/* * pci_dn.c * * Copyright (C) 2001 Todd Inglett, IBM Corporation * * PCI manipulation via device_nodes. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include #include #include #include #include #include #include #include #include #include #include #include /* * The function is used to find the firmware data of one * specific PCI device, which is attached to the indicated * PCI bus. For VFs, their firmware data is linked to that * one of PF's bridge. For other devices, their firmware * data is linked to that of their bridge. */ static struct pci_dn *pci_bus_to_pdn(struct pci_bus *bus) { struct pci_bus *pbus; struct device_node *dn; struct pci_dn *pdn; /* * We probably have virtual bus which doesn't * have associated bridge. */ pbus = bus; while (pbus) { if (pci_is_root_bus(pbus) || pbus->self) break; pbus = pbus->parent; } /* * Except virtual bus, all PCI buses should * have device nodes. */ dn = pci_bus_to_OF_node(pbus); pdn = dn ? PCI_DN(dn) : NULL; return pdn; } struct pci_dn *pci_get_pdn_by_devfn(struct pci_bus *bus, int devfn) { struct device_node *dn = NULL; struct pci_dn *parent, *pdn; struct pci_dev *pdev = NULL; /* Fast path: fetch from PCI device */ list_for_each_entry(pdev, &bus->devices, bus_list) { if (pdev->devfn == devfn) { if (pdev->dev.archdata.pci_data) return pdev->dev.archdata.pci_data; dn = pci_device_to_OF_node(pdev); break; } } /* Fast path: fetch from device node */ pdn = dn ? PCI_DN(dn) : NULL; if (pdn) return pdn; /* Slow path: fetch from firmware data hierarchy */ parent = pci_bus_to_pdn(bus); if (!parent) return NULL; list_for_each_entry(pdn, &parent->child_list, list) { if (pdn->busno == bus->number && pdn->devfn == devfn) return pdn; } return NULL; } struct pci_dn *pci_get_pdn(struct pci_dev *pdev) { struct device_node *dn; struct pci_dn *parent, *pdn; /* Search device directly */ if (pdev->dev.archdata.pci_data) return pdev->dev.archdata.pci_data; /* Check device node */ dn = pci_device_to_OF_node(pdev); pdn = dn ? PCI_DN(dn) : NULL; if (pdn) return pdn; /* * VFs don't have device nodes. We hook their * firmware data to PF's bridge. */ parent = pci_bus_to_pdn(pdev->bus); if (!parent) return NULL; list_for_each_entry(pdn, &parent->child_list, list) { if (pdn->busno == pdev->bus->number && pdn->devfn == pdev->devfn) return pdn; } return NULL; } #ifdef CONFIG_PCI_IOV static struct pci_dn *add_one_dev_pci_data(struct pci_dn *parent, int vf_index, int busno, int devfn) { struct pci_dn *pdn; /* Except PHB, we always have the parent */ if (!parent) return NULL; pdn = kzalloc(sizeof(*pdn), GFP_KERNEL); if (!pdn) return NULL; pdn->phb = parent->phb; pdn->parent = parent; pdn->busno = busno; pdn->devfn = devfn; #ifdef CONFIG_PPC_POWERNV pdn->vf_index = vf_index; pdn->pe_number = IODA_INVALID_PE; #endif INIT_LIST_HEAD(&pdn->child_list); INIT_LIST_HEAD(&pdn->list); list_add_tail(&pdn->list, &parent->child_list); return pdn; } #endif struct pci_dn *add_dev_pci_data(struct pci_dev *pdev) { #ifdef CONFIG_PCI_IOV struct pci_dn *parent, *pdn; int i; /* Only support IOV for now */ if (!pdev->is_physfn) return pci_get_pdn(pdev); /* Check if VFs have been populated */ pdn = pci_get_pdn(pdev); if (!pdn || (pdn->flags & PCI_DN_FLAG_IOV_VF)) return NULL; pdn->flags |= PCI_DN_FLAG_IOV_VF; parent = pci_bus_to_pdn(pdev->bus); if (!parent) return NULL; for (i = 0; i < pci_sriov_get_totalvfs(pdev); i++) { struct eeh_dev *edev __maybe_unused; pdn = add_one_dev_pci_data(parent, i, pci_iov_virtfn_bus(pdev, i), pci_iov_virtfn_devfn(pdev, i)); if (!pdn) { dev_warn(&pdev->dev, "%s: Cannot create firmware data for VF#%d\n", __func__, i); return NULL; } #ifdef CONFIG_EEH /* Create the EEH device for the VF */ edev = eeh_dev_init(pdn); BUG_ON(!edev); edev->physfn = pdev; #endif /* CONFIG_EEH */ } #endif /* CONFIG_PCI_IOV */ return pci_get_pdn(pdev); } void remove_dev_pci_data(struct pci_dev *pdev) { #ifdef CONFIG_PCI_IOV struct pci_dn *parent; struct pci_dn *pdn, *tmp; int i; /* * VF and VF PE are created/released dynamically, so we need to * bind/unbind them. Otherwise the VF and VF PE would be mismatched * when re-enabling SR-IOV. */ if (pdev->is_virtfn) { pdn = pci_get_pdn(pdev); #ifdef CONFIG_PPC_POWERNV pdn->pe_number = IODA_INVALID_PE; #endif return; } /* Only support IOV PF for now */ if (!pdev->is_physfn) return; /* Check if VFs have been populated */ pdn = pci_get_pdn(pdev); if (!pdn || !(pdn->flags & PCI_DN_FLAG_IOV_VF)) return; pdn->flags &= ~PCI_DN_FLAG_IOV_VF; parent = pci_bus_to_pdn(pdev->bus); if (!parent) return; /* * We might introduce flag to pci_dn in future * so that we can release VF's firmware data in * a batch mode. */ for (i = 0; i < pci_sriov_get_totalvfs(pdev); i++) { struct eeh_dev *edev __maybe_unused; list_for_each_entry_safe(pdn, tmp, &parent->child_list, list) { if (pdn->busno != pci_iov_virtfn_bus(pdev, i) || pdn->devfn != pci_iov_virtfn_devfn(pdev, i)) continue; #ifdef CONFIG_EEH /* Release EEH device for the VF */ edev = pdn_to_eeh_dev(pdn); if (edev) { pdn->edev = NULL; kfree(edev); } #endif /* CONFIG_EEH */ if (!list_empty(&pdn->list)) list_del(&pdn->list); kfree(pdn); } } #endif /* CONFIG_PCI_IOV */ } struct pci_dn *pci_add_device_node_info(struct pci_controller *hose, struct device_node *dn) { const __be32 *type = of_get_property(dn, "ibm,pci-config-space-type", NULL); const __be32 *regs; struct device_node *parent; struct pci_dn *pdn; #ifdef CONFIG_EEH struct eeh_dev *edev; #endif pdn = kzalloc(sizeof(*pdn), GFP_KERNEL); if (pdn == NULL) return NULL; dn->data = pdn; pdn->phb = hose; #ifdef CONFIG_PPC_POWERNV pdn->pe_number = IODA_INVALID_PE; #endif regs = of_get_property(dn, "reg", NULL); if (regs) { u32 addr = of_read_number(regs, 1); /* First register entry is addr (00BBSS00) */ pdn->busno = (addr >> 16) & 0xff; pdn->devfn = (addr >> 8) & 0xff; } /* vendor/device IDs and class code */ regs = of_get_property(dn, "vendor-id", NULL); pdn->vendor_id = regs ? of_read_number(regs, 1) : 0; regs = of_get_property(dn, "device-id", NULL); pdn->device_id = regs ? of_read_number(regs, 1) : 0; regs = of_get_property(dn, "class-code", NULL); pdn->class_code = regs ? of_read_number(regs, 1) : 0; /* Extended config space */ pdn->pci_ext_config_space = (type && of_read_number(type, 1) == 1); /* Create EEH device */ #ifdef CONFIG_EEH edev = eeh_dev_init(pdn); if (!edev) { kfree(pdn); return NULL; } #endif /* Attach to parent node */ INIT_LIST_HEAD(&pdn->child_list); INIT_LIST_HEAD(&pdn->list); parent = of_get_parent(dn); pdn->parent = parent ? PCI_DN(parent) : NULL; if (pdn->parent) list_add_tail(&pdn->list, &pdn->parent->child_list); return pdn; } EXPORT_SYMBOL_GPL(pci_add_device_node_info); void pci_remove_device_node_info(struct device_node *dn) { struct pci_dn *pdn = dn ? PCI_DN(dn) : NULL; struct device_node *parent; #ifdef CONFIG_EEH struct eeh_dev *edev = pdn_to_eeh_dev(pdn); if (edev) edev->pdn = NULL; #endif if (!pdn) return; WARN_ON(!list_empty(&pdn->child_list)); list_del(&pdn->list); parent = of_get_parent(dn); if (parent) of_node_put(parent); dn->data = NULL; kfree(pdn); } EXPORT_SYMBOL_GPL(pci_remove_device_node_info); /* * Traverse a device tree stopping each PCI device in the tree. * This is done depth first. As each node is processed, a "pre" * function is called and the children are processed recursively. * * The "pre" func returns a value. If non-zero is returned from * the "pre" func, the traversal stops and this value is returned. * This return value is useful when using traverse as a method of * finding a device. * * NOTE: we do not run the func for devices that do not appear to * be PCI except for the start node which we assume (this is good * because the start node is often a phb which may be missing PCI * properties). * We use the class-code as an indicator. If we run into * one of these nodes we also assume its siblings are non-pci for * performance. */ void *pci_traverse_device_nodes(struct device_node *start, void *(*fn)(struct device_node *, void *), void *data) { struct device_node *dn, *nextdn; void *ret; /* We started with a phb, iterate all childs */ for (dn = start->child; dn; dn = nextdn) { const __be32 *classp; u32 class = 0; nextdn = NULL; classp = of_get_property(dn, "class-code", NULL); if (classp) class = of_read_number(classp, 1); if (fn) { ret = fn(dn, data); if (ret) return ret; } /* If we are a PCI bridge, go down */ if (dn->child && ((class >> 8) == PCI_CLASS_BRIDGE_PCI || (class >> 8) == PCI_CLASS_BRIDGE_CARDBUS)) /* Depth first...do children */ nextdn = dn->child; else if (dn->sibling) /* ok, try next sibling instead. */ nextdn = dn->sibling; if (!nextdn) { /* Walk up to next valid sibling. */ do { dn = dn->parent; if (dn == start) return NULL; } while (dn->sibling == NULL); nextdn = dn->sibling; } } return NULL; } EXPORT_SYMBOL_GPL(pci_traverse_device_nodes); static struct pci_dn *pci_dn_next_one(struct pci_dn *root, struct pci_dn *pdn) { struct list_head *next = pdn->child_list.next; if (next != &pdn->child_list) return list_entry(next, struct pci_dn, list); while (1) { if (pdn == root) return NULL; next = pdn->list.next; if (next != &pdn->parent->child_list) break; pdn = pdn->parent; } return list_entry(next, struct pci_dn, list); } void *traverse_pci_dn(struct pci_dn *root, void *(*fn)(struct pci_dn *, void *), void *data) { struct pci_dn *pdn = root; void *ret; /* Only scan the child nodes */ for (pdn = pci_dn_next_one(root, pdn); pdn; pdn = pci_dn_next_one(root, pdn)) { ret = fn(pdn, data); if (ret) return ret; } return NULL; } static void *add_pdn(struct device_node *dn, void *data) { struct pci_controller *hose = data; struct pci_dn *pdn; pdn = pci_add_device_node_info(hose, dn); if (!pdn) return ERR_PTR(-ENOMEM); return NULL; } /** * pci_devs_phb_init_dynamic - setup pci devices under this PHB * phb: pci-to-host bridge (top-level bridge connecting to cpu) * * This routine is called both during boot, (before the memory * subsystem is set up, before kmalloc is valid) and during the * dynamic lpar operation of adding a PHB to a running system. */ void pci_devs_phb_init_dynamic(struct pci_controller *phb) { struct device_node *dn = phb->dn; struct pci_dn *pdn; /* PHB nodes themselves must not match */ pdn = pci_add_device_node_info(phb, dn); if (pdn) { pdn->devfn = pdn->busno = -1; pdn->vendor_id = pdn->device_id = pdn->class_code = 0; pdn->phb = phb; phb->pci_data = pdn; } /* Update dn->phb ptrs for new phb and children devices */ pci_traverse_device_nodes(dn, add_pdn, phb); } /** * pci_devs_phb_init - Initialize phbs and pci devs under them. * * This routine walks over all phb's (pci-host bridges) on the * system, and sets up assorted pci-related structures * (including pci info in the device node structs) for each * pci device found underneath. This routine runs once, * early in the boot sequence. */ static int __init pci_devs_phb_init(void) { struct pci_controller *phb, *tmp; /* This must be done first so the device nodes have valid pci info! */ list_for_each_entry_safe(phb, tmp, &hose_list, list_node) pci_devs_phb_init_dynamic(phb); return 0; } core_initcall(pci_devs_phb_init); static void pci_dev_pdn_setup(struct pci_dev *pdev) { struct pci_dn *pdn; if (pdev->dev.archdata.pci_data) return; /* Setup the fast path */ pdn = pci_get_pdn(pdev); pdev->dev.archdata.pci_data = pdn; } DECLARE_PCI_FIXUP_EARLY(PCI_ANY_ID, PCI_ANY_ID, pci_dev_pdn_setup);