].r_addend)) { _count_relocs++; r_info = ELF32_R_SYM(rela[i].r_info); r_addend = rela[i].r_addend; } #ifdef CONFIG_DYNAMIC_FTRACE _count_relocs++; /* add one for ftrace_caller */ #endif return _count_relocs; } static int relacmp(const void *_x, const void *_y) { const Elf32_Rela *x, *y; y = (Elf32_Rela *)_x; x = (Elf32_Rela *)_y; /* Compare the entire r_info (as opposed to ELF32_R_SYM(r_info) only) to * make the comparison cheaper/faster. It won't affect the sorting or * the counting algorithms' performance */ if (x->r_info < y->r_info) return -1; else if (x->r_info > y->r_info) return 1; else if (x->r_addend < y->r_addend) return -1; else if (x->r_addend > y->r_addend) return 1; else return 0; } /* Get the potential trampolines size required of the init and non-init sections */ static unsigned long get_plt_size(const Elf32_Ehdr *hdr, const Elf32_Shdr *sechdrs, const char *secstrings, int is_init) { unsigned long ret = 0; unsigned i; /* Everything marked ALLOC (this includes the exported symbols) */ for (i = 1; i < hdr->e_shnum; i++) { /* If it's called *.init*, and we're not init, we're not interested */ if ((strstr(secstrings + sechdrs[i].sh_name, ".init") != NULL) != is_init) continue; /* We don't want to look at debug sections. */ if (strstr(secstrings + sechdrs[i].sh_name, ".debug")) continue; if (sechdrs[i].sh_type == SHT_RELA) { pr_debug("Found relocations in section %u\n", i); pr_debug("Ptr: %p. Number: %u\n", (void *)hdr + sechdrs[i].sh_offset, sechdrs[i].sh_size / sizeof(Elf32_Rela)); /* Sort the relocation information based on a symbol and * addend key. This is a stable O(n*log n) complexity * algorithm but it will reduce the complexity of * count_relocs() to linear complexity O(n) */ sort((void *)hdr + sechdrs[i].sh_offset, sechdrs[i].sh_size / sizeof(Elf32_Rela), sizeof(Elf32_Rela), relacmp, NULL); ret += count_relocs((void *)hdr + sechdrs[i].sh_offset, sechdrs[i].sh_size / sizeof(Elf32_Rela)) * sizeof(struct ppc_plt_entry); } } return ret; } int module_frob_arch_sections(Elf32_Ehdr *hdr, Elf32_Shdr *sechdrs, char *secstrings, struct module *me) { unsigned int i; /* Find .plt and .init.plt sections */ for (i = 0; i < hdr->e_shnum; i++) { if (strcmp(secstrings + sechdrs[i].sh_name, ".init.plt") == 0) me->arch.init_plt_section = i; else if (strcmp(secstrings + sechdrs[i].sh_name, ".plt") == 0) me->arch.core_plt_section = i; } if (!me->arch.core_plt_section || !me->arch.init_plt_section) { pr_err("Module doesn't contain .plt or .init.plt sections.\n"); return -ENOEXEC; } /* Override their sizes */ sechdrs[me->arch.core_plt_section].sh_size = get_plt_size(hdr, sechdrs, secstrings, 0); sechdrs[me->arch.init_plt_section].sh_size = get_plt_size(hdr, sechdrs, secstrings, 1); return 0; } static inline int entry_matches(struct ppc_plt_entry *entry, Elf32_Addr val) { if (entry->jump[0] != PPC_RAW_LIS(_R12, PPC_HA(val))) return 0; if (entry->jump[1] != PPC_RAW_ADDI(_R12, _R12, PPC_LO(val))) return 0; return 1; } /* Set up a trampoline in the PLT to bounce us to the distant function */ static uint32_t do_plt_call(void *location, Elf32_Addr val, const Elf32_Shdr *sechdrs, struct module *mod) { struct ppc_plt_entry *entry; pr_debug("Doing plt for call to 0x%x at 0x%x\n", val, (unsigned int)location); /* Init, or core PLT? */ if (location >= mod->core_layout.base && location < mod->core_layout.base + mod->core_layout.size) entry = (void *)sechdrs[mod->arch.core_plt_section].sh_addr; else entry = (void *)sechdrs[mod->arch.init_plt_section].sh_addr; /* Find this entry, or if that fails, the next avail. entry */ while (entry->jump[0]) { if (entry_matches(entry, val)) return (uint32_t)entry; entry++; } if (patch_instruction(&entry->jump[0], ppc_inst(PPC_RAW_LIS(_R12, PPC_HA(val))))) return 0; if (patch_instruction(&entry->jump[1], ppc_inst(PPC_RAW_ADDI(_R12, _R12, PPC_LO(val))))) return 0; if (patch_instruction(&entry->jump[2], ppc_inst(PPC_RAW_MTCTR(_R12)))) return 0; if (patch_instruction(&entry->jump[3], ppc_inst(PPC_RAW_BCTR()))) return 0; pr_debug("Initialized plt for 0x%x at %p\n", val, entry); return (uint32_t)entry; } static int patch_location_16(uint32_t *loc, u16 value) { loc = PTR_ALIGN_DOWN(loc, sizeof(u32)); return patch_instruction(loc, ppc_inst((*loc & 0xffff0000) | value)); } int apply_relocate_add(Elf32_Shdr *sechdrs, const char *strtab, unsigned int symindex, unsigned int relsec, struct module *module) { unsigned int i; Elf32_Rela *rela = (void *)sechdrs[relsec].sh_addr; Elf32_Sym *sym; uint32_t *location; uint32_t value; pr_debug("Applying ADD relocate section %u to %u\n", relsec, sechdrs[relsec].sh_info); for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rela); i++) { /* This is where to make the change */ location = (void *)sechdrs[sechdrs[relsec].sh_info].sh_addr + rela[i].r_offset; /* This is the symbol it is referring to. Note that all undefined symbols have been resolved. */ sym = (Elf32_Sym *)sechdrs[symindex].sh_addr + ELF32_R_SYM(rela[i].r_info); /* `Everything is relative'. */ value = sym->st_value + rela[i].r_addend; switch (ELF32_R_TYPE(rela[i].r_info)) { case R_PPC_ADDR32: /* Simply set it */ *(uint32_t *)location = value; break; case R_PPC_ADDR16_LO: /* Low half of the symbol */ if (patch_location_16(location, PPC_LO(value))) return -EFAULT; break; case R_PPC_ADDR16_HI: /* Higher half of the symbol */ if (patch_location_16(location, PPC_HI(value))) return -EFAULT; break; case R_PPC_ADDR16_HA: if (patch_location_16(location, PPC_HA(value))) return -EFAULT; break; case R_PPC_REL24: if ((int)(value - (uint32_t)location) < -0x02000000 || (int)(value - (uint32_t)location) >= 0x02000000) { value = do_plt_call(location, value, sechdrs, module); if (!value) return -EFAULT; } /* Only replace bits 2 through 26 */ pr_debug("REL24 value = %08X. location = %08X\n", value, (uint32_t)location); pr_debug("Location before: %08X.\n", *(uint32_t *)location); value = (*(uint32_t *)location & ~PPC_LI_MASK) | PPC_LI(value - (uint32_t)location); if (patch_instruction(location, ppc_inst(value))) return -EFAULT; pr_debug("Location after: %08X.\n", *(uint32_t *)location); pr_debug("ie. jump to %08X+%08X = %08X\n", *(uint32_t *)PPC_LI((uint32_t)location), (uint32_t)location, (*(uint32_t *)PPC_LI((uint32_t)location)) + (uint32_t)location); break; case R_PPC_REL32: /* 32-bit relative jump. */ *(uint32_t *)location = value - (uint32_t)location; break; default: pr_err("%s: unknown ADD relocation: %u\n", module->name, ELF32_R_TYPE(rela[i].r_info)); return -ENOEXEC; } } return 0; } #ifdef CONFIG_DYNAMIC_FTRACE notrace int module_trampoline_target(struct module *mod, unsigned long addr, unsigned long *target) { ppc_inst_t jmp[4]; /* Find where the trampoline jumps to */ if (copy_inst_from_kernel_nofault(jmp, (void *)addr)) return -EFAULT; if (__copy_inst_from_kernel_nofault(jmp + 1, (void *)addr + 4)) return -EFAULT; if (__copy_inst_from_kernel_nofault(jmp + 2, (void *)addr + 8)) return -EFAULT; if (__copy_inst_from_kernel_nofault(jmp + 3, (void *)addr + 12)) return -EFAULT; /* verify that this is what we expect it to be */ if ((ppc_inst_val(jmp[0]) & 0xffff0000) != PPC_RAW_LIS(_R12, 0)) return -EINVAL; if ((ppc_inst_val(jmp[1]) & 0xffff0000) != PPC_RAW_ADDI(_R12, _R12, 0)) return -EINVAL; if (ppc_inst_val(jmp[2]) != PPC_RAW_MTCTR(_R12)) return -EINVAL; if (ppc_inst_val(jmp[3]) != PPC_RAW_BCTR()) return -EINVAL; addr = (ppc_inst_val(jmp[1]) & 0xffff) | ((ppc_inst_val(jmp[0]) & 0xffff) << 16); if (addr & 0x8000) addr -= 0x10000; *target = addr; return 0; } int module_finalize_ftrace(struct module *module, const Elf_Shdr *sechdrs) { module->arch.tramp = do_plt_call(module->core_layout.base, (unsigned long)ftrace_caller, sechdrs, module); if (!module->arch.tramp) return -ENOENT; #ifdef CONFIG_DYNAMIC_FTRACE_WITH_REGS module->arch.tramp_regs = do_plt_call(module->core_layout.base, (unsigned long)ftrace_regs_caller, sechdrs, module); if (!module->arch.tramp_regs) return -ENOENT; #endif return 0; } #endif